
Addressing
Automated Adversaries
of Network Applications

Ed Kaiser

Computer Science Department

March 16, 2010 2Ed Kaiser

Network Applications

• Internet is patchwork of diverse applications
• WWW, email, multimedia, video games

Clients
Application

Server

Requests

Data

March 16, 2010 3Ed Kaiser

The Automation Problem

• Adversarial clients employ automation
• to subvert the service

• Examples include
• Port Scans
• Worms (Slammer, Conficker)

• Denial-of-Service (Georgia)

• Spam, Comment Spam
• Click Fraud (Auction Experts)

• Ticket Bots (Hannah Montana)

• Video Game Bots (WoW Glider)

March 16, 2010 4Ed Kaiser

“Gold Farming” Example

• Automation software
• endless repetition

• Cheap foreign labor
• manage the software
• respond to moderators

$200 / month
expense

virtual $60k / month
profit

March 16, 2010 5Ed Kaiser

Automation Harms Applications

• Increased Cost (e.g., resources)
• EVE Online anti-farming campaign

ban of 2% users led to 30% CPU drop

• Decreased Efficiency
• lower request throughput
• lower content to noise ratio

• Denied Accessibility
• legitimate users cannot transact with service

• Tarnished Reputation
• rampant cheating in Diablo II
• online poker cheaters

March 16, 2010 6Ed Kaiser

Thesis Statement

We have new methods to detect automated

behaviors with which an application’s

service provider can identify and then

disincentivize automated adversaries.

March 16, 2010 7Ed Kaiser

Research Challenges

1) Detection
Advantageous automation must exhibit distinguishing

characteristics. What application-specific methods
can detect automated behaviors?

2) Identification
Detection methods may not be individually conclusive.

How can detection methods be combined to most
accurately identify automated adversaries?

3) Dissuasion
Adversaries react to deterrents. How can we best
disincentivize automated adversaries?

March 16, 2010 8Ed Kaiser

Thesis Contributions

March 16, 2010 9Ed Kaiser

The Cheating Problem

• Networked games simulate complex worlds
• would like trust only the server but
• limited server computation
• player sensitivity to network latency

• Client is trusted to run simulation locally
• follow game rules
• keep secrets from player

• Cheats are software that abuse the trust
• automate actions a cheater is unwilling to do
• accomplish feats a cheater is unable to do

March 16, 2010 10Ed Kaiser

Nemesis Warcraft III MapHack

• Reveals map and secret opponent locations

Cheat
Enabled

March 16, 2010 11Ed Kaiser

What Cheats Modify [NG08]

• Game memory via WriteProcessMemory()
• static data (e.g., gravity constants)

• dynamic data (e.g., location, health, team)

• altering existing code (e.g., hot patch)

• injecting new code (e.g., DLL injection)

• Game execution (e.g. automation)

• thread hijacking (e.g., detour, function hooking)

• thread injection via CreateRemoteThread()
• as debugger via DebugActiveProcess()

March 16, 2010 12Ed Kaiser

State-of-the-Art in Defense

• Signature-based cheat detection
• generate cheat-specific signatures

– must obtain working cheats
– continual developer effort
– state grows as new cheats are cataloged
– does not deal well with polymorphism

• search every process for known signatures
– indiscriminately reads private data (e.g., Blizzard’s Warden)
– prone to false positives:

Tricking VACTricking Punkbuster

“Rifle Aim

Prediction:”

into IRC channel

March 16, 2010 13Ed Kaiser

Similar to other Security Problems

• Similarity to rootkits
• adversary controls the machine

• has administrator privileges
• runs before anti-cheat software
• can modify the operating system and other tools

• uses advanced techniques
• cloak itself just-in-time (e.g., Hoglund’s Supervisor)
• spoof anti-cheat software results

• Similarity to viruses
• obfuscation to prevent reversing
• polymorphism to thwart signature detectors

March 16, 2010 14Ed Kaiser

... yet is Distinct Security Problem
• Adversary is owner of machine

• yet four mitigating factors…

• Always connected, for long time periods
• cannot disable server-initiated security (unlike Windows Update)
• server can perform arbitrary checks on-demand

• Typically targets game code
• limited places to attack
• can do anomaly-based detection (à la kernel integrity approach)

• Presence is not immediately catastrophic
• can wait to take action (to prevent cheater from learning)
• machine is not used to attack network hosts
• damage can be rolled back easily

• unlike reissuing stolen credit card numbers, SSNs, etc.

• Monetary penalty for being caught
• $50 game copy, $10/month, plus time lost (opposed to botnet)

March 16, 2010 15Ed Kaiser

The Fides Approach [CCS09]

• Approach leverages properties of problem

• Anomaly-based cheat detection
• know what game looks like

• finite state
• readily available

• search the game client for deviations
• cheater targets game code
• cheat agnostic

• detection is sufficient
• cheat is not immediately catastrophic

March 16, 2010 16Ed Kaiser

Fides Approach cont’d

• Via continued random remote measurement

• continued
• not done only once at startup
• server has indefinite contact with the client
• can audit until absolutely confident in results

• random
• no need for complete integrity check
• conceals what will next be measured and when,

instilling “fear-of-the-unknown”

• remote
• don’t trust the client to make judge its own integrity

March 16, 2010 17Ed Kaiser

Fides Approach cont’d

• Using partial client emulation
• to accommodate client system variation

• between players
• between sessions (e.g., desktop vs. laptop)

• regarding libraries, versions, and locations
• always connected, for long time periods

March 16, 2010 18Ed Kaiser

Fides Architecture

Data

• Controller decides how, what, and when to
measure the client
• compares measurement to emulated state
• alters player account when caught cheating

• Auditor only measures game client process

Controller
Auditor

Game
Client

Request

Game
Server

Player
Account

Emulator

March 16, 2010 19Ed Kaiser

Limitations to Approach

• Software Auditor will be target of attack
• supply it legitimate client process-state data

• statically generated ahead of time
• dynamically generated by second unmodified client

• hook it to know when to unload cheat

• Cannot catch cheats external to game client
• collusion cheats

(e.g., online poker cheaters)

• robotic cheats
(e.g., Guitar Hero robot,
in-network cheats)

March 16, 2010 20Ed Kaiser

Addressing the Limitations

• Auditor is the weak point
• cryptographically entangle the Auditor

• similar to Pioneer approach

• verify correct Auditor operation
• similar to Intel anti-virus presence detector

• run the Auditor itself on secure hardware
• (e.g., the Intel AMT Manageabilty Engine)
• similar to Copilot

• Does not detect completely external cheats
• anomaly-based detection on user behavior or

statistics available to server

March 16, 2010 21Ed Kaiser

Controller Design

• Emulates client-process state
• drives audit strategist (could be game-specific)
• used to validate audits

Client
Emulator

Game
Binary

Code
Disassembler

Binary
Parser

Memory
Layout

Code
Patterns

Cheaters

Dynamic
DataEmulated

Client State

Client
Layout

Audit
Validator

Audit
Strategist

A
u

d
it

o
r

Game Server

Libraries

March 16, 2010 22Ed Kaiser

• Done once at client login
• share library names, versions and locations

• Works on any commercial-off-the-shelf game

• Binary Parser recreates client layout
• identifies and hashes static code & data

• high confidence in client understanding

• identifies dynamic data regions
• more expensive (i.e., game-specific) to validate
• high confidence in client understanding

Partial Client Emulation

March 16, 2010 23Ed Kaiser

Partial Client Emulation cont’d

• Code Disassembler
• creates a rough call graph

• learns instruction range for each function
• learns CALL addresses (i.e., relating functions)

• lower confidence (difficult to get complete coverage)

Partial Call Graph of a Homebrew game

March 16, 2010 24Ed Kaiser

Partial Client Emulation cont’d

• Execution Sampler and Execution Profiler
• run game with identical layout to client
• learn dynamic calls not obtainable through

static analysis

Execution
Profiler

Memory
Layout

Code
Timing

Game
Client

Virtual
MachineCode

Patterns

Client
Emulator

Execution
Sampler

March 16, 2010 25Ed Kaiser

Request
Handler

• Measures the client process
• returns the data to the controller

Auditor Design

Sample
Memory

Hash
Page

Trace
Stack

Detect
Debugger

EIPn
0x8CC70208
0x90BEFFFA
0xA4506CEB
0xBEF9A3F7
0xC67178F2

yes / no

r / w / x

00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00

Game
Data

...

r / w / x

Game Client

C
o

n
tr

o
ll

e
rEIP0

Digest

EIP

March 16, 2010 26Ed Kaiser

Auditor Measurements

Measurement Cheat Method

Sample Memory Dynamic Data Manipulation

Hash Page

Code Manipulation

Code Injection

Static Data Manipulation

File Replacement

Trace Stack

Thread Injection

Thread Hijacking

Function Pointer Hooking

Direct Function Calls

Detect Debugger Software / Hardware Debugging

Cheat Methods best detected by the Auditor Measurements

March 16, 2010 27Ed Kaiser

Evaluation

• Implemented Auditor & Controller in C++
• running on separate 2.39GHz Intel Core2
• on commercial-off-the-shelf game Warcraft III

• Experiments answer:

“Does Fides work?”

“Does Fides operate quickly?”

“Will Fides scale well?”

March 16, 2010 28Ed Kaiser

Evaluation Timeline

• Learn newly patched game
• account for security (i.e., obfuscation & anti-debugging)

• Acquire and run first-to-release cheats
• verify correct operation

• Detection!

WC3 patch 1.22b
October 29, 2008

Fides works on WC3 &
detects simple new cheats

November 10, 2008

Nemesis cheat released &
detected by Fides
December 12, 2008

March 16, 2010 29Ed Kaiser

Warcraft III Execution Profile

15.6

threads spend
77% of time

sleeping

across
8 active threads

(of 22 total)

March 16, 2010 30Ed Kaiser

Experiment: Functionality

• Ran the following cheats:
• Bendik’s MH, NOPs a few bytes

• Kolkoo’s MH, NOPs bytes over more pages

• Revealer MH, NOPs and hooks input functions

• Simple MH, NOPs bytes over many pages

• Nemesis MH, complex and “undetectable”

• Periodically audit (±5% randomness)

• Code page hash audit the game
• hash currently executed code page

• Measure the mean audits required to detect
• averaged over 1000 trials

March 16, 2010 31Ed Kaiser

Results

Cheat Avg Audits Required Wall-clock Time

Bendik’s MH 1265.3 2min 08.4s

Kolkoo’s MH 733.4 1min 14.5s

Revealer MH 309.8 31.4s

Simple MH 260.4 26.4s

Nemesis MH 204.1 20.5s

• Auditing roughly once every 100ms

• Auditing roughly once every second
Cheat Avg Audits To Detect Wall-clock Time

Bendik’s MH 1309.7 21min 49.7s

Kolkoo’s MH 733.0 12min 13.0s

Revealer MH 322.2 5min 22.2s

Simple MH 301.3 5min 01.3s

Nemesis MH 264.1 4min 24.1s

March 16, 2010 32Ed Kaiser

Detecting Warcraft III MapHacks

March 16, 2010 33Ed Kaiser

Observations

• Audits required to detect
• complex cheats require fewer audits

• make more modifications
• easier to detect randomly

• generally starts low
• when sampling faster than game input loop, audits

encounter more infrequently executed pages

• asymptotically levels off
• when sampling much slower than game input loop,

each audit becomes independent random sample

March 16, 2010 34Ed Kaiser

Experiment: Efficiency

• Benchmarked routines by measuring cycles
• using RDTSC register

March 16, 2010 35Ed Kaiser

Experiment: Scalability

• Can Fides exploit common memory layout
to reduce emulation replication?
• in terms of memory
• and computation

• On non-ASLR systems, libraries are loaded
to consistent pre-determined locations

March 16, 2010 36Ed Kaiser

Warcraft III Memory Allocation

• Ran game on two different XP machines
• 1000 trials on each (2000 total)
• memory section is one or more 4KB pages

• executable → code
• writable → dynamic data
• only readable → static data

Type Memory
Similarity

Client A Client B Both

Code 28.7MB (1.4%) 100.0% 96.2% 90.8%

Static Data 20.5MB (1.0%) 98.8% 94.6% 87.2%

Dynamic Data 71.7MB (3.5%) 29.5% 55.6% 11.3%

Reserved 69.6MB (3.5%) 64.6% 93.5% 49.4%

Unallocated 1.9GB (90.6%) -- -- --

March 16, 2010 37Ed Kaiser

Fides Summary

• Cheats are advanced
• large range of cheat methods
• present a distinct security problem

• Fides is specifically designed to detect them
• anomaly-based detection
• via continued random remote measurements
• using partial client emulation

March 16, 2010 38Ed Kaiser

Other Thesis Contributions

March 16, 2010 39Ed Kaiser

PlayerRating System [NG09]

• A peer-to-peer reputation system
• treat peers as homogenous detectors
• can facilitate other information sources
• positive trust is transitive

F1

? +−U1

U3

F2

F3 F4A3

A2

self
A1

Positive Rating
Negative Rating

U2

March 16, 2010 40Ed Kaiser

kaPOW System [GI08, GI10]

• Transparent Proof-of-Work
• computationally tax malicious/automated clients
• geographic location as an automation indicator

URL with valid POW

k
a
P

O
W

Clients
URL without valid POW

Error Page

Content

Content

Web Server

March 16, 2010 41Ed Kaiser

Conclusion

• Thesis statement:

• Thesis validated:

�Explored detection methods

�Built a detector aggregator

�Penalized automated adversaries

We have new methods to detect automated

behaviors with which an application’s

service provider can identify and then

disincentivize automated adversaries.

March 16, 2010 42Ed Kaiser

Thanks
Associated Peer-Reviewed Publications

[GI10] E. Kaiser, W. Feng. “Helping TicketMaster: Changing the Economics of Ticket
Robots with Geographic Proof-of-Work.” In Global Internet, March 2010.

[NG09] E. Kaiser, W. Feng. “PlayerRating: A Reputation System for Multiplayer Online

Games.” In NetGames, November 2009.

[CCS09] E. Kaiser, W. Feng, and T. Schluessler. “Fides: Remote Anomaly-Based Cheat

Detection.” In ACM CCS, November 2009.

[NG08] W. Feng, E. Kaiser, and T. Schluessler. “Stealth Measurements for Cheat
Detection in On-line Games.” In NetGames, October 2008.

[GI08] E. Kaiser and W. Feng. “mod_kaPOW: Protecting the Web with Transparent

Proof-of-Work.” In Global Internet, March 2008.

[GI07] W. Feng and E. Kaiser. “The Case for Public Work.” In Global Internet, April 2007.

[IC05] W. Feng, E. Kaiser, W. Feng and A. Luu. “The Design and Implementation of

Network Puzzles.” In IEEE INFOCOM, March 2005.

