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Video-based sensor networks can provide important visual information in a number of applications including: environmental
monitoring, health care, emergency response, and video security. This article describes the Panoptes video-based sensor network-
ing architecture, including its design, implementation, and performance. We describe two video sensor platforms that can deliver
high-quality video over 802.11 networks with a power requirement less than 5 watts. In addition, we describe the streaming
and prioritization mechanisms that we have designed to allow it to survive long-periods of disconnected operation. Finally, we
describe a sample application and bitmapping algorithm that we have implemented to show the usefulness of our platform. Our
experiments include an in-depth analysis of the bottlenecks within the system as well as power measurements for the various
components of the system.

Categories and Subject Descriptors: C.5.3 [Computer System Implementation]: Microcomputers—Portable devices

General Terms: Design, Measurement, Performance
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1. INTRODUCTION

There are many sensor networking applications that can significantly benefit from the presence of
video information. These applications can include both video-only sensor networks or sensor networking
applications in which video-based sensors augment their traditional scalar sensor counterparts.
Examples of such applications include environmental monitoring, health-care monitoring, emergency
response, robotics, and security/surveillance applications. Video sensor networks, however, provide a
formidable challenge to the underlying infrastructure due to the relatively large computational and
bandwidth requirements of the resulting video data. The amount of video generated can consume
orders of magnitude more resources than their scalar sensor counterparts. As a result, video sensor
networks must be carefully designed to be both low power as well as flexible enough to support a broad
range of applications and environments.

To understand the flexibility required in the way the video sensor are configured, we briefly outline
three example applications:

This work is based upon work that was supported by the National Science Foundation (NSF) under grants ANI-0087761 and
EIA-0130344.
Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation.
Authors’ addresses: Department of Computer Science, Portland State University, P.O. Box 751, Portland OR 97207-0751; email:
{wuchi,edkaiser,wuchang}@cs.pdx.edu; mikael.le baillif@enseirb.fr.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or direct commercial advantage and that copies show this notice on the first
page or initial screen of a display along with the full citation. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists,
or to use any component of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 1515 Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
c© 2005 ACM 1551-6857/05/0500-0151 $5.00

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 1, No. 2, May 2005, Pages 151–167.



152 • W.-C. Feng et al.

—Environmental Observation Systems: For oceanographers that want to understand the development
of sandbars beneath the water’s surface, video sensors can provide an array of sensors. Using im-
age processing techniques on the video, the oceanographers can determine the evolution of such
sandbars over time. The tetherless nature of the application requires video sensors that are entirely
self-sufficient. In particular, the sensors must be equipped with power that is generated dynamically
via solar panels or wind-powered generators and managed appropriately. In addition, networking
connectivity may be at a premium, including possibly intermittent or “programmed” network discon-
nection. For this application, keeping the sensor running indefinitely while collecting, storing, and
transmitting only the most important video is the primary goal.

—For Video Security and Surveillance Applications: In these applications, the video sensors should filter
as much of the data at the sensor as possible in order to maximize scalability, minimize the amount of
network traffic, and minimize the storage space required at the archive to hold the sensor data. The
sensors themselves may have heterogeneous power and networking requirements. In outdoor security
applications, the sensor power may be generated by solar panels and may use wireless networking
to connect to the archive. For indoor security applications, the sensors most likely will have power
access and will be connected via wireless or wireline networks.

—Emergency Response Systems: A video-based sensor network may be deployed in order to help
emergency response personnel assess the situation and take appropriate action. The video sensors
may be required to capture and transmit high-quality video for a specified period of time (i.e., the
duration of the emergency). The goal in these situations might be to meet a target operating time
with minimal power adaptation, in order to provide emergency response personnel with the critical
information they need throughout the incident.

In this article, we describe the Panoptes video sensor networking project at Portland State University.
In particular, we will describe the design, implementation, and performance of the Panoptes sensor node,
a low-power video-based sensor. The sensor software consists of a component-based infrastructure that
can have its functionality altered on-the-fly through Python-connected components. We also describe
an adaptive video delivery mechanism that can manage a buffer of data so that it supports intermittent
and disconnected operation. This buffering mechanism allows the user to specify how to gracefully
degrade the quality of the video in the event that it is unable to transmit all the video data. Finally, we
will describe a video sensor application that we have developed. In this application, we have designed
an efficient algorithm to allow video data to be queried without analyzing pixel data directly.

In the following section, we provide a description of the embedded sensor platform, including the
systems software and architecture of the sensor. Following the description of the Panoptes video sensor,
we describe a scalable video sensor application that has been designed to show some of the features of
the video sensors. The experimentation section will provide an in-depth analysis of the performance
of the video sensor and its subcomponents. In Section 5, we describe some of the work related to ours
and how it differs. Finally, we conclude with some of our future work and a summary.

2. VIDEO SENSOR PLATFORM

In designing a video-sensor platform, we had a number of design goals that we were trying to accomplish
including:

—Low Power. Whether power is scarce or available, minimizing the amount of power required to
capture the video is important. For environments where power is scarce, minimizing power usage
can significantly increase the time that the sensors can operate. For environments where power
is plentiful, minimizing power usage can significantly increase the number of sensors that can be
economically deployed. For example, homeowners may be willing to deploy a large number of 5-watt
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video sensors (equivalent to a night light) while on vacation. However, they may be unwilling to use
their laptop or desktop counterparts that can easily consume two orders of magnitude more power.

—Flexible Adaptive Buffering Techniques. We expect that the video sensors will need to support a variety
of latency and networking configurations, with a buffer on the sensor acting as the intermediate store
for the data. Of course, the buffer can hold only a finite amount of data and may need to balance storing
old data and new data. For some applications, data older than some prespecified time may be useless,
while in other applications the goal will be to transmit as much captured data as possible (no matter
how old it is) over the network. Two such applications might include commuter traffic monitoring for
the former case and coastal monitoring for the latter case. Thus, we require a flexible mechanism
by which applications can specify both latency and a mapping of priorities for the data that is being
captured.

—Power Management. A low-power video platform is just one component of the video sensor. The video
sensor also needs to be able to adapt the amount of video that is being captured to the amount of
power that is available. Just as in the flexible adaptive buffering techniques, power management also
needs to be flexible. For example, in one scenario, the application requirement might be to have the
sensor turn on and capture as much video as it can before the battery dies. In another scenario, it
might be necessary for the sensor to keep itself alive using only self-generated power (such as from
a solar panel or a wind-powered generator).

—Adaptive Functionality. The functionality of the sensor may need to change from time to time.
Changing the functionality should not require the sensor to be stopped and reconfigured. Rather,
the sensor should be able to add new functionality while running and should also minimize the
amount of code transferred through the network.

In the following section, we will describe the hardware platform that serves as the basis of our video
sensor technology. Following that, we will describe the software that we have developed to help address
some of the design requirements above.

2.1 Panoptes Sensor Hardware

In designing the video sensor, we had a number of options available to us. The most prevalent platform
in the beginning was the StrongARM based Compaq IPAQ PDA. This platform has been used for a
number of research projects, including some at MIT and ISI. As we will describe in the experimentation
section, we found that the popular Winnov PC-Card video capture device was slow in capturing video
and also required a large amount of power. The alternative to this was to find an embedded device with
different input capabilities.

Our initial investigation into embedded devices uncovered a number of limitations unique to
embedded processors that are not generally found in their laptop or desktop counterparts.

—Limited I/O Bandwidth. Many of the low-power devices today have either PCMCIA or USB for their
primary I/O interconnects. Using PCMCIA-based devices typically requires significant power. For
USB, low-power embedded devices do not support USB 2.0, which supports 455 Mb/sec. The main
reason for this is that a fairly large processor would be required to consume the incoming data. For
USB 1.0, the aggregate bandwidth is 12 Mb/sec, which cannot support the uncompressed movement
of 320 × 240 pixel video at full frame rate.

—Floating Point Processing. The Intel-based embedded processors such as the StrongArm processors
and the Xscale processors do not support floating point operations. For video compression algorithms,
this means that they either need to have floating point operations converted to integer equivalents
or the operations need to be emulated.
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Fig. 1. The Panoptes Video Sensors. (a) The Applied Data Bitsy platform. The sensor board is approximately 5 inches long and
3 inches wide. (b) The Crossbow Stargate platform. The Stargate platform is approximately 3.5 inches by 2.5 inches in size.

—Memory Bandwidth. The ability to move data in and out of memory is relatively small compared
to their desktop counterparts. Image capture, processing, and compression, however, can involve
processing a large amount of image in real-time.

The initial video sensor that we developed is an Applied Data Bitsy board utilizing the Intel
StrongARM 206-MHz embedded processor. The device is approximately 5 inches long and approxi-
mately 3 inches wide. The sensor has a Logitech 3000 USB-based video camera, 64 Mbytes of memory,
the Linux 2.4.19 operating system kernel, and an 802.11-based networking card. Note that while 802.11
is currently being used, it is possible to replace it with a lower-powered, lower frequency RF radio
device. By switching to a USB-based camera platform, we were able to remove the power required to
drive the PC-Card. After reporting our initial findings [Feng et al. 2003], we have ported the code base
to work with the Crossbow Stargate platform. There are a number of advantages to this platform. First,
it is made by the company that provides many of the motes to the sensor community. The Stargate was
originally meant for use as a data aggregator for the motes. Second, while it has twice the processing
power as the Bitsy board, it also consumes less energy. The video sensors are shown in Figure 1.

As far as we know, these are the first viable video sensors that can capture video at a reasonable
frame rate (i.e., greater than 15 frames per second), while using a small amount of power. The other
platforms that we are aware of will be described in the related work section.

2.2 Panoptes Sensor Software Architecture

There are a number of options in architecting the software on the video sensor. The Panoptes video
sensor that we have developed uses the Linux operating system. We chose Linux because it provides
the flexibility necessary to modify parts of the system to specific applications. Furthermore, accessing
the device is simpler than in other operating systems. The functionality of the video sensing itself is
split into a number of components including capture, compression, filtering, buffering, adaptation, and
streaming. The major components of the system are shown in Figure 2. In the rest of this section, we
will briefly describe the individual components.

2.2.1 Video Capture . As previously mentioned we chose a USB-based (USB 1.0) video camera. We
are using the Phillips Web Camera interface with video for Linux. Decompression of the data from the
USB device occurs in the kernel before passing the data to user space and allows for memory mapped
access to decompressed frames. Polling indicates when a frame is ready to be read and further processed
through a filtering algorithm, a compressor, or both.
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 1, No. 2, May 2005.
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Fig. 2. Panoptes sensor software components.

2.2.2 Compression. The compression of video frames, both spatially and temporally, allows for a
reduction in the cost of network transmission. We have currently set up JPEG, differential JPEG, and
conditional replenishment as the compression formats on the Panoptes platform. Although JPEG itself
does not allow for temporal compression of data, it saves on computational cost (relative to formats
such as MPEG), and thus power. Compression on the Panoptes sensors is CPU bound. As will be
shown in the experimentation section, we have taken advantage of Intel’s performance primitives for
multimedia data that are available for the StrongARM and Xscale processors to make higher frame
rates possible. While low-power video coding techniques are not the focus of this article, we expect that
other compression technologies can be incorporated into the video sensor easily.

2.2.3 Filtering. The main benefit of a general-purpose video sensor is that it allows for application
specific video handling and transformation to be accomplished at the edge of the sensor network, allow-
ing for more sensors to be included in the system. For example, in a video security application, having
the video sensor filter uninteresting data without compressing or transmitting it upstream allows the
sensor network to be more scalable than if it just transmitted all data upstream. For environmental
observation, the filter may create a time-elapsed image, allowing the data to be compressed as it is
needed by the application as well as minimizing the amount that needs to be transmitted [Stockdon
and Holman 2000]. Finally, in applications that require meta information about the video (e.g., image
tracking), the filtering component can be set up to run the vision algorithms on the data.

The filtering subcomponent in our system allows a user to specify how and what data should be
filtered. Because of the relatively high cost of DCT-based video compression, we believe that fairly
complex filtering algorithms can be run if they reduce the number of frames that need to be compressed.
For this article, we have implemented a brute-force, pixel-by-pixel algorithm that detects whether or
not the video has changed over time. Frames that are similar enough (not exceeding a certain threshold)
can be dropped at this stage if desired.

2.2.4 Buffering and Adaptation. Buffering and dynamic adaptation are important for a number of
reasons. First, we need to be able to manage transmitting video in the presence of network congestion.
Second, for long-lived, low-power scenarios, the network may be turned off in order to save precious
battery life. Specifically, 802.11 networking consumes approximately one-third of the power. Finally, in
the event that the buffer within the video sensor fills up, efficient mechanisms need to be in place that
allow the user to specify which data should be discarded first.

For our sensor, we employ a priority-based streaming mechanism to support the video sensor. The
algorithm presented here is different from traditional video streaming algorithms that have appeared in
the literature (e.g., Ekici et al. [1999] and Feng et al. [1999]). The main difference is that in traditional
video-streaming algorithms, the video data is known in advance but needs to be delivered in time
for display. For most non-real-time video-sensor applications, the video data is being generated at
potentially varying frame rates to save power and the data being captured is being generated on the fly.
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Fig. 3. A dynamic priority example.

While traditional video streaming algorithms can be employed for live streaming, we focus on adaptive
video collection in this article.

Priority-Based Adaptation. We have defined a flexible priority-based streaming mechanism for the
buffer management system. Incoming video data is mapped to a number of priorities defined by the
applications. The priorities can be used to manage both frame rate and frame quality. The mapping
of the video into priorities is similar to that in Feng et al. [1999] or Krasic et al. [2003]. The buffer is
managed through two main parameters: a high-water mark and low-water mark. If the buffered data
goes beyond the high-water mark (i.e., the buffer is getting full), the algorithm starts discarding data
from the lowest priority layer to the highest priority layer until the amount of buffered data is less than
the low-water mark. Within a priority level, data is dropped in order from the oldest data to the newest.
This allows the video data to be smoothed as much as possible. It is important to note that the priority
mapping can be dynamic over time. For example, in the environmental monitoring application, the
scientist may be interested in higher quality video data during low and high tides but may still require
video at other times. The scientist can then incrementally increase the quality of the video during the
important periods by increasing the priority levels. Figure 3 shows one such dynamic mapping.

Data is sent across the network in priority order (highest priority, oldest frame first). This allows the
sensor to transfer its highest priority information first. We believe that this is particularly important
for low-power scenarios where the sensor will disconnect from the network to save power and scenarios
where the network is intermittent. As shown in the example, the areas labeled (a) and (c) have been
given higher priority than the frames in (b) and (d). Thus, the frames from the regions labeled (a) and
(c) are delivered first. Once the highest priority data are transmitted, the streaming algorithm then
transmits the frames from regions (a), (c), and (d). Note that the buffering and streaming algorithm
can accept any number of priority layers and arbitrary application-specific mappings from video data
to priority levels.

2.2.5 Providing Adaptive Sensor Functionality. In our initial implementation of the sensor, we
simply modularized the code and connected the code via function calls. In order to change one of the
parts such as the compression algorithm or the way filtering is accomplished, requires all of the code to
be recompiled and sent to the sensor. In addition, the video sensor needs to be stopped and started with
the new code. Thus, our goals for providing adaptive sensor functionality are to minimize the amount of
code required to be compiled and transmitted to the sensor and to allow the sensor to dynamically alter
its functionality without having to be manually stopped and restarted. As it turns out, the language
Python allows for these goals to be met.
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Fig. 4. The Little Sister Sensor software components.

Python is an interpreted programming language similar in vein to TCL or Perl that allows natively
compiled functions in high-level languages such as C to be assembled together through a scripting
language. As a result, it allows one to take advantage of the speed of optimized compiled code (e.g., JPEG
compression routines, networking, etc.), while having the flexibility of a scripting language in construct.
For our video sensor software, each component is compiled into its own object code with an appropriate
Python interconnect. The Python script can then be constructed to stitch the components together. In
order to change the functionality of the video sensor such as its compression algorithm, one need only
compile the object for the new compression algorithm, load the object onto the sensor, and update the
script that the sensor is using. We have set up the video sensor code to automatically re-read the script
every 10 seconds so a change in the script will change the functionality of the sensor on the fly. Our
performance measurements of the Python-based interconnects shows an overhead of approximately 0.5
frames per second for the system, or approximately 5%. We believe that the additional flexibility gained
by such a system is worth the overhead.

3. THE LITTLE SISTER SENSOR NETWORKING APPLICATION

Video-sensor networking technologies must be able to provide useful information to the applications.
Otherwise, they are just capturing data in futility. In order to demonstrate the usefulness of
video-based sensor-networking applications, we have implemented a scalable video surveillance system
using the Panoptes video sensor. The system allows video sensors to connect to it automatically and
allows the sensors to be controlled through the user interface. The video surveillance system consists
of a number of components, including the video sensor, a video aggregating node, and a client interface.
The components of the system are shown in Figure 4 and are described in the rest of this section.

3.1 The User Interface

The user interface for the Little Sister Sensor Networking application that we have deployed in our lab
is shown in Figure 5. In the bottom center of the application window is a list of the video sensors that are
available for the user to see. The list on the right is a list of events that the video sensor has captured.
The cameras are controlled by a number of parameters which are described in the next section. The
video window on the left allows events to be played back. In addition, it allows basic queries to be run
on the video database. We will describe the queries that our system can run in Section 3.3.

3.2 Video Sensor Software

In this application, the video sensors are fully powered and employ 802.11 wireless networking to
network the sensor to the aggregating node. To maximize the scalability of the system, we have
implemented a simple change detection filtering algorithm. The basic goal of the motion filtering is
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Fig. 5. The Little Sister Sensor Networking client interface.

to identify events of interest and have it capture video for the event. This algorithm does a pixel by
pixel comparison in the luminance channel. If sufficient pixels within a macroblock are greater than
some threshold away from their reference frame, then the image is marked as different and record-
ing of the video data begins. The video is then recorded until motion stops for a user-defined time,
event end time. The event end time allows us to continue recording in the event that the object being
recorded stops for a while and then continues movement. For example, a person walking into the room,
sitting down to read a few Web pages, and then leaving may have 5-second periods where no motion is
perceived (i.e., the person is just reading without moving).

In addition to event recognition component, we propose a simple bitmapping algorithm for efficient
querying and access to the stored video data. We create a map of the video data as an event is recording.
For each image in the event, an image bitmap is created where each bit represents whether or not the
luminance block has changed from the first image in of the event. This image bitmap indicates where
the interesting areas of the video are. Furthermore, as will be described in the next section, the video
aggregation node can use this to expedite queries for the users.

Upon activation, the sensors read their configuration file to set up the basic parameters by which they
should operate, including frame rate, video quality, video size, IP address of the video aggregator, etc.
While we statically define the parameters by which they operate, one can easily imagine incorporating
other techniques for managing the sensors automatically.

3.3 Video Aggregation Software

The video aggregation node is responsible for the storage and retrieval of the video data for the video
sensors and the clients. It can be at any IP connected facility. There are a number of components within
the video aggregation node. The three principle parts are the camera manager, the query manager, and
the stream manager.

The camera manager is responsible for dealing with the video sensors. Upon activation, the video
sensors register themselves with the camera manager. This includes information such as the name of
the video sensor. The camera manager also handles all the incoming video from the video sensors. In
order to maximize the scalability of the sensor system, multiple camera managers can be used. One
important part of the camera manager is that it creates an event overview map using the bit-mapped
information that is passed from the video sensor. The purpose of the event overview map is to create an
overview of the entire event to aid in the efficient querying of the video data. The event overview map
can be constructed in a number of ways. In this paper, we describe one relatively simple technique.
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 1, No. 2, May 2005.
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Fig. 6. Event bitmapping example.

Fig. 7. Example of bit-map query. The right window shows the result of a query for events that relate to the area of the computer
in the foreground.

Other techniques that track motion over time and create vectors of motion could also be integrated into
the system.

Union maps take all the image bitmaps for a single event and combine them together into the
event overview map using a bitwise OR. This allows the system to quickly find events of interest (e.g.,
Who took the computer that was sitting here?). An example of the union map for someone walking
through our lab (Figure 6(a)) is shown in Figure 6(b).

The query manager is responsible for handling requests from the clients. Queries are entered into
the video window. The user can left click to highlight 8 × 8 pixel regions within the video screen. The
user can select any arbitrary shape of regions of interest. Upon receiving the query, the query manager
finds all events within the system that have one of the regions in its event overview map. The list of
matching events is then returned to the user. As an example, we have shown a sample query, in which
the user highlighted part of the computer at the bottom of the image (see Figure 7). The query manager
responded with only three events. Compared with the large list of events from the same camera in
Figure 5, the simple bitmapping algorithm has reduced the number of events considerably. Note that
the last event on the list is a video clip capturing a student moving the computer to his cube.

The stream manager is responsible for streaming events of interest to the clients. We have
implemented the camera, query, and stream managers as separate components in order to maximize
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the scalability of the system. Although we have all three components running on a single host, it is
possible to have them on geographically separated hosts.

4. EXPERIMENTATION

In the first part of this section, we will describe the experimental results that we obtained from the
various components of the video sensor including metrics such as power consumption, frame rate, and
adaptability to networking resources.

4.1 USB Performance

One of the interesting limitations of using standard USB to receive the video data from the camera is
that its internal bandwidth is limited to 12 megabits per second. This 12 megabits includes USB packet
header overhead so that the actual usable bandwidth is less. For a typical web camera capturing 4:2:0
YUV data at 320 × 240 pixel resolution, the theoretical maximum frame rate sustainable is only
13 frames per second over USB. Fortunately, or unfortunately, most USB cameras provide primitive
forms of compression over the USB bus using mostly proprietary algorithms. There are a number of
implications for compression, however. First, the quality may be degraded for the application. Second,
it may require additional computation cycles in the host to which it is connected. For the Logitech
cameras that we are using, the compression ratio from the USB camera is very small so that it is not
suitable for wireless network transmission, requiring the data to be decompressed and recompressed
into a more network friendly format.

The alternatives to standard USB are firewire and USB 2.0. Most of the low-power embedded
processors do not support either technology because the manufacturers feel that the processors are
unable to fully utilize the bandwidth or would spend significant amount of its power and processing
dealing with such devices.

To test the video capture capabilities of the sensor, we set it up to grab video frames from the camera
as quickly as possible, and then simply discard the data. For each resolution and USB compression
setting, we recorded the frame rate as well as the amount of load that doing so puts on the sensor. We
measured two metrics for a variety of parameters over 3,000 captured frames: (i) the average frame
rate captured and (ii) the amount of load placed on the system. To measure frame rate, we took the
total frames captured and divided it by the time required to capture all of the frames. The latter
measurement shows us the load that the driver places on the system. To measure this, we ran the
experiment to capture 3000 frames and then used the rusage() system call to find out the user, system,
and total time of the experiment. We then calculated system load by summing the user and system
times and dividing this by the total time.

Table I lists the performance of the video sensor using the various compression settings and frame
sizes. The Philip’s based video camera can only be set to three different resolutions: 160×120, 320×240,
and 640 × 480. As shown in the table, the sensors are easily able to capture 160 × 120 video. This is
not unexpected as the total bandwidth required to transmit 160 × 120 video at 30 frames per second
is only 6.9 megabits, well beneath the USB bus bandwidth limit. For the various compression levels
(1 being a higher quality stream with less compression and 3 being the lowest quality stream with high
compression), we found that the system load introduced can be quite significant for the lightweight
sensor. At the lowest compression setting, 22% of the CPU capacity is needed to decompress the video
data from the USB camera for the Bitsy and 12% of the CPU for the Stargate. We believe that much
of this time is spent touching memory and moving it around, rather than running a complex algorithm
such as an IDCT. Using higher compression for the video data from the USB camera reduces the amount
of system load introduced. We suspect that this is due to the smaller memory footprint of the compressed
frame.
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 1, No. 2, May 2005.
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Table I. Effect of USB Compression on Frame Rate and System Usage
Bitsy Stargate

Image Frame %System Frame %System
Size Compression Rate CPU Rate CPU
160 × 120 0 29.64 4.48 30.17 7.48

1 29.77 22.29 30.14 12.56
3 29.88 15.71 30.38 9.96

320×240 0 4.88 2.85 4.97 3.51
1 28.72 67.17 30.76 63.85
3 29.98 44.50 30.00 42.01

640×480 0 — — — —
1 14.14 83.66 13.29 99.43
3 14.73 77.65 14.93 100.00

This table shows the ability of the sensors to capture video from the Logitech web camera and
the amount of CPU required for each.

At 320 × 240, we encounter the Achilles’ Heel of the USB-based approach. Using uncompressed data
from the camera, we are only able to achieve a frame rate of 5 frames per second (similar to the PC-card
based approaches). With higher overhead (i.e., more time for decompression), we can achieve full frame
rate video capture. In addition, we see that the amount of system load introduced is less than that
required for the 160 × 120 stream. We suspect that this is again due to I/O being relatively slow on the
video sensor. At 640 × 480, the video camera driver will not let the uncompressed mode be selected at
all. Theoretically, one could achieve about 3 frames per second across the USB bus, but we suspect that
if this mode were available, only 1 frame per second would be achievable. Using compression, we are
able to achieve 14 frames per second, but we pay a significant penalty in having the video decompressed
in the driver.

As an aside, we are currently working on obtaining an NDA with Philips so that the decompression
within the driver can be optimized as well as possibly allowing us to stay in the compressed domain.

4.2 Compression Performance

We now focus on the ability of the video sensor to compress data for transmission across the network.
Recall, we are interested in using general purpose software, so that algorithms such as filtering or
region-of-interest coding can be accomplished on an application-specific basis. Software compression
also allows us to have control over the algorithms that are used for compression (e.g., nv, JPEG, H.261,
or MPEG).

To measure the performance of compression on the 206-MHz Intel StrongARM processor, we measure
the performance of an off-the-shelf JPEG compression algorithm (ChenDCT) and a JPEG compression
algorithm that we implemented to take advantage of Intel’s Performance Primitives for the StrongArm
and Xscale processors. In particular, there are some hand-coded assembly routines that use the archi-
tecture to speed up multimedia algorithms. Among these are algorithms to perform the DCT algorithm,
quantization and Huffman encoding. For test data, we use a sample image in 4:2:0 YUV planar form
taken from our lab and use it to test just the compression component. For each test, we compressed the
image 300 times in a loop and averaged the measured compression times.

As shown in Table II, we are able to achieve real-time compression of 320 × 240 pixel video using
the Intel Performance Primitives. More importantly, it takes approximately 1/3 or 1/6 the time using
the primitives compared with using a non-Intel-specific software optimized algorithm on the Bitsy and
Stargate, respectively. As shown in the second row of the table, compressing a larger image scales
linearly in the number of pixels. That is, the 640 × 480 pixel image takes approximately four times
the amount of time to compress as the 320 × 240 pixel image. Furthermore, we are able to achieve
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Table II. Standalone Optimized vs. Unoptimized Software
Compression Routines

Bitsy Stargate
Image IPP ChenDCT IPP ChenDCT
Size (ms) (ms) (ms) (ms)
320 × 240 26.65 73.69 20.18 124.55
640 × 480 105.84 291.28 85.82 518.85

This table shows the performance of the sensors compressing a single image
repeatedly with no video capture.

Table III. Standalone Optimized vs. Unoptimized Software
Capture and Software Compression Routines

Bitsy Stargate
Image IPP ChenDCT IPP ChenDCT
Size (ms) (ms) (ms) (ms)
320 × 240 29.20 80.63 41.05 171.46
640 × 480 115.42 319.71 164.30 725.72

This table shows the additional overhead incurred by the sensor in both capturing
and compressing video.

approximately 10 frames per second using a high-quality image. It should be noted that the compression
times using the IPP are dependent on the actual video content.

In comparing the two platforms, it appears that the Stargate platform is able to outperform the
Bitsy platform using the Intel Performance Primitives but cannot outperform it using the software
compression algorithm. We believe that this is due to the fact that (i) the Xscale device has a faster
processor and can take advantage of it when the working set is relatively small and (ii) the memory
accesses in the Stargate seem to be a little slower than on the Bitsy. Finally, we note that using grayscale
images reduces all the figures by approximately 1/3. This is not entirely surprising as the U and V
components are one-third of the data in a color image.

4.3 Component Interaction

Having described the performance of individual video sensor components, we now focus on how the
various components come together.

Because the capture and compression routines make up a large portion of the overall computing
requirement for the video sensor, we are interested in understanding the interaction between them.
Table III shows the performance of the sensor in capturing and compressing video data. Interest-
ingly, the capture and compression with the Intel Performance Primitives results in approximately
4 milliseconds of overhead per frame captured for the Bitsy sensor. This scales linearly as we move to
640 × 480, requiring an additional 16 milliseconds per frame. For the ChenDCT algorithm, using either
320 × 240 or 640 × 480 video, the overhead of capturing data introduces a 24-millisecond overhead per
frame. This seems to indicate that because the ChenDCT algorithm is unable to keep up the ability to
capture video data that the I/O is being amortized during compression.

To fully understand what is going on, we have instrumented a version of the code to measure the
major components of the system. To do this, we inserted gettimeofday() calls within the source code
and recorded the amount of time spent within each major code segment over 500 frames. The time
spent in each of these components is shown in Table IV. For the 320 × 240 pixel images, nearly all
the time is spent in the USB decompression module and compressing the video data. Our expecta-
tion is that, with an appropriately optimized USB decompression module, we will be able to achieve
near real-time performance. For applications where video quality and not video rate is important,
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Table IV. Average Time per Software Component
Software Component 320 × 240 (ms) 640 × 480 (ms)
PWC Decode 16.96 55.99
JPEG Encode 21.08 85.85
Bitmap Compare 4.05 16.45
Image Copy 1.09 6.29
Create Message 0.43 1.27
Other 10.35 30.49

This figure shows the time spent in each of the various components
within the Bitsy sensor.

we see that at 640 × 480 pixel video, we are able to achieve on the order of 5 frames a second.
Finally, we note that this frame rate is better than IPAQ-based device results for 320 × 240 video
data.

For the Stargate sensor, we see that capturing and compressing video adds more overhead to the
system when moving doing multiple tasks. From the capture results in Table II to the capture and
compression results in Table III, we see that the Bitsy board incurs only additional milliseconds per
frame, while the Stargate device nearly doubles its time, adding 20 milliseconds of overhead over the
compression only results. We believe that both of these can be explained by what seems to be a slower
memory sub-system on the Stargate sensor. The Bitsy-embedded device has an extra I/O processor for
all of the I/O, resulting in lower overhead in capturing data.

4.4 Power Measurements

To determine how much power is being drawn from the video sensor, we instrumented the sensor with
an HP-3458A digital multimeter connected to a PC. This setup allows us to log the amount of current
(and thus power) being consumed by the video sensor. To measure the amount of power required for the
various components, we have run the various components in isolation or layered on top of another
subsystem that we have already measured. The results of these measurements can be applied to power
management algorithms (e.g., Kravets and Krishnan [2000]). Due to the recent move of the Systems
Software faculty from the Oregon Graduate Institute to Portland State University, we were unable to
set up our multimeter for testing of the Stargate sensor.

The results of the experiments for the Bitsy board are shown in Figure 8. From the beginning of the
trace until about 6 seconds into the trace, the video sensor is turning on and configuring itself. During
this time, the power being drawn by the sensor is highly variable as it configures and tests the various
hardware components on the board. Seconds 6–10 show the power being drawn by the system when it
is completely idle (approximately 1.5 watts). Seconds 10–13 show the video camera turned on without
capturing. As shown by the differential from the previous step, the camera requires approximately 1.5
watts of power to operate. Seconds 13–16 show the camera sleeping. Thus, over a watt of power can be
saved if the sensor is incorporated with other low-power video sensor technologies that notify it when to
turn on. In seconds 19–22, we show the power required to have just the network card on in the system
but not transmitting any data (approximately 2.6 watts). In seconds 22–27, we added the camera back
into the system. Here we see that the power for the various components is pretty much additive, making
it easier to manage power. That is, the jump in power required to add the camera with and without
the network card in is approximately the same. In seconds 27–38, we show the entire system running.
As one would expect with a wireless network, the amount of power being drawn is fairly variable over
time. Between seconds 38–40, we removed the camera and the network card, returning the system to
idle. We then ran the CPU in a tight computational loop to show the power requirements while being
fully burdened. Here, we see that the system by itself draws no more than 2.5 watts of power. Finally,
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Fig. 8. Power consumption profile.

Table V. Average Power Requirement in Watts
System State Bitsy Power (Watts)
Sleep 0.058
Idle 1.473
CPU Loop 2.287
Camera with CPU 3.049
Camera in sleep with CPU 1.617
Networking on with CPU 2.557
Camera, Networking, CPU 4.280
Capture Running 5.268

we put the sensor in sleep mode (seconds 50–55). In the sleep state, the sensor requires very little power
(approximately 0.05 watts of power).

We have summarized the results in Table V. The most important thing to draw from the experiments
is that in a given state, the power consumed by the sensor is relatively constant over time. The only
exception comes when performing network transmission. As a result, we expect that the algorithms for
power management that are being worked on by others might fit into this framework without much
modification.

We suspect that the Stargate sensor will have approximately 1–2 watts less power dissipation than
the Bitsy board. This will be entirely attributed to the lower power requirement of the board and the
CPU. The networking and the video camera are expected to require the same amount of power.

4.5 Buffering and Adaptation

To test the ability of the sensor to deal with disconnected operation, we have run experiments to show
how the video rate is adapted over time. In these experiments, we have used a sensor buffer of 4
megabytes with high-and low-water marks of 3.8 and 4 megabytes, respectively.

For these experiments, we first turned on the sensor and had it capture, compress, and stream data.
The experiment then turned the network card on and off for the times shown in Figure 9(a). The “on”
times are indicated by a value of 1 in the graph, while the “off” state is shown as a value of 0. As
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Fig. 9. Dynamic adaptation example.

shown by Figures 9(b) and 9(c), the video sensor is able to cope with large amounts of disconnected
time, while managing the video buffer properly. During down times, we see that the buffer reaches its
high-water mark and then runs the algorithm to remove data, resulting in the sawtooth graph shown
in Figure 9(c). Once reconnected, we see that the buffer begins to drain with the networking bandwidth
becoming more plentiful relative to the rate at which the video is being captured. Had the network been
constrained, instead of off, the algorithm would converge to the appropriate level of video.

Larger video sensor buffers behave similar to the example in Figure 9. The only difference is that a
larger buffer allows the system to be disconnected for longer periods of time.

5. RELATED WORK

There are a number of related technologies to the proposed system detailed in this article.

5.1 Video Streaming and Capture Cameras

There are a number of technologies that are available that capture video data and either store the data
to the local hard disk or stream the data across the network. For example, web cameras such as the
Logitech 3000 camera comes with software to allow motion-activated capture of video data. The camera,
however, is not programmable and cannot be networked for storage or retrieval. Other cameras such
as the D-Link DCS-1000W are IP streaming video cameras. These cameras capture data and stream
it to the network. They were designed specifically for video streaming and capture. Thus, they are not
programmable and would not work for situations such as environmental monitoring where power is
extremely important.
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5.2 Sensor Networking Research

There are a tremendous number of sensor networking technologies being developed for sensor net-
working applications [Estrin et al. 1992]. From the hardware perspective, there are two important
sensors: the Berkeley Mote [Hill et al. 2000] and the PC-104-based sensor developed at UCLA [Bulusu
et al. 2003]. The Berkeley Mote is perhaps the smallest sensor within the sensor networking world
at the moment. These sensors are extremely low powered and have a very small networking range.
As a result, these sensors are really useful for collecting small amounts of simple information. The
PC-104-based sensor from UCLA is the next logical progression in sensor technologies that provides
slightly more computing power. We believe the Panoptes platform is the next logical platform within
the hierarchy of sensor network platforms. We expect that hybrid technologies, where Motes and the
PC-104-based sensors can be used to trigger higher-powered sensors such as ours. This would allow the
sensor network’s power consumption to be minimized.

In addition to hardware sensors, there are a large number of sensor networking technologies that
sit on top of the sensors themselves. These include technologies for ad hoc routing, location discovery,
resource discovery, and naming. Clearly, advances in these areas can be incorporated into our video
sensor technology.

5.3 Mobile Power Management

Mobile power management is another key problem for long-lived video sensors. There have been many
techniques focused on overall system power management. Examples include the work being done by
Kravets at UIUC [Kravets and Krishnan 2000], Noble at the University of Michigan [Corner et al. 2001],
and Satyanarayanan at CMU [Flinn and Satyanarayanan 1999]. We have not yet implemented power
management routines within the video platform. We expect that the work presented in the literature
can be used to control the frame rate of the video being captured as well as when the networking should
be turned on and off to save power.

5.4 Video Streaming Technologies

There have been a large number of efforts focused on video streaming across both reservation-based and
best-effort networks, including our own. As previously mentioned, the work proposed and developed
here is different in that traditional streaming technologies focus on the continuity requirements for
playback while streaming from video sensors does not have this restriction.

For video streaming across wireless networks, there have been a number of efforts focused on
maximizing the quality of the video data in the event of network loss. These schemes are either
retransmission-based approaches (e.g., Rhee [1998]) or forward error correction based (e.g., Tan and
Zakhor [1999]). These techniques can be directly applied to the Panoptes sensor.

6. CONCLUSION

In this article, we have described our initial design and implementation of the Panoptes video sensor
networking platform. There are a number of significant contributions that this article describes. First,
we have developed a low-power, high-quality video capturing platform that can serve as the basis
of video-based sensor networks as well as other application areas such as virtual reality or robotics.
Second, we have designed a prioritizing buffer management algorithm that can effectively deal with
intermittent network connectivity or disconnected operation to save power. Third, we have designed a
bit-mapping algorithm for the efficient querying and retrieval of video data.

Our experiments show that we are able to capture fairly high-quality video running on low amounts of
power, approximately the same amount of power required to run a standard night light. In addition, we
have showed how the buffering and adaptation algorithms manage to deal with being disconnected from
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 1, No. 2, May 2005.



Panoptes: Scalable Low-Power Video Sensor Networking Technologies • 167

the network. In addition, for low-power video sensor, we have discovered that the actual performance
of the system involves both the CPU speed and other critical components including the I/O architecture
and the memory subsystem. While we entirely expected the Stargate-embedded device to outperform
the Bitsy board, we found that its memory system made it slower. The Stargate does, however, consume
less power than the Bitsy boards.

Although we have made significant strides in creating a viable video sensor network platform, we are
far from done. We are currently in the process of assembling a sensor with a wind-powered generator
for deployment along the coast of Oregon. Our objective is to use a directed 802.11 network to have a
remote video sensor capture video data for the oceanographers at Oregon State. We have an operational
goal of having the sensor stay alive for a year without power or wireline services. We are also working on
creating an open source platform that can be used by researchers to include the fruits of their research.
The goal is to have the sensors in use for research areas such as robotics, and computer vision.
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