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PE Review Notes –  2013 

 

Particle, Particle System, and Rigid Body 
 

The equations of dynamics fall into two categories:  

 single particle formulations,  

 particle system formulations.   

Single particle formulation of motion is simpler than the 

particle system formulation and if the problem can be 

adequately solved using single particle formulation, that 

formulation would lead to faster and easier solution. 

 

Therefore, in dynamics study, we do not physically define 

the distinction between a particle and a particle system.  

We only need to make a distinction between: 

 Particle-problems 

 Particle-system problems.  

 

Different questions about the same object can lead to 

different applicable formulations.  For example, the 

questions involving the motion of a car travelling on a road 

can often be solved using single particle formulation.  

Question involving the behaviour of the same car motion in 

a rollover situation in a side impact requires particle system 

formulation to be used.   

 

With a little experience and reading the rest of these notes, 

you would be able to easily recognize the best formulations 

to use.   
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Clasification of Dynamics Problems 

 

Dynamics 

Kinematics Kinetics 

Rectangular Polar 

Force  

Acceleration 

Energy Impulse 

Momentum 

Dynamics 

Single 

Particle 

Particle 

Systems 

Rigid 

Bodies 

F=ma 

U=KE +PE 

Ft = mV 

F=maG 

U=KE +PE 

Fit = miVi 

FiRit = miRiVi 

F=maG 

U=KE +PE 

Ft = mVG 

M = I 
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Coordinate Systems 

 

A coordinate system is a frame of reference.  It needs an 

origin marker, a marker for x-axis identification, and a 

marker for positive Y-axis identification.  Imagine you are 

on an island and thinking of burying a treasure you 

discovered.   

 
You can use a big tree as the origin. For the x-axis you can 

use a waterfall far away as the marker.  The y-axis is 

normal to the x-axis but what defines the positive direction 

needs another marker and this can be a big rock or 

mountain.  Normally we need a marker for positive z-axis 

too but in this case it is obvious which direction the 

treasure is burried.  You can now disclose the location of 

the treasure in three standard methods – we only look at 

Cartesian and cylindrical coordiante methods. 
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Analyzing Particle Motion 
 

1D Rectilinear Motion 

 

 
Constant Linear Acceleration Motion 
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1D Angular Motion 
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Constant Angular Acceleration Motion 
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2D and 3D Motion in Cartesian (x/y/z) Coordiates  
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2D and 3D Motion in Polar and Cylindrical 

Coordinates 

 

Velocity and acceleration components are given in the 

direction of unit vectors along radial and transverse 

(tangential) directions. 
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When the path of motion is circular, the radial velocity and 

accelerations become zero.   
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If an object rotate at zero angular acceleration (=0) in a 

circular path, its acceleration is the usual centripital 

component – a vector pointing toward the center.    
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If an object moves out radially at constant speed on a 

uniformly CCW rotating disk, its acceleration would be the 

usual coriolis acceleration pointing to its left.   
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Problem #D1 : 2D motion that is best solved in Cartesian 

formulation of motion 

 

Projectile Motion 

 

D#1.   A cannon is fired at a 30 degree angle with horizon 

from a height of 200 feet (60.96 m)  at a muzzle velocity of 400 

ft/s (121.92 m/s).  Find the time to impact the ground and the 

distance travelled neglecting the air resistance.  

 

Hints:  Motion in X-direction (horizontal) is a constant 

acceleration motion with an acceleration of zero.  Motion 

in Y-direction is also a constant acceleration motion with 

an acceleration of g downward. 

 

 
Answers: time=13.3 sec , Distance=4626 feet (1410 m)  

 

D#2.  A car starts from rest on a horizontal circular road 

with an acceleration of 7 ft/s2 (22..11333366  mm//ss
2

))..    The road radius is 

300 ft (9911..4444  mm)).  How long would it take for the car to reach 
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an acceleration of magnitude g/4?  What is the velocity? 

Answer: 4.93 sec at V=34.5 ft/s (1100..55115566  mm//ss))  

 

Hints: Tangential acceleration is given and radial 

acceleration is a function of velocity.  Velocity is a 

function of time and tangential acceleration. 

 

D#3.  At an instant a rod of 9 inches (00..22228866  mm))  length is 

rotating at 10 rad/s CCW and slowing down at a rate of 40 

rad/s2.  Find the speed of the end of the rod – speed is the 

magnitude of the velocity vector.  Also find the magnitude 

of the acceleration of the end of the rod.  

Answers:  V=7.5 ft/s (22..228866  mm//ss))  and a=80.8 ft/s2 (2244..6622778844  mm//ss
22
))  

 

D#4.  At the instance shown, a slider is 18 inches (00..44557722  mm))  

from the pivot point and is sliding outward at a velocity of 

15 ft/s (44..557722  mm//ss))  on a rod while speeding up at a rate of 180 

ft/s2 (5544..886644  mm//ss22)).  The rod is rotating CCW at 10 rad/s and 

slowing down at the rate of 40 rad/s2.  Find the magnitude 

of the acceleration vector of the slider.    
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Answer: 242 ft/s2 (7733..77661166  mm//ss22))  
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Relative Motion Formulation 

 

In many problems a complex motion can be expressed in 

terms of two or more simpler motions.  A typical situation 

is the motion of a water skier relative to the ground 

coordiante system as shwn below: 

 

 
The motion of the skier is simple with respect to the boat 

(it goes through a circular path relative to the boat).  And, 

the motion of the boat is simple relative to the ground.  

Therefore, we can express the motion of the skier with 

respect to the groud using the relative velocity and 

acceleration relationships and two simple vectors: 
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The easiest and quickest  method of solving simple vector 

relationships is through graphical means. 
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Example:  Find the skier’s speed and magnitude of 

acceleration if the speed of the boat is VB and it is 

accelerating at the rate of aB.  The skier’s angular velocity 

is  and is a constant.  The rope length is r. 

 

 
The skier’s square of speed is: 

)90cos(2)( 222   rVrVV BB  

 

The acceleration of the skier is determined from the 

following vector diagram: 
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Example:  In the slider crank mechanism shown, the crank 

is 18 inches (00..44557722  mm) and at an angle of 45 degrees. It is 

rotating in CCW direction at a constant speed of 100 rad/s.  

The connecting rod is at an angle of 30 degrees with the 

horizontal line.  Find the speed of the slider C and the 

angular velocity of the connecting rod at this instance. 

 

BCBC

BAB

VVV

smsftrVV

/

/ )/72.45(/150)100)(
12

18
(




 

 

A 2D vector equation can be solved if it has two unknow 

scalars (legnths or directions).  This vector equation has 

two unknows: 

 Magnitude of VC 

 Magnitude of VC/B 

 

A graphical method can be used to easily find both values. 

A 

B 

C 
45 30 
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Using the law of sines 

 smsftV
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V
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Kinmatics of rolling motion (or rope and pully) 
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Single Particle Kinetics 
 

Force – Acceleration Formulation 

 
amF



 

F  is the force required to bring about the acceleration a.  

The acceleration is measured in a fixed (non-accelerating) 

frame of reference.  This is called the equation of motion. 

 

In Cartesian formulation of acceleration: 
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In Polar formulation of acceleration: 


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This formulation of kinetics is used when the instantaneous 

relationship between the force and acceleration is required. 
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D#5: A 25 lb (111111..22  NN)  ball is hanging from a 2 ft (00..6611  mm))  rope.  

At the instant shown the speed of the ball is 13 ft/s (33..9966  mm//ss)).  

Find the rope tension (T) and angular acceleration of rope.  

 
Hint:  Draw the Free Body Diagram (FBD) of the ball.  

From the velocity information find radial acceleration.  

Write the equation of motion along the direction of the 

rope to find T.  Write the equation of motion along the path 

of the particle ( direction) and find the angular 

acceleration.   Answer: 87.25 lbs (338888..11  NN))  and 8.05 rad/s2
  

 

Note on Units 

Force Mass Distance gc 

Lbs Slugs (lb-s
2
/ft) ft 32.2 ft/s

2 

Lbs “Blobs”(lb-s
2
/in) in 386 in/s

2 

N Kg meters 9.81 m/s
2
 

Note:  Unfortunately it is also customary to express force 

using the units of Kg.  When Kg is used to indicate force, 

multiply it by 9.8 to convert it to Newtons.   For example if 

your weight is 60 kg, your weight is about 600 Newtons.

VV  

3300  
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Work/Energy Formulation of particle Kinetics 

 

 
 

Work/Energy formulation of kinetics is obtained when the 

equation of motion (Force/Acceleration formulation) is 

integrated over the particle path from an initial position to a 

final position.   

   xdamxdF


 

The left side of this equation is the work done on the 

particle during travel including the work by the 

gravitational force.  The right hand side is the change in the 

kinetic energy of the paticle.  The final form is: 

PEKEU 21  

 

II  
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Where: 

 

U1-2 : Work done by all forces (except 

gravitational and spring forces). 
 

 
For friction force, the work is: 

 U1-2=-f d 
Where f is the fiction force and d is the length of the path 

traveled.  For a constant force F acting in the direction of 

travel 

 U1-2= Fd 
 

 

 

 

II  

IIII  
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Energy and Power Conversions 

 

 1 ft-lb   = 1.35 Jouls 

 1 ft-lb/sec  = 1.35 Watts 

 1 hp   = 746 Watts 

 1 hp-sec   = 746 Jouls 

 1 BTU  = 1055 Jouls 

 1 BTU/sec = 1055 Watts 

 1 Calorie  = 4.19 Jouls   

 1 Calorie/sec = 4.19 Watts 

 1 Amp-hour@V volt = V Watt-hr =3600V Jouls 

 

Example: Suppose you weigh 175 lbs.  You decide to take 

the staris from the 1st floor to the 5th floor of EB (about 100 

feet) .  How much energy it takes in kilo-calories, jouls, 

Watt-hours, BTU, hp-sec, and Amp-hours @ 1.5 volts.  

Assume all the energy spent goes into elevation gain. 

 

E1 = 175(100) = 17500 ft-lb  

E2 = (17500)*(1.35) = 23625 Jouls (Watt-sec) 

E3 = 23625/4190 = 5.64 kilo-calories (called calories) 

E4 = 23625/3600 = 6.56 Watt-hr 

E5 = 23625/1055 = 22.4 BTU 

E6 = 23625/746 = 31.7 hp-sec 

E6 = 6.56/1.5 = 4.37 Ah @ 1.5 volts  (2 AA size Alkalines) 
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KE: Change in kinetic energy of the particle 
 

The change in kinetic energy of a particle is: 
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PE:  Change in potential energy of the 

gravitational and spring forces 
 

Gravitational potential energy 

)( 12 hhmgPEgravity   

When a particle moves up in the gravitational field, the 

gravitational force gains potential energy and PE is 

postive.     
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Elastic potential energy 

)(
2

1 2

1

2

2 SSkPEElastic 
 

 

S1 is the spring stretch – the difference in spring length at 

position-1 relative to the free length of the spring (S0): 

 

 S1=S1-S0   

 S2=S2-S0   
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D#6:  The spring shown is at free length at the position 

drawn and has a spring constant of 7 lbs/ft (110022  NN//mm).  The 

slider weighs 5 lbs (2222..2244  NN)).  If the slider is released from 

rest, what would be its velocity after dropping 1.5ft (00..44557722  mm)).  

 
Answer: 8.2 ft/s ((22..55  mm//ss))  

 

#D7  A 25-lb (111111..22  NN))  box is released with an intial velocity 

of 30 in/s (99..114444  mm//ss))  from the position shown.  The spring 

constant is 100 lb/in (1177550000  NN//mm))  and the incline has a slope of 

3:4.  The coefficient of dynamic friction between the slider 

and the path is 0.3.  Find the maximum force in the spring 

after the block is released.  

 
Answer: 163.7 lbs (772288..11  NN))  

11  fftt  

((00..44557722  mm))  

1100  iinn  

..225544  mm  

33  

44  
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Impulse/Momentum Formulation of particle Kinetics 

 

Impulse-Momemtum formulation of kinetics is obtained 

when the equation of motion (Force/Acceleration 

formulation) is integrated over some time period from t1 to 

t2.   

   dtamdtF


 

The left side of this equation is the impluse of the external 

forces acting on a particle during the time period of 

interest.  The right hand side is the change in the linear 

momentum of the paticle.   

 

Assuming a constant mass, the RHS of the formula (the 

momentum) only depends on initial and final velocities: 

 

)( 12 VVmdtF


  

 

Note that both the force and the velocities are vector 

quantities.  These relationships can be writtten in terms of 

their components in (usually) Cartesian coordiates.  Here is 

an example for one direction: 

)( 12 xxx VVmdtF


  
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Also note that when a particle is not acted upon by any 

forces (in some direction), the particle momentum is 

conserved in that direction. 

 
Example:  A 2000 lb (88889966  NN))  car is travelling at 60 mph (9966..66  kkmm//hh))  

when the driver slams on the brakes resulting in all the wheels to 

lock.  If the coefficient of friction between the tires and the road is 

0.80 and assuming equal friction forces from all tires, how long 

would it take for the car to come to a stop?  

 

Classic solution: The friction force is N = 0.8(2000) = 1600 lbs.  

From the Newton’s formula 

2/76.25
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The velocity is 88 ft/sec and it drops to zero.  The time it takes is: 

 sec4.376.25088

0
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Alternatively using impulse/momentum 
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Multiple Particle Kinetics 

 

When the problem solution involves multiple particles, 

multiple-particle formulation of motion formulas would 

result in quicker and easier solutions.  If the particle system 

is rigidly connected together, the formulas for the special 

case of rigid-bodies work even better.   

 

Force – Acceleration Formulation 

Gtext amF


  

F  is the summation of external forces required to bring 

about the acceleration aG to the center of mass of the 

particle system of total mass mt.   

 

The problems that this Force-Acceleration addresses are 

similar to those of single particles.   

 

Work/Energy Formulation of particle Kinetics 

 

The energy formulation for the particle systems is also 

similar to single particles: 

PEKEUi   

The KE and the PE terms include the all the particles.  The 

work includes the work done by external and internal 

forces on the particles .  The work of internal forces, in 

FF  
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general, may not cancel out - so apply only when 

frictional losses do not exist and no energy is created or 

lost within the system. 

 

Impulse/Momentum Formulation of particle systems 

 

Impulse-Momemtum formulation of kinetics also remains 

the same form: 

 

  )( 12 iiiext VVmdtF


 

 
The momentum term includes all particles.  Fortunately 

the impulse term only includes the external forces as the 

impulse of internal forces cancel out to zero.  The main 

application involves interaction of two or more particles 

such as in an impact and also in applications involving 

fluid flow in nozzles, jet propulsion, and rocket thrusts.   

FFeexxtt  
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Note that both the force and the velocities are vector 

quantities.  These relationships can be writtten in terms of 

their components usually in a Cartesian coordiates.  Here is 

an example for one direction: 

  )( 1,2,, xixiiextx VVmdtF


 

Conservation of Linear momentum 

 

Any particle system that is not acted upon by any external 

forces in a certain direction would preserve its momentum 

in that direction. 

 

Example:  A railroad car travelling at 2 ft/s (00..66110000  mm//ss))  bumps 

another car of the same weight and the two cars latch 

together.  What is the speeds of the two cars immediately 

after the impact?  

 

   

II  IIII  
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If the two cars do not latch together, they would not have 

the same speed after impact.  The change in linear 

momentum becomes: 

 0)0()( 11,22,11  VmVmVml afterafter  

This is one equation in two unknows.  To solve this impact 

problem we need to know an experimental coefficient 

known as the coefficient of restitution.  Coefficient of 

restitution measures the degree of impact elasticity. 

 

Coefficient of restitution 

 

Suppose two particles collide head on as shown below: 

 

 

11  22  
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If the impact is perfectly elastic, minimal energy is lost 

and the relative velocity with which the paricles depart is 

the same as the relative velocity of the two particles 

approaching before impact. 

 

If the impact is perfectly plastic, maximum energy is lost 

due to impact and the parts stick together.  The relative 

velocity of departure becomes zero.  In general, the 

coefficient of restitution is defined as: 

 

 approachofspeedlative

departureofspeedlative
e

___Re

___Re


 

 

Example:  Consider the same problem of railroad cars.  

Assuming a coefficient of restitution of 0.8,  What would 

be the speeds of the two cars immediately after the impact? 
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The coefficient of restitution relationship is: 
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6.18.0 ,1,2
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,1,2

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Note: V2,a and V2b are unknowns and they are assumed to 

be positive or in the same direction.  From the two 

equations 

 V2,a=1.8 ft/s  [.55 m/s]      

 V1,a=0.2 ft/s  [.061 m/s] 
Our assumption of both being positive and in the same 

direction was right.  The bumping car loses almost all of its 

speed where the bumped car jumps ahead almost as fast as 

the approaching car before impact.  Those who have played 

pool should be well familiar with this kind of impact. 
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Kinetics of Fluid Flow 

 

Fluids are also particle systems and the impulse-

momentum formulation applies to the mass within a control 

volume.  In this review, we only consider systems in which 

the mass within control volume remains a constant.  This 

includes fluid flow through nozzles but not rockets.  For 

fluid flow through nozzles, the basic relationship is: 

 

)( inout VVmR





  

 

where R is the total resultant force that would bring about a 

change in fluid momentum within the control volume.  The 

mass flow rate is m  and is measured in slugs per second 

[or kg/s] and it can be calculated as: 

 

 VAm   

Where A is the flow (pipe) area, is the mass density of 

the fluid, and V is the flow velocity.  The last useful 

relationship is the conservation of mass: 

outoutinin VAVA 
 

where A and V are the flow area and the flow velocity 

magnitudes. 

 

Data:   

Mass density of water is 1.94 slugs/ft
3 

 Mass density of water is 1000 kg/m
3 
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Example:  Consider a horizontal pipe with the bend 

shown.  Determine the vertical force exerted by the water 

on the bend support.  The bend angle is 60 degrees. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Using conservation of mass 

 

sft
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The mass density of water is about 1.94 slugs per cubic 

feet.  The mass flow rate is: 

dd==88  iinn  [[..220033  mm]]  

VV==2200  fftt//ss  [[66..11  mm//ss]]  

PP==66  ppssii  [[4411337700  ppaa]]  

dd==1100  iinn  [[..225544  mm]]  

PP==44  ppssii  [[2277558800  ppaa]]  

6600  ddeeggrreeeess  
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Momentum relationship (force needed to divert fluid) 
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The vertical component is: 
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This is the net force acting on water.  Now we must 

consider the inlet and outlet pressures. The total resultant 

force is composed of three terms: 

 
Equating the forces in the Y-direction: 

 )60(SinFFR outletpipey   

==  
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Where 
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Solving for the support force 
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The pressure difference increases the support force 

substantially. 

 

In SI Units 
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The mass density of water is about 1000 kg per cubic 

meters.  The mass flow rate is: 
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Momentum relationship (force needed to divert fluid) 
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This is part (a) solution.  Equating the forces in the Y-

direction: 

 )60(SinFFR outletpipey   

Where 
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Solving for the support force 
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Kinetics of Rigid Bodies 
 

A rigid body is a special case of a system of particles in 

which the particles have a fixed rigid relationship with 

respect to each other.  (no internal movements or internal 

work) 

 
Force/Acceleration Formulation 

 

Gtext amF


  

 

A rigid-body being one rigid object can also have an 

angular velocity  and angular acceleration .  The motion 

of a rigid body is completely defined (at an instant) by its 

mass center acceleration as well as its angular acceleration.   

 

GG  
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Force Moment – Angular Acceleration Formulation 

 

The angular impulse – angular momentum relationship for 

particle systems (which was not presented in its general 

form) takes a new and very useful form for rigid bodies:  




OOext IM  ,  

Where point O is a fixed (non-accelerating) point.  The 

constant IO is called the mass moment of inertia of the rigid 

body about point O: 

 
M

oo dmRI
2

 

It is a measure of rotational inertia.  The more mass or 

radius, the harder it is to spin the body.  Alternatively, the 

formulation can also be applied with respect to the rigid 

body’s center of mass: 

 


GGext IM  ,  

and  

 
M

GG dmRI
2

 

Relations for mass moments of inertias for common shapes 

can be found in dynamics book tables.  This formula does 

not apply to any other points (other than O and G). 

 

While the moment-angular acceleration formulation applies 

to 3D dynamic systems, most rigid body problems are 

planar allowing the moments of forces to be calculated 

using the familiar cross-product methods. 
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The magnitude of the moment vector is F.d where F is the 

magnitude of the force vector and d is the normal distance.  

The direction of the moment vector is either out of the 

plane or into the plane.  This direction is identified by a 

plus sign or a minus sign.  The convention is to use the 

right-hand rule for postive or negative directions.  For 

example the figure shows a moment going into the page 

according to the rule and therefore the moment value 

would be negative.    

 

Parallel-Axis theorem 

 

A mass moment of interias with respect to any axis can be 

easily calculated if the moment of inertia is known with 

respect to a parallel axis at CG.  The relationship is: 

 

2mdII GO   

where d is the distance between the parallel axes. 
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Example: A 120 lb (553333..7766  NN))  pulley (r  =8”  00..22003322  mm) is 

released from rest lowering a box with a mass of 2 slugs 

(2299..1166  kkgg)).  During lowering the rope tension remains constant.  

What value is this rope tension?  

 
Choosing downward to be positive and from the freebody 

diagram of the box: 
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Where 

 W = 2(32.2) = 64.4 lbs and m = 2 slugs 

Also from kinematics of motion: 

 ra   
Note that the direction of  must be consistent with a.  The 

equation of motion for the mass becomes 
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Now from the FBD of the pulley (ignoring pivot reaction 

forces as they are not needed for moment relationship) 
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Note that the direction of T in the pulley FBD must be 

consistent with that in the box FBD.  Setting (II) into (I)  

 T = 64.4 – 1.33*(T/1.24)  

T=31.1 lbs 

 

SI T = 138.33 N 

 

Work and Kinetic Energy Formulation for Rigid Bodies 

 

 
The energy relationship is the same as in particle systems: 

11  

22  

hh  
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212121,   PEKEUi  

 

In this relation the work done on the system is due to 

external forces only (the work of all internal forces cancel 

out for single rigid bodies).   

 

Kinetic Energy of a Rigid Body 
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When the rigid body is pinned at a fixed point O and is 

only rotating, the kinetic energy is: 

 
2

2

1
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The change in potential energy due to gravitational force 

and spring forces remain as before: 

 )( 12 hhmgPEgravity   

and  
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Example 

A uniform disk of raduis 0.75 ft (00..22228866  mm))  and weight 30lbs 

(113333..4444  NN))  is pulled by a spring with K=2 lb/ft (2299..1166666677  NN//mm)).  The 

free length of the spring is 1 ft (00..33004488  mm)).  The disk is released 

from rest at the position shown.  The disk is going to roll 



  4422  

without slipping.  Find the angular velocity of the disk as it 

travels 3 ft(00..99114444  mm))  toward left. 
  

 
Change Kinetic Energy 
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In SI 
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Applying the energy formulation: 

sec/22.47393.0 2 rad   

in SI 

sec/17.44.954.0 2 rad   

The diference is due to truncation errors with SI units. 

 

#D8  Solve the problem when a constant force of 1-lb [4.45 

N] acts on the roller center tending to slow it down.  Ans: 

3.2 rad/s  

 

#D9  The disk in the figure has a 

mass of 1 slugs [14.6 kg] and a 

raduis of gyration of 2.5 in. 

[0.063 m] and a raduis of 4 inches 

[0.1 m].  The block’s mass is 2 

slugs [29.2 kg].  The spring 

constant is 40 lb/ft [583 N/m] and 

the free length of the spring is 5 

in. [0.127 m].  The system is 

released from rest when the 

spring is at free length.  What is 

the velocity of the block after it falls 9 inches [.23 m]. 

 

Ans: V=4 ft/s [1.22 m/s] {in SI the ans. is slightly 

different} 
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11  fftt    

..33  mm  
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Impulse-Momentum Formulation of Rigid Bodies 

 

The linear Impulse of the resultant external force on a rigid 

body changes the linear momentum of the body as follows: 

 

)( ,, iGfGext VVmdtF


  

 

Also, in a planar motion, the change in the angular 

momentum of a rigid body with resprct to a fixed point O 

is equal to the angular impulse of the all external forces 

about O: 

 
)(, ifOOext IdtM    

It is easy to see that if we take derivatives of both sides 

with respect to time, we get Mext=I. 

 

#D10  A 1-lb [4.45 N] uniform 

rod is struck by a bullet 

weighing 0.05 pounds(.2224 

N).  The bar’s maximum angle 

of swing is measured to be 120 

degrees.  Estimate the velocity 

of the bullet in feet per second.  

Ignore friction.  The bullet gets 

embedded in the rod.  

 

Answer: 226 ft/sec [68.9 m/s] 

(44 ft/sec if you ignore the energy loss during impact!) 


