
mod_kaPoW: Putting the ‘PoW’ into Proof-of-Work!

Ed Kaiser
Portland State University

edkaiser@cs.pdx.edu

Wu-chang Feng
Portland State University

wuchang@cs.pdx.edu

ABSTRACT
Attacks from automated web clients are a significant problem on
the Internet. Many web sites employ CAPTCHAs, Turing tests
that hassle automated agents. Unfortunately, they require frequent
human user input, can be subverted by adversaries willing to hire
humans to solve challenges, and become ineffective as computer
vision techniques improve.

Several alternative defenses based upon cryptographic methods
have been proposed to achieve the same goals. “Proof-of-Work”
(PoW) systems prioritize clients based on their willingness to solve
computational challenges of client-specific difficulty. Unfortunately,
few proof-of-work schemes are ever deployed since they require
wide-scale adoption of special client software to operate properly.

This demonstration presentsmod_kaPoW, a novel system that
combines the efficiency andhuman-transparencyof proof-of-work
with thesoftware backwards-compatibilityof CAPTCHA schemes.
mod_kaPoWattaches challenges to HTML links and the client’s
browser uses JavaScript to solve them before requesting the linked
content. Accessibility is maintained for clients without JavaScript.
Categories and Subject Descriptors

D.4.6 [Operating Systems]: Security and Protection –
Cryptographic Controls, Access Controls, Invasive Software

General Terms

Security, Algorithms
Keywords

Proof-of-Work, HTML, JavaScript

1. THE SYSTEM
Our systemmod_kaPoW[1] combines theuser transparencyof

proof-of-work systems [2, 3] and thebackwards compatibilityof
CAPTCHA schemes [4]. The approach uses URL rewriting, like
that employed by content-distribution networks such as Akamai.
The system, highlighted in Figure 1, modifies an Apache web-
server to dynamically rewrite HTML links to include computa-
tional challenges. The server also sends a small piece of JavaScript
code that the client’s browser uses to solve the embedded chal-
lenges to create valid URLs.

The bulk of the system lies within the Apache web-server mod-
ule shown in Figure 2. The module is divided into two filters;
an issuing filterthat embeds proof-of-work challenges in outbound
HTML content and averifying filterthat prioritizes inbound request
URLs based on having a valid challenge with a correct answer.

The system leverages the pervasiveness of JavaScript; when a

Copyright is held by the author/owner(s).
SIGCOMM’08, August 17–22, 2008, Seattle, Washington, USA.
ACM 978-1-60558-175-0/08/08.

URL w/ valid PoW

mo
d_

ka
Po

W

Clients

Web Server

URL w/ invalid PoW

Error Page

Content Solution
Scripts

Error
Page

Content

Figure 1: The mod_kaPoWsystem, with it’s additions to the
Apache web-server highlighted.

Low 
Priority 
VHost

High 
Priority 
VHost

Request
URL

Response

Verifying Filter

Issuing Filter
Link the 
Solution 
JScript

Append
challenges

to URLs

No

No
No

Yes

Yes

Yes
URL Has

PoW?
Valid
PoW?

PoW
Required?

Redirect
to Error

Page

Figure 2: The mod_kaPoW Apache module showing the
processing of a URL and the corresponding content.

client’s browser parses a PoW-protected link, the provided script
solves an equation and appends the results to the URL. Upon re-
ceiving a request, the verifying filter parses the request URL and
extracts the appended PoW variables. If they satisfy the equation,
the request is served by the high-priority virtual host.

Lacking a correct answer, a request is redirected to the low-
priority virtual host, providing limited access to clients without
JavaScript. That virtual host allows a limited number of non-persistent
connections and serves lower resolution versions of the content.
Some content, as specified by a configuration file, may not be avail-
able on the low priority virtual host; requests for such content result
in error pages that retry the request after properly solving an up-to-
date challenge.

2. REFERENCES
[1] E. Kaiser and W. Feng. mod_kaPoW: Protecting the Web with

Transparent Proof-of-Work. InProceedings of Global
Internet, April 2008.

[2] C. Dwork and M. Naor. Pricing via Processing or Combatting
Junk Mail. InProceedings of CRYPTO, August 1992.

[3] W. Feng, E. Kaiser, W. Feng, and A. Luu. The Design and
Implementation of Network Puzzles. InProceedings of IEEE
INFOCOM, March 2005.

[4] L. von Ahn, M. Blum, N. Hopper, and J. Langford.
CAPTCHA: Using Hard AI Problems for Security. In
Proceedings of Eurocrypt, pages 294–311, 2003.


