The Design and Implementation of Network
Puzzles

Wu-chang Feng Ed Kaiser Wu-chi Feng Antoine Luu
Portland State University ENSEIRB
{wuchang, edkaiser, wugt@cs.pdx.edu antoine.luu@free.fr

Abstract— Client puzzles have been proposed in a num- being protected generates a cryptographic puzzle that a
ber of protocols as a mechanism for mitigating the effects of client must answer correctly before it is given service.
distributed denial of service (DDoS) attacks. In order to pro- Such a mechanism gives devices the ability to selectively
vide protection against simultaneous attacks across a wide push back load to the source of an attack when over-
range of applications and protocols, however, such puzzlesloaded. While the standard defense for preventing unde-
must be placed at a layer common to all of them; the net- sirable communication is to apply a binary filter to traffic,
work layer. Placing puzzles at the IP layer fundamentally such a defense is difficult to use due to the impact of false
changes the service paradigm of the Internet, allowing any positives and the inability to completely differentiate good
device within the network to push load back onto those it is traffic from bad. Client puzzles provide a complementary
servicing. An advantage of network layer puzzles over pre- weapon to filtering in that they provide an analog control
vious puzzle mechanisms is that they can be applied to all against traffic that may potentially be deleterious. In con-
traffic from malicious clients, making it possible to defend trast to filtering, client puzzles also limit an attacker’s abil-
against arbitrary attacks as well as making previously vol- jty to send bad traffic to multiple victims concurrently by
untary mechanisms mandatory. In this paper, we outline consuming their computational resources.
goals which must be met for puzzles to be deployed effec- ope of the limitations of current approaches for using
tively at the network layer. We then describe the design, im- client puzzles is that they can be easily thwarted if an ad-
plementation, and evaluation of a system that meets thesejacent or underlying protocol does not implement them. In
goals by supporting efficient, fine-grained control of puzzles e 1o provide reasonable protection across applications,
at the network layer. In particular, we describe modifica- it has been argued that such a mechanism must be placed
tions to existing puzzle protocols that allow them to work at a layer common to all Internet communication: the IP
at the network layer, a hint-based hash-reversal puzaleat |51 115] The design of the IP layer has been driven by
allows for the generapon and venﬁcaqu of fine-grained the “end-to-end principle” [16], a set of guidelines that ar-
puzzles at line speed in the fast path of high-speed routers, o, ainst putting special-case functions into common
and an iptables 'mplementaﬂ?n th.at supports transpar- network layers. As a result, only essential functions have
ent deployment at arbitrary locations in the network. been placed in the network layer while all other functions
have been implemented at the end-points.

Client puzzles provide an essential function that is com-

The Internet currently carries an enormous amount ifon to all applications and should be placed in the IP layer.
undesirable network communication. This is evidencdde observation that denial-of-service activity can happen
by the growing infestation of worms and viruses such asany layer and only needs to break one link in the end-to-
Nimda, Code Red, and SQL Slammer [1], [2], [3], recorend chain in order to be successful leads to the “weakest-
naissance attacks such as port scans, targeted distriblitdd argument to protocol design:
denial-of-service attacks, and spam. Client puzzles [4],Put in the common waistline layer functions whose
[51, [6], [7], 8], [9], [10], [11], [12], [13], [14], [15] properties are otherwise destroyed unless implemented
have been proposed as a mechanism for controlling sustiversally across a higher and/or lower layer
communication. With client puzzles, a server or network In particular, functions such as congestion control and

This material is supported in part by the National Science FoundatioDnOS prevention require global deployment in order to

under Grant ANI-0230960 and the generous donations of Intel Cor[;%e effective. For example, TCP cong_estlon contro! IS
ration. Any opinions, findings, conclusions or recommendations efwarted by UDP flooding and DoS-resistant authentica-

pressed in this material are those of the authors and do not necessH@{ protocols are thwarted by IP flooding. Until puzzles
reflect the views of the National Science Foundation or Intel. are placed within IP, IP will remain the weakest link.

I. INTRODUCTION

Motivated by the weakest-link argument, this paper de-Minimal application impact The use of the puzzle
scribes the design and implementation of network layprotocol should not break latency-sensitive applications
puzzles. There are two key properties of our design; a psuch as interactive voice, streaming video, and networked
tocol which supports the issuance of puzzles at a varietygegmes. Clients who are able and willing to solve puzzles
resource granularities and at any time during the lifetinslould be able to run all of their applications seamlessly.
of a flow, and a novel fine-grained puzzle mechanism that
can support fast generation in high-speed routers.

Section Il describes the design goals for supporting andMany of the above goals can be addressed via mech-
deploying puzzles at the network layer. Section Il déinisms described in a variety of previous protocols. This
scribes the design of the puzzle protocol. Section IV eva€ection describes a basic protocol developed from previous
ates our novel puzzle mechanism with respect to a numB&gzle work [7], [8], [9], [10], [14], [19] and from TCP
of other puzzle mechanisms for use in the network. SegYN cookies [20], followed by the modifications that are
tion V describes and evaluates a Linux-bagsebles necessary to allow the protocol to operate at the network

implementation that uses IP options and ICMP. layer. In the remainder of this papguizzle serverefers
to the network device that issues the puzzles, whilezle

clientrefers to the client that solves the puzzles.

Ill. PROTOCOLDESIGN

Il. GOALS

A. Basic Puzzle Protocol
There are several important goals that must be achieved

in order for client puzzles to be deployed effectively at the Client Server/Issuer
network layer. These goals include: LN

2. Generate P and A
« Flexible deploymentThe protocol must be sufficiently 4 PN h(AN,) | 0 Celevtae b Ny)
flexible to support puzzle issuance at arbitrary points in the| 6. Check N, 5. Throw away P and A

. . . 7. Solve P to obtain A

network, including at end-hosts, firewalls, and routers. 8. AMANY | o

. Generate h(A, N)

o Flexible usage The protocol should support the is- and match to verify A
suance of puzzles at arbitrary resource granularities such
as on a per-host, per-flow, or even per-packet basis. Speci
ically, it must allow puzzles to be issued at any point dur-

Ne Ng

ing the lifetime of a flow. Protocol Field | Description

« Tamper-resistanceThe protocol should limit replay at- % (S:'e'f\;‘;r”r‘]’grffe

tacks over time and space. Puzzle answers should not be P Puzzle

valid indefinitely and should not be usable by other clients. A Answer

While the protocol should limit spoofing attacks, a spe- h() Cryptographic hash functio
cific non-goal is strong authentication between the client Fig. 1. Basic puzzle protocol

and issuer since the issuer may not be the end-host. This

work assumes that the adversary does not lie along the patRigure 1 shows the basic protocol which supports
from the client to the server (i.e. the adversary cannot reeahstant-state operation at the server and client. The only
or modify packets sent between the client and the servextate required is a set of randomly-generated, periodically-
Such an assumption is reasonable since an adversary tipatated client nonces\.) and server nonces\;). In or-

lies along the path can execute a more effective DoS der to get the client to solve a puzzle, a server must echo
tack using fewer resources than manipulating puzzles; thelient nonce correctly, thus preventing spoofing attacks
attacker could drop all packets. As a result, the systdrom third parties that are not along the path of commu-
should prevent spoofing attacks only from adversaries whigation. Client nonces also prevent a server from con-
do not lie along the path from the client to the server. tinually issuing puzzles indefinitely to a client that is no

« Efficiency The protocol and implementation must béonger requesting service. Server nonces are kept secret
efficient in terms of memory and CPU overhead at ttend are used to efficiently verify answers. Since attacks
issuer. Specifically, puzzle generation and verificatian pseudo-random number generators are possible, both
should add minimal overhead to network devices in tledient and server nonces should be generated using a “true”
worst-case[17] to prevent the puzzle protocol from berandom number generator [21], [22], [23], [24].

coming an avenue for denying service. In addition, the The protocol initially starts with a packet stream. The
amount of header/packet overhead should be limited diient attaches a client noncé&{) to each packet it for-
minimize the effect of reflector attacks [18]. wards. Upon receiving a packet that triggers the puzzle

mechanism, the server generates a puz2)eand answer however, the server may require puzzles to expire at a
(A) as well as a cryptographic hash of the answer antlich finer frequency than its nonce is changed. To support
server nonce{(A, Ns)). The server returns the clientthis, a puzzle expiration timgl}) similar to those used in
nonce, puzzle, and hash. Generating a cryptographic haként authentication protocols [8], [19], [26], [27] can be
(i.,e. SHAL) of the answer with a sufficiently randonadded to the protocol. The puzzle expiration time enables
nonce allows the the server to discard everything excépé server to force clients to continually solve new puz-
the nonce, while retaining the ability to verify correct areles without forcing the server to change its nonce at the
swers. Clients check the echoed client nonce against itsssne rate. The server nonce needs only be updated at a
of nonces in order to verify that it is still valid before solvfrequency that would thwart brute-force attacks on it.

ing the puzzle. After solving the puzzle, the client attachesSupporting latency sensitive applicationg-orcing a

the answer and hash to all subsequent packets to the seoliemt to stop and solve a puzzle before continuing ser-
To verify answers sent by the client, all the server must d@e can adversely impact the usability of interactive and
is hash the answer with the server nonce and check if teeaming applications. It should be possible to issue puz-
generated hash matches the one echoed by the clientzlés ahead of time, allowing clients to solve them before-
it does, the correct answer has been given and the seivand so that they can smoothly transition between two puz-

accepts the packet. zle answers and continue service uninterrupted. In order
to support this mode of operation, a puzzle maturity time
B. Protocol Modifications for IP (T’,) is included in the protocol. In steady state, the client

uses a pre-calculated answer to a puzzle that has matured

While the basic protocol has many salient features, gjje calculating the solution to the next, maturing puzzle.
few issues remain to be addressed before puzzles are fea-

sible at the IP layer. These include: C. Full Puzzle Protocol

« Efficient nonce verificatian A problem with using a

set of nonces is the memory overhead of a nonce lookup} ~ Client Cliontsou Server/Issuer
Since many network devices are memory-bound and high

speed memory is prohibitively expensive [25], reducing Client cookie, Server cookie, P, F
the number of memory accesses is critical. To support ef-
ficient nonce lookup at both the client and server, logical Client cookie, Server cookic, A
timestampsT'S. andT'S;) are used to directly index into
the nonce table. With them, nonce verification requires
only a single memory access.

) L Protocol Field | Description
« Strict control of answer replay between and within flows Client cookie | N., T'S.
Solving a single puzzle should not give clients unlimited Server cookie | T'Ss, Ty, Te, h(A, N5, TSs, T, Te, F)
access. For example, in the case of port scanning tools ? E;Z;';::t‘;ifameters (hints, difficulty)
(such asscanrand , nmap, andnessgs), solving a sin- A Answer
gle puzzle should not allow connections to all other ports [. Client nonce
on a host to occur without additional puzzles being solved. | T'Sc Client timestamp
To address this, a flow identifie) can be included in Ns Server nonce
. . TSs Server timestamp
the hash to bind puzzles and answers to particular pack- | . Puzzle maturity time
ets and flows. Upon receiving an answer, the server uses | 7. Puzzle expiry time
the packet’s flow information when verifying the answer. hQ Cryptographic hash function
For example, if the server wishes to implement per-flow Fig. 2. Full puzzle protocol

puzzles,F' can include the connection identifier 5-tuple

(source IP, destination IP, source port, destination port,Figure 2 shows the final protocol with all of the proto-
protocol), thus forcing the client to solve a new puzzle faol components. The client attaches a cookie consisting
each new connection. To allow the client to know whicbf its nonce and a timestamp. A server requiring puz-
flow to bind puzzle answers to, the flow identifier must kHes generates a puzzle and answer along with a hash of
attached to the puzzle. the answer, server nonce, puzzle expiration time, puzzle
« Strict control of answer replay over timéletwork puz- maturity time, and flow identifier. The server then sends
zZles can potentially provide routers with a mechanism fback to the client: the client cookie, puzzle and its param-
performing mandatory congestion control. In order teters, flow identifier, and a server cookie consisting of the
finely control resource usage over short periods of timahove hash, server timestamp, puzzle maturity and expi-

ration times. The client, upon receiving the puzzle, caB. Hash-Reversal Puzzles

culates the solution and sends back the answer along Wmlnother puzzle approach is to force clients to reverse

thsee:etrhveerszcr)ogﬁ._nljgsigrrr]ectiépFnocl;ghI_SnrtT;etshs:gSt:rtZtra iﬁrt\:lc rptographic hashes calculated at the server given the
u vert b 10 Ihdex| v figinal random input with, bits erased [7]. In order to
table to obtain the server nonce, checks that the nonce

i ired d ifies th b i the difficulty level;n is either increased or decreased.
not expired, and verilies the answer by regenerating e client performs a brute-force search on the erased bits
hash and comparing it against what the client sent.

by hashing each pattern in the space until it finds the an-
swer. Since a single hash can be performed quickly and is
compact, puzzle generation time and size are significantly

While the puzzle protocol facilitates the efficient del€SS than those of time-lock puzzles. Also, many network
ployment of puzzles at the network layer, the puzz|§§V'C65 have hardware support for c_rypt_ographlc hashing
themselves must be appropriately designed for use w@ARd random number ge_neratlon, making it possible to gen-
our protocol. In this section, we examine the trade-offfate these puzzles at line speed.
when selecting a puzzle mechanism for use in the networkiash-reversal puzzles have a few disadvantages. The
layer. In particular, we focus on two propertiesficiency first ?s that their solution time is prob.ablilis.tic in nature
andresolution In terms of efficiency, it must be possiblednd is based on how lucky the client is in its search. A
to generate puzzles and verify answers on the order of Hgarch could terminate after the first try or after e
croseconds to support large streams of packets from a VAsY- When applied over a large number of puzzles (as
number of clients (i.e. high-speed routers must be apould be the case for network puzzles), the average dif-
to perform puzzle generation and verification in the fafigulty will converge to the desired level, making this an
path). In terms of resolution, it must be possible to ﬁnelj‘%significant disadvantage. A second disadvantage is that
control the amount of work given to a client to maintaif!® Puzzle can be parallelized by splitting the search range
high utilization. Puzzles that are too coarse lead to rgP @amongst a number of different systems. This disadvan-

source underutilization similar to that seen with TCP 49€ s also insignificant since the same systems could be

low levels of multiplexing. used directly in a distributed denial-of-service attack to the
In this section, we analyze three existing puzzle mecHiame effect. The only significant disadvantage is that ad-

nisms: time-lock puzzles, hash-reversal puzzles, and M&Eent d|ff|.cu|t|§s vary by a facto_r of two. 89IV|ng an

tiple hash-reversal puzzles. We introdindet-based hash- bit puzzle_ Is twice as har_d_as solving @n— _1) bit puzzle.)

reversal puzzleas an alternative that is best suited for thgu® t this coarseness, itis hard to establish an appropriate

network layer and can be implemented directly in netWOn{’slsh-reversal puzzle difficulty that maximizes utilization.

devices. Finally, we compare the four mechanisms.

IV. PuzzLE MECHANISM SELECTION

C. Multiple Hash-Reversal Puzzles

A. Time-Lock Puzzles Dividing the puzzle into multiple smaller hash-reversal
puzzles as proposed by Juels [7] can mitigate the disadvan-
Time-lock puzzles are based on the notion that a cliedges of hash-reversal puzzles. The chances of being lucky
must spend a particular amount of computation time pgjn each sub-puzzle becomes small, decreasing the vari-
forming repeated squaring; a sequential process that forggge in total solution time. Furthermore, using sub-puzzles
the client to compute in a tight loop for a controllablef varying difficulty allows finer control of the overall puz-
amount of time [28]. With time-lock puzzles, the servejle difficulty. For example, if the overall difficulty requires
estimates the number of squaring operations a client G@M0_128) hashes worth of work, sub-puzzles of 10-bits and
perform per seconds), and the amount of time it wantsg_pjts could be sent to the client instead of sending either
a client to spend solving the puzzI€)(It calculates the g 10-bit puzzle or an 11-bit puzzle. Figure 3 demonstrates
number of squarings that must be performed to solve g puzzle difficulties supported as a function of the total
puzzle,t = T x S, and forces the client to calculateyymber of bits used across all sub-puzzles using one, three,
b = a* (mod n). Time-lock puzzles are an attractive puzand six sub-puzzles. The figure shows a fine resolution at
zle type since they provide an exact, fixed amount of worlew difficulties, with resolution exponentially worsening
Time-lock puzzle generation requires two large primas the difficulty linearly increases.
numbersp and ¢, which take significant server resources While multiple sub-puzzles can improve difficulty res-
to generate. Unfortunately this means time-lock puzzlekition, it does so via a linear increase in generation time
cannot be efficiently generated on the order of microseand puzzle size. In order to finely control the resolution
onds. at large difficulties, a puzzle must consist of many sub-

puzzles. To maintain fine-grained control across heaviaulty level which is bounded by a brute-force search on
workloads with faster client CPU speeds, the number thfe server’'s secret nonce (givensaibit nonce, the maxi-
sub-puzzles must increase. This prevents multiple hasiam puzzle difficulty isD(2™)). In contrast hash-reversal
reversal puzzles from being a viable puzzle mechanismpuzzles have much coarser resolution, especially at higher
difficulty levels. Multiple hash-reversal puzzles can alle-
viate the resolution problem based énthe number of
n-bit sub-puzzles. While the derivation is out of the scope
of this paper, it can be shown that the number of distinct
difficulty levels is a closed function df andn, as shown

in the table. Hint-based hash-reversal puzzles have a very
fine resolution comparable to that of time-lock puzzles.

40000

30000

20000

Difficulty level

10000

10000

It pemmay 1N, maaee” “Na A S e J
e 1 puzzle i e \'/ o= ~JS e, .

< 3 puzzles
- 6 puzzles

1000 ¢]

80 100

—_
o
o
T
L

Number of bits in puzzle

Fig. 3. Puzzle difficulties supported using single and multiple

—_
o

Puzzle generation time (microseconds)

hash-reversal puzzles —
e o T T T T T [eTmemard |
D. Hint-Based Hash-Reversal Puzzles — Thenbizme
w— G-hash puzzle
. . . . — = Hash-hint puzzle|
We propose a nov_el mec_hanlsm for delivering flne-_ 0 T eon Bov00. 7ae00 100000 155000 150000
grained puzzles in which a single hash-reversal puzzle it Puzzle solution time (microseconds)
given to the client along with a hint that gives the client an ' . o
idea of where the answer lies. The hint is a single value ~ Fig- 4. Puzzle generation versus solution time

that is near the answer and solves the coarseness problem

of hash-reversal puzzles. TQ a_djl_Jst the difficulty of the Figure 4 shows the generation time of each puzzle type
puzzle, the accuracy of the hint is increased or decreasgd., function of the solution time across a large range of
For example, suppose a randomly generated numbe®r gjticulty levels. Each data point represents an average of
used as the input to the haslz). To generate a puzzlegg ifferent puzzles which were generated and solved on
with O(D) difficulty, the issuer passes the client the hagl}; evaluation system. As the figure shows, the generation
and a hintz — (0, D). Whereu(0, D) is arandomly cho- ime for time-lock puzzles is several orders of magnitude

sen number uniformly distributed betweerand D. The greater than that of any of the hash-reversal puzzle types.
client then starts at the hint and searches the range linearly

for the answer. The number of hashes done by the client to
find = varies probabilistically but the expected valudic)s F. Answer Verification
E. Puzzle Comparison The answer verification mechanism is the same across
To compare the puzzle types, Table | lists the propertialb puzzle types; cookies are used to support constant-state
of each puzzle type. Unit worky) describes the basic op-verification of answers. Clients must present their solu-
eration the client must repeatedly perform to solve the puinn with the server cookie which was attached to the puz-
zle and the average amount of time the operation requiss. To verify correctness, the server uses the timestamp
on our evaluation system (an unloaded 1.8GHz Pentiumindex into the nonce table and obtain the correspond-
4). Range describes the range of difficulties supported img nonce, performs a hash of the client’s solution with the
the puzzle based on, the number of bits in the secretnonce, and checks to see if it matches the echoed server
The mean and maximum resolution describe the spacit@pkie. These operations are simple, allowing the server
between adjacent puzzle difficulties. to verify puzzles very quickly. Across 1000 puzzle veri-
As the table shows, time-lock puzzles can be given fatations on our evaluation system, the average time was
a very fine resolution all the way up to the maximum dift.24 s (i.e. > 800,000 per second).

H Puzzle Type \ Unit Work (w) \ Range \ Mean Resolution Max ResolutionH

Time-Lock squaring (.75u.5) o(2") w w
Single Hash-Reversal hash {.09us) w x 2" w * % w 2" 1
Multiple Hash-Reversal hash (.09us) | w k% 2" — w2l -k <n w21
Zi:O(n_i)(i)
wkkx2™
Jk>n
(kfn+1)2"+22:01(n7i)(")
Hint-Based Hash-Reversal hash {.09us) w * 2" w w
TABLE |

PUZZLE SOLUTION CHARACTERISTICS

V. IMPLEMENTATION Puzzle Proxy Puzzle Firewall

To demonstrate the feasibility of our protocol and puz- packets | o
zle algorithm, we implemented our design in Linux using R Headey
netfilter andiptables [29]. This section describes

the details of our implementation, provides an example de-
ployment scenario, and evaluates the implementation.

Need No

\W
® lsue
Packet
&
Packet nswer? Yes
The implementation uses the Linux kernel modules

ICMP
Puzzle
netfilter andiptables to provide hooks and sup- Fig. 5. Protocol messages in action
port for modifying packets in the kernel. Our system im-
plements the protocol using two modules: a puzzle issuing
firewall and a puzzle solving proxy. We found that for
thin clients that do not possess the computational pow&mn shown in Figure 6) to all outgoing packets in a stream
required to solve the puzzles, it is possible for an admiand caches a copy of the latest packet. Upon receiving
istrative domain to set up a proxy machine to solve tlpackets from a source that requires a mandatory quench,
puzzles without violating the protocol or its intentions. the puzzle firewall sends a hint-based hash-reversal puz-
There are two possible and acceptable scenarios whaee (the ICMP packet shown in Figure 7) back to the
a proxy will become a bottleneck. The first is that thelient. The ICMP puzzle is effectively a mandatory ver-
proxy is working on behalf of clients who are behavingion of the pre-existing ICMP source quench [30], where
maliciously and are being issued very difficult puzzles. la client demonstrates it has quenched itself by attaching
this case it is desirable that the proxy is a bottleneck sincerrect answers to its subsequent packets. It is important
each attacker using the proxy is throttled by the cumulatit@ know that the puzzle difficulty is a 32-bit unsigned inte-
difficulty of all puzzles issued to the attackers. Adminisger difficulty € [0,232]) and a difficulty of0 means that
trators can fix the bottleneck for legitimate users by diso puzzles are required. When a puzzle is received by a
connecting and repairing the machines which are creatipgzzle proxy, it verifies the echoed cookie and then solves
the malicious traffic. The second scenario where a prottye puzzle. After solving the puzzle, the proxy attachs the
will become a bottleneck is that the proxy is attemptingnswer (the IP option shown in Figure 8) to all future pack-
to solve puzzles for too many clients. In this case, the agts on that flow. The proxy also resends the cached packet
ministrators simply did not allocate an adequete numbenwhich triggered the puzzle. When the puzzle firewall re-
proxies to handle the legitimate users. ceives a packet with an answer it checks the answer before
The system uses ICMP source quench messages tofdewarding the packet. Any time an answer is not valid
liver puzzles, and IP options to transmit client cookies arfchost often due to the answer expiring) the firewall drops
puzzle answers. Figure 5 shows how the protocol meke packet and sends a new puzzle to the client. If the
sages are attached to a packet stream. network drops a puzzle, the next packet on the flow will
The puzzle proxy attaches the client cookie (the IP ofrigger another puzzle since it will also be invalid.

Puzzle

Answer to
|P Header,

A. Detalils

0 1 2 3 0 1 2 3

01234567890123456789012345678901 01234567890123456789012345678901
e e s i o e e i el S S S B b o e R e bk ok
| Type = 25 | Lengt h | Control | | Type = 26 | Length | Control |
B e e e S e i b e S e T 2 B e i i e S e Rt h rh ok S
| Cient Tinmestanp | Client Nonce | | dient Tinestanmp | dient Nonce |
B e e S S e ik b e S e e e S 4 B e e e i T e e i R e e e e
| | ssuer Ti mestanp | Maturity Tine |

R e i e i S o e e R e o S N

Fig. 6. Client cookie IP option [Expiry Time [unused |

B e i o T e e e e ah i R S e e e e e e

| Hash of Paraneters and Secrets |

0 1 2 3 B R e o e T e e i e I SN N e S
01234567890123456789012345678901 | Puzzl e Answer I
B s T e e e i S e e et o i e e e S e s

B T e S
| Type = 38 | Code
e T X .

| Puzzle Type | Lengt h Control | Flg 8. Answer IP option

B o o e e e o S S
L
B e o e ks h k E I+ B R e e o o S T e
L
L

Checksum |

| dient Tinestanp dient Nonce |
e s o e i i I R e S
| I ssuer Ti mestanp Maturity Tine |
T o o o e i ol S N S
| Expiry Tine | unused | Pr ot ocol |
T i e e e o e S e S e i o S R S o
| dient IP |
B o e S e e e S T R e e e e S
| Server IP |
B o s T e e it S o e i it o S S N S
| Cient Port | Server Port |
B o e S e e T S R e e e o S

| Hash of Paraneters and Secrets |
e e 10.0.0.1 10.0.1.1 10.0.1.2 10.0.2.2
| Puzzle Difficulty |

S R o S e
| Puzzl e Paraneters (variable |ength) |
B e e e S B e e e o S

)

10.0.2.6

proxy firewall

Firewall
firewall% insmod puzzlenet_mgr.o
firewall% insmod ipt_puzServer.o

Flg 7. ICMP puzzle firewall% iptables -t mangle -A INPUT -j puzServer

firewall$ iptables -t mangle -A FORWARD -j puzServer

Proxy
proxy$% insmod puzzlenet_mgr.o

B. Deployment Scenarlo proxy$% insmod ipt_puzClient.o

proxy% iptables -t mangle -A INPUT -p icmp -icmp-type 38 -j puzClient
proxy% iptables -t mangle -A FORWARD -p icmp -icmp-type 38 -3j puzClient

To demonstrate how the modules can be used, Figure 9 rrexs ietapies - mangle -a FOSTROUTING -3 puzclient
shows a simple proxy-firewall setup and packet trace. The lient

client (ak47) behind the proxy initiates two connections s witet i
to the destination network being protected by the firewall. 57 50,1002

The first connection is to a closed port on a protected server cpdump trace
(mp5:2601), while the second is to a non-existent ma- 17:12:33-632312 10.
chine (10.0.2.123:23). When not using network puz- s e
zles, the client would simply receive an RST segment in 175302 ase0ss 10,
response to the first connection and receive no response i1 s 1o
to the second connection. However, when using network

puzzles, the firewall issues a puzzle for each connection at- Fig. 9. Proxy-firewall example
tempt. The proxy, on behalf of the client, must then solve

each puzzle before the client can find out whether or n

the service or machine it is seeking is available.

.14698 > 10.0.2.6.2601: S
> 10.0.0.6: icmp: type-#38
.14698 > 10.0.2.6.2601: S
.2601 > 10.0.0.6.14698: R
14699 > 10.0.2.123.23: S
> 10.0.0.6: icmp: type-#38
.14699 > 10.0.2.123.23: S
.14699 > 10.0.2.123.23: §

cooocococoo
SoroNvORO
AN OO N o

%e echoed issuer cookie). To reasonably expect a client
to be doing at least as much work as the issuer, the issuer
C. Evaluation should not create puzzles of difficulty less titan

Throttling effectiveness can be measured by the work
To evaluate our system, we set up a small network of
ratlo between the puzzle solver and the puzzle issuer. This
four clients (acting as their own puzzle solvers) and a sin

gle server protected by a puzzle firewall connected orf@" Pe expressed &iTcation time - generation fme+ US”

single VLAN via a Cisco Catalyst 4006 Gigabit switching @ 32-bit unsignedifficulty > 6, the minimum ratio
Each client, firewall, and server were dual 1.8GHz Intéed 1 while the maximum ratio |¢ Since a hash on
Xeon processors with Gigabit Ethernet interfaces. the evaluation system takds()9us, we expect our fire-

As discussed in Section IV the expected number wfall to verify a bad answer and generate a new puzzle in
hashes to solve a puzzle4:UY | The number of hashesarounds + 1.09s = 3.27us. Similarly the maximum dif-
to generate a puzzle is a constant 2 hashes (1 to hashfi¢idty puzzle would be expected to take)9us x 23! =
answer and 1 to create the issuer cookie), and the numb&f1min to solve.
of hashes to verify a puzzle is a constant 1 hash (to matchTo measure the rate at which a server can verify and

generate puzzles, the clients were configured to flood tve can slow the propogation of worms. The deployment
server with 64-byte UDP packets with invalid answerscenario in the previous section indicates that it is possible
as fast as they could. The firewall verified that the aie use network puzzles to effectively throttle a port scan.

swers were invalid and generated a new puzzle for ealihevaluate this, we compare the time it takes an efficient
invalid answer. The firewall's peak sustained throughpport scanning tool to scan a server not protected by puz-
over a one minute interval was 182,000 packets per setes to the time it takes the tool to scan a server protected
ond (or 5.49us to verify and generate). This throughby puzzles of various difficulties. The port scanning tool

182000packets 64B 8b___ 1Gb _ i i i
put (; S B ot = 0-087Gbps) is used wasscanrand , which can scan an entire class B

slightly lower than expected since there is an unavoi€twork in under 4 seconds [31]. Figure 11 shows the re-
able (yet relatively small) amount of OS contention for theHIts Of this experiment; that a ten-fold increase in puzzle
CPU. This shows that the throughput of this software inflifficulty results in a ten-fold increase in scanning time.
plementation is unsuitable for in-network deployment dithout using network puzzles, a scan of 1000 ports took
puzzle firewalls for all but home networks. However, w9ms. At difficulty 100,000 the scan took more than 3
are currently investigating a hardware based implemdRinutes. Extrapolating, puzzles of the maximum difficulty
tation on the IXP2850 which has special hardware hagh) would force the port scan to take over a month.
units. This device is promising since a hash take€84,.s

and we anticipate being able to verify and generate puzzles Time to Scan Ports

at Gigabit speeds. ifalty 100050

Difficulty 10000

To demonstrate the ability to differentiate between ma- =
licious and legitimate clients, we ran another experiment
using the same network configuration, but made one of the
clients non-responsive by having it refuse to answer any
puzzles. A simple controller was implemented to control
the amount of traffic accepted by the firewall. The con-
troller targeted a rate of 150,000 packets per second. If
the number of packets accepted exceeded or fell under-
neath the target, the controller scaled the difficulty based
on the percentage difference. Figure 10 shows the result
of the experiment. After a minute of idling & 60sec),
the non-responsive client floods the server with a packet
stream at a rate of around 130,000 packets/sec. As Fig-
ure 10(a) shows, since this is below the target forwarding
rate, the firewall accepts the packets and does not issue VI
puzzles. After another minuteg (= 120sec), the three
“good” clients begin flooding the server, thus driving thé. Related Work
packet rate well beyond 200,000 packets/sec. The firewallrhere have been a large number of efforts related to con-
quickly enables puzzles and completely wipes out the nqy|ling malicious traffic such as denial of service attacks.
responsive client. While the non-responsive client is stiye set of approaches focuses on tracing floods back to
transmitting packets, none of its packets are forwarded \jr sources via targeted packet injection and intelligent
the firewall. As the figure shows, after a brief oscillatio acket marking [32], [33], [34], [35], [36], [37]. Another
the aggregate throughput of accepted packets for the 0tgis of approaches is to use pro-active, distributed filter-
three clients remains close to the target rate. Figure 10{Ry of packets via direct and indirect methods [38], [39],
shows the puzzle difficulty setting at the firewall throughz), [41], [42], [43]. These approaches are complemen-
out the experiment. As the figure shows, the difficulty rgary and can be used in conjunction with puzzle-based ap-
mains at 0 (i.e. no puzzles) while the rate of accepted pagfpaches.
ets is below the target. As the packet rate increases beyon@ryptographic puzzles themselves were first proposed

the target, the difficulty adapts in order to force the packﬁt, Merkle in public key protocols [5]. Since then, puzzles

rate back to the targeted level. have been applied in specific applications such as authen-
A large part of containing Internet worms is slowindication protocols [6], [9], [19], e-mail protocols [4], [44],

their propogation. Many worms use adaptive port scaand transport layer protocols [7], [8], [14]. Network layer

ning to find new hosts to infect; so by slowing port scamauzzles do not preclude the use of higher-layer puzzle pro-

Time (ms)

00 600
Ports Scanned (#)

Fig. 11. Ports scanned over time

. DIscussioN

300000 5000

—— Good clients (aggregate)
---- Non-responsive client
4000 -
- 200000 B
g a 3000 -
] >
© =
i) 3
g E
S o 2000 -
& 100000 |-
1000
0 0 L L L
0 0 60 120 180 240
Time (s)
(a) Packets accepted (b) Puzzle difficulty

Fig. 10. Controlling a non-responsive client

tocols. The IP puzzle semantic of “solve a puzzle befopaizzles do not significantly raise the risk of such attacks
| forward your packet” provides additional protection osompared to spoofed TCP SYN floods.

top of alternative client puzzle protocols where end-hostCongestion control Puzzles can be used to implement
intervention is required. More importantly, however, is thmandatory congestion control. For this to happen, a more
fact that the implementation effectively runs at high-speeshphisticated controller must be designed that can perform
augmenting approaches that rely on some form of netwadbustly in a range of environments. While such con-

layer protection to guarantee client access [45]. trollers exist in the “voluntary” domain of TCP congestion
control and active queue management [47], [48], there are
B. Limitations no such equivalents in the puzzle domain yet.

There are a few known limitations with the current ap'- High-speed router implementatiorSince the protocol

proach that we are working to address. These include: and system have been_de3|gned \.N'th hlgh—_speed_routers n
mind, we are currently implementing a version of it on the

o IP head'er limitations The current design and the 49Tast path of Intel's IXP 2850 network processor [49].

byte maximum IP header length allows for only a sin; targeted difficulty levels The current implementation
gle puzzle answer to be attached on the forward paffyes 5 single, adaptive difficulty level for all of the clients
While the IPv6 header allows for any number of headefSseryices. It has been shown that such an approach has
to be used for this purpose [46], we are currently examiany disadvantages including a clear adverse impact on
ing IPv4-based mechanisms for supporting multiple pugsgitimate clients [45]. We are augmenting our system us-
zle answers per packet in case there are multiple puzms efficient, high-speed mechanisms [50], [51], [52], [53]

issuers on an end-to-end path. ~_ for delivering differential puzzles whose difficulties vary
« Eavesdropping attack§ he lack of a true authentication,, ;o on end-to-end, application-driven information [54],

mechanism means that an eavesdropper along the netwgEs 56]. This work is described in the next sub-section.
path can spoof a puzzle back to the client. For example,

on a wwe_zless network, an ee_lvesdropper can capture p I.('Future Work: Reputation-Based Networking
ets passively, capture the client nonces, and send puzzlés
back to the victim. While link-layer authentication and The goal of reputation-based networking is to quickly
encryption can help, this vulnerability should be carefulligentify malicious clients and place an extremely large
considered before deployment. computational punishment on all of their communication
« Reflector attacks Since puzzles consume a non-zerosing network layer puzzles. There is a wealth of locally
amount of bandwidth, they can be used as part of a reflebservable behavior information that can be used to adap-
tor attack [18]. Adversaries could spoof a particular sourtigely deliver harder puzzles to clients exhibiting suspi-
IP address and flood the victim with bogus puzzles. De@us behavior. For example, intrusion detection systems
to the compact size of the puzzle and the ability to ke€lDS) such as Snort [54] as well as application log files
such attacks out in the network, however, we argue thatd&n clearly identify systems that are being used for unde-

External Information Sources VIl. CONCLUSION
[IDS]Ejshield.orgl CERT] Network puzzles are an elegant mechanism for miti-
gating the effects of undesirable network communication.
am
[Honeypots}[magk“sts][Humans] This paper has described the design and implementation
T of a network layer puzzle protocol and algorithm that can
Intelligent Aggregation Adaptation be used to effectively slow down flooding attacks and port
N , “~(Neural [Bayesian |[Genetic scanning activity. The system allows for high-speed im-
ilters Weights Network Filter Algorithm . . .
etworks J|_Filters j|Algorithms plementations in the fast path of modern network devices,
! t can be flexibly deployed, and is resistant against replay and
Reputation Database Performance Evaluation Spoofing attacks.
[Addresses] [Ports } N [Qaasl?i;ngi] ﬂixpléls'?ernce]
VIIl. A CKNOWLEDGMENTS

{)) o
Reputation Dissemination We would like to thank Tim Sheard for his initial sug-

gestion of sending hints with puzzles, as well as Mark
Fig. 12. Managing reputations for network puzzles ~ Baugher and Fred Baker for their helpful discussions re-

garding the protocol and implementation. We would like

to thank Raj Yavatkar for the generous support which made

sirable purposes. In addition, there is an immense amo#/}§ Work possible.
of external information that can be used. For example,
the DShield service [56] exports a database of informa-
tion on which ports are being attacked actively and whi¢H D. Moore, C. Shannon, and J. Brown, “Code-Red: A Case Study

machines are currently being used to launch attacks. on the Spread and Victims of an Internet Worm, Internet Mea-
surement WorkshoiNovember 2002.

To perform puzzle difficulty management more imel”fZ] S. Staniford, V. Paxson, and N. Weaver, “How to Own the Inter-
gently, we are currently building Ruzzle Manager an net in Your Spare Time,” i1th USENIX Security Symposium
intelligent agent that aggregates input from a number of (Security '02) 2002.
information sources in order to determine the reputationl8f CERT, “CERT Advisory CA-2004-02 Email-borne Viruses,”
clients and the difficulty of puzzles they must solve to ob- http://www.cert.org/advisories/CA-2004-02.
tain service. Such reputations are then fed into the mech- ntm! . 2004. o _ _
anisms used for punishing malicious clients. We envisiéfl ©- PWork and M. Naor, “Pricing via Processing or Combatting

. Junk Mail,” in Cryptag, 1992.
that such mechanisms can be used as a form of emerg

h £l | b ks. S 2[EffyR. Merkle, “Secure Communications Over Insecure Channels,”
response to the onset of large-scale cyber-attacks. Specit- Communications of the ACMol. 21, no. 4, April 1978.

ically, clients with low global reputations will be forcedis; | yon ahn, M. Blum, N. Hopper, and J. Langford, “CAPTCHA:
to solve more difficult network puzzles before their pack- ysing Hard Al Problems for Security,” iBurocrypt 2003.2003.
ets are routed. Figure 12 outlines the architecture of tf1¢ A. Juels and J. Brainard, “Client Puzzles: A Cryptographic De-
reputation-based system we are constructing. As the figure fense Against Connection Depletion,” NDSS 1999, pp. 151
shows, in order to keep up with the changing Internet land- 165.
scape, the performance of the System must be Continuodgly D. Dean and A. Stubblefield, “Using Client Puzzles to Protect
evaluated against system utilization measurements, ma- LS." in 10th Annual USENIX Security Symposj@#@01. _
chine threat rankings, and user experience reports. Ad&p- T- Aura. P Nikander, and J. Leiwo, “DOS-Resistant Authenti-
. . . . cation with Client Puzzles,Lecture Notes in Computer Science
tation algorithms will be employed in order to use the feed- vol. 2133. 2001
back to properly adjust the aggregation functions to m ’ '

o . b] J. Leiwo, T. Aura, and P. Nikander, “Towards Network Denial of
imize the system performance. In particular, the system" geice Resistant Protocols.” 8EC 2000, pp. 301-310.

must continuously learn the reliability of individual infor-11) m. castro, P. Druschel, A. Ganesh, A. Rowstron, and D. Wallach,
mation sources and adjust the filtering and Weighting of “Security for Peer-to-Peer Routing Overlays,” Pmoceedings of
information accordingly. OSD|, December 2002.

Th int fi hi f th 412] M. Abadi, M. Burrows, M. Manasse, and T. Wobber, “Moderately
€ maore Interesting researcn Issues 1ocus on tne sur- Hard, Memory-bound Functions,” 2003.

vivability of the system; intelligently thwarting the at'[13] I. Clarke, O. Sandberg, B. Wiley, and T. Hong, “Freenet: A Dis-

tempts O_f malicious cIier_lts trying to avoid th? puniSh_ment tributed Anonymous Information Storage and Retrieval System,”
mechanisms or subverting the sources of information to Lecture Notes in Computer Scienwel. 2009, pp. 46+, 2001.

render the system completely inaccurate. [14] X. Wang and M. Reiter, “Defending Against Denial-of-Service

REFERENCES

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

(25]

(26]

[27]

(28]
[29]
(30]

[31]

(32]

(33]

[34]

(35]

Attacks with Puzzle Auctions,” ilEEE Symposium on Security
and Privacy 2003.

W. Feng, “The Case for TCP/IP Puzzles,” ACM SIGCOMM [36]
Workshop on Future Directions in Network Architecture (FDNA-
03), Karlsruhe, Germany, August 2003.

J. Saltzer, D. Reed, and D. Clark, “End-To-End Arguments i$7]
System Design,”ACM Transactions on Computer Systemd.

2,no. 4, pp. 277-288, November 1984.

S. Crosby and D. Wallach, “Denial of Service via Algorithmid38]
Complexity Attacks,” inUSENIX Security Symposiyrugust
2003.

V. Paxson, “An Analysis of Using Reflectors for Distributed
Denial-of-Service Attacks,”Computer Communication Review [3
vol. 31, no. 3, July 2001.

W. Aiello, S. Bellovin, M. Blaze, J. loannidis, O. Reingold,[40]
R. Canetti, and A. Keromytis, “Efficient, DoS-resistant, Secure
Key Exchange for Internet Protocols,” @onference on Com- [41
puter and Communications Securi002.

D. Bernstein, “SYN Cookies,” http://cr.yp.to/ [42]
syncookies.html , 2003.
B. Warner, “EGD: The Entropy Gathering Daemonikittp: [43]

/legd.sourceforge.net , 2002.

W. Aiello, S. Rajagopalan, and R. Venkatesan, “Design of Prac-
tical and Provably Good Random Number GeneratorsAQ@M- [44]
SIAM Symposium on Discrete Algorithrdanuary 1995.

D. Wagner, “Randomness for Crypto, http://www.cs.
berkeley.edu/"daw/rnd/ , 2003. [45]
Intel, “Intel Random Number Generator (RNG),
http://developer.intel.com/design/security/ [46]

rng/rngppr.htm , 2003.

T. Spalink, S. Karlin, L. Peterson, and Y. Gottlieb, “Building[47]
a Robust Network-Processor-Based Router,”"Pimnceedings of
ACM SOSPOctober 2001.

T. Dierks and C. Allen, “The TLS Protocol Version 1.0RFC
2246 January 1999.

K. Fu, E. Sit, K. Smith, and N. Feamster, “Dos and Don'ts of49]
Client Authentication on the Web,” iIDSENIX Security Sympo-
sium August 2001.

R. L. Rivest, A. Shamir, and D. A. Wagner, “Time-lock Puzzle$50]
and Timed-release Crypto,” MIT/LCS/TR-684, 1996.

[48]

neffilter/iptables developers, “netfilter/iptables Projettitp: [51]
[Iww.netfilter.org

J. Postel, “Internet Control Message ProtocolRFC 792
September 1981. [52]
D. Kaminsky, “Doxpara: Paketto Keiretsu (scanrand),”

http://www.doxpara.com/read.php/code/ (53]
paketto.html , 2002.

H. Burch and W. Cheswick, “Tracing Anonymous Packets to
Their Approximate Source,” iISENIX LISADecember 2000. [54]
S. Savage, D. Wetherall, A. Karlin, and T. Anderson, “Practical
Network Support for IP Traceback,” i8IGCOMM 2000, pp.
295-306. [55]
A. Snoeren, C. Partridge, L. Sanchez, C. Jones, F. Tchakountio,
S. Kent, and W. Strayer, “Hash-based IP Traceback, SIiG-
COMM, August 2001. [56]

D. Song and A. Perrig, “Advanced and Authenticated Marking

9] H. Jamjoom and K. Shin,

Schemes for IP Traceback,” INFOCOM 2001 2001, pp. 878—
886.

ICMP Traceback Working Group, “ICMP Traceback
(itrace),” http://www.ietf.org/html.charters/
itrace-charter.html ,2002.

A. Yaar, A. Perrig, and D. Song, “Pi: A Path Identification Mech-
anism to Defend Against DDoS Attacks,” IBEE Symposium on
Security and PrivacyMay 2003.

R. Mahajan, S. Bellovin, S. Floyd, J. loannidis, V. Paxson, and
S. Shenker, “Controlling High Bandwidth Aggregates in the Net-
work,” Computer Communication Reviewol. 32, no. 3, July
2002.

“Persistent Dropping: An Efficient
Control of Traffic Aggregates,” iI®sIGCOMM August 2003.

A. Keromytis, V. Misra, and D. Rubenstein, “SOS: Secure Over-
lay Services,” ifSIGCOMM August 2002.

] D. Andersen, “Mayday: Distributed Filtering for Internet Ser-

vices,” inUSITS March 2003.

K. Lakshminarayanan, D. Adkins, A. Perrig, and I. Stoica, “Tam-
ing IP Packet Flooding Attacks,” ifdot Topics in Networks
(HotNets-Il) 2003.

S. loannidis, A. Keromytis, S. Bellovin, and J. Smith, “Imple-
menting a Distributed Firewall,” iACM Conference on Com-
puter and Communications Securi000, pp. 190-199.

A. Back, “Hashcash: A Denial of Service Counter-
Measure,” Tech. Rep., Cypherspace, August 200&tp:
/lcypherspace.org/hashcash/hashcash.pdf

V. Gligor, “Guaranteeing Access in Spite of Service-Flooding
Attacks,” in Security Protocols Workshoppril 2003.

S. Deering and R. Hinden, “Internet Protocol, Version 6 (IPv6)
Specification,”"RFC 2460 December 1998.

Van Jacobson, “Congestion Avoidance and Control Piaceed-
ings of ACM SIGCOMMAugust 1988, pp. 314-329.

S. Floyd and V. Jacobson, “Random Early Detection Gateways for
Congestion Avoidance ACM/IEEE Transactions on Networking
vol. 1, no. 4, pp. 397-413, August 1993.

Intel, “Intel IXP2850 Network Processor,’
IIwww.intel.com/design/network/products/
npfamily/ixp2850.htm , 2003.

D. Lin and R. Morris, “Dynamics of Random Early Detection,”
in Proceedings of ACM SIGCOMNseptember 1997.

W. Feng, D. Kandlur, D. Saha, and K. Shin, “Stochastic Fair
Blue: A Queue Management Algorithm for Enforcing Fairness,”
in Proc. of INFOCOM April 2001.

P. McKenney, “Stochastic Fairness Queueing,Pmceedings of
IEEE INFOCOM March 1990.

J.L. Rexford, A.G. Greenberg, and F.G. Bonomi, “Hardware-
Efficient Fair Queueing Architecture for High-Speed Networks,”
in Proceedings of INFOCOIMMarch 1996.

M. Roesch, “Snort - Lightweight Intrusion Detection for Net-
works,” in Proceedings of the 13th Systems Administration Con-
ference (LISA '99)1999.

V. Paxson, “Bro: A System for Detecting Network Intruders in
Real-Time,” in10th Annual USENIX Security Symposjulan-
uary 1998.

DsShield.org, “Distributed Intrusion Detection Systenhttp:
/Iwww.dshield.org , 2002.

http:

