
mod kaPoW: Mitigating DoS with Transparent
Proof-of-Work

Ed Kaiser Wu-chang Feng
Portland State University Portland State University

edkaiser@cs.pdx.edu wuchang@cs.pdx.edu

1. INTRODUCTION
Unwanted traffic remains a fundamental problem for net-

worked systems. Proof-of-work (PoW) is a defense mech-
anism that adds a client-specific challenge at the start of a
networked protocol. The challenge acts as a filter for clients
based on their willingness to solve a computational task of
varying difficulty. The difficulty is tailored to the individual
client and is set proportional to its relative load on the server.

Recently there have been several proof-of-work systems
proposed in the literature [1, 2, 3, 4, 5, 6, 7], although few
have actually made much progress towards being deployed.
The biggest problems of those schemes is that they require
wide-scale adoption of special client and server software in
order to operate properly, denying all clients who have not
installed the software.

To address this problem, our work investigates a novel
web-based proof-of-work system that retains the efficiency
of our previous work [1, 2] while focusing on transparency
and backwards compatibility for incremental deployment.
The system leverages the pervasiveness of JavaScript, soft-
ware present and enabled on most web-clients, to transpar-
ently deliver a challenge, solve it, and submit the client re-
sponse. The system is designed so that the few clients who
do not have JavaScript enabled are not necessarily prevented
from accessing the service. The system uses an Apache server
module to dynamically embed client-specific challenges in
webpages as they are being served. Existing websites do not
require changes to any content in order to adopt this system.

This poster presents a prototype of the first proof-of-work
system that operates transparently and is backwards compat-
ible for legacy clients. This shows that proof-of-work sys-
tems can be made incrementally deployable.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CoNEXT’07, December 10-13, 2007, New York, NY, U.S.A.
Copyright 2007 ACM 978-1-59593-770-4/ 07/ 0012 ...$5.00.

2. THE PROOF-OF-WORK APPROACH
To a proof-of-work system, all clients are considered ad-

versaries of varying maliciousness that need to be throttled
accordingly. In general, a client’s maliciousness is measured
from the load they have placed upon the system in the past
and their contribution to the current load. This value dictates
the difficulty of the challenge (called a work function) issued
to the client; more malicious clients are issued more difficult
work functions. It is likely that a well behaving client will be
issued a work function of trivial difficulty when the server is
not under stress.

The proof-of-work system introduces a new challenge-
response step during the initiation of a network protocol.
Upon receiving a request, a server issuer creates and returns
a work function to the client while aborting the connection
to avoid storing per-client state. After receiving and solv-
ing the function, the client solver attaches both the function
and solution when resending the request. If the challenge-
solution pair is valid, the server verifier allows the request to
proceed; otherwise the request is denied and another work
function may be sent.

The work function has a difficulty tailored to the client.
The difficulty is expressed in terms of units of work, where
each unit is a uniform computation such as the execution of a
hash function. There are many types of work functions with
a wide range of properties, and the work function employed
determines many of the properties of the system as a whole.
All proof-of-work systems must exhibit the following prop-
erties to be useful:

• Efficiency: Issuing challenges and verifying answers
must add minimal overhead, otherwise the system be-
comes a target for attack.

• Host Binding: Work must be bound to the client-server
connection to ensure that the specific client is throttled.

• Time Binding: The system must resist precomputation
and replay attacks for responsive real-time throttling.

Our novel scheme has these properties while introducing
the desired properties of transparency and backwards com-
patibility, unseen in any previous proof-of-work scheme.



3. A TRANSPARENT INSTANTIATION
The prototype protects web content through the addition

of work functions to Uniform Resource Locators (URLs) as
standard query parameters. While this system could use any
of several different types of work functions, the prototype
uses the compact Targeted Hash-Reversal function [2]. It is
of the form:

H(Nc || Dc || A)≡ 0 mod Dc (1)

where H is a one-way uniformly-distributed hash function,
Nc is a client-specific nonce generated by the server, Dc is
the client-specific difficulty, and A is the solution that the
client’s solver must find. The parameters are appended to the
URL as delimited name-value pairs and their order does not
matter. To avoid accidentally triggering an escape sequence,
the values are transmitted as hexadecimal values.

The prototype is an Apache module we call mod kaPoW
that has two main functions; an issuing filter and a verifying
filter. The issuing filter processes web documents as they are
served and embeds work functions in URLs and tags con-
taining URLs, as well as a reference to a JavaScript file with
instructions on how to solve the challenges. Figure 1 shows
these changes to a simple HTML document.

<HTML>
<HEAD>

<TITLE>Sample Content Page</TITLE>
<SCRIPT TYPE='text/javascript' SRC='powurl.js'></SCRIPT>

</HEAD>
<BODY>

<H1>Content!</H1>
<IMG SRC='test.jpg?Nc=52a6c561&Dc=0' Nc=52a6c561 Dc=10>

</BODY>
</HTML> 

Figure 1: HTML file with proof-of-work embedded.

The verifying filter extracts the proof-of-work variables
from URLs, and if the parameters Nc and Dc exist, they are
checked to be correct. The verifier proceeds to compute the
more computationally expensive functions (such as hashing)
to check that A satisfies Equation 1. If everything works out,
the request is accepted and the desired content is sent.

There are three reasons why a client’s request might be
rejected by the verifier; the URL has no proof-of-work at-
tached, the parameters are not current, or the solution is not
valid. There is one notable exception; when the client uses
Dc = 0 (i.e. they cannot perform the work) the verifier may
accept the request if the server is below capacity. By default
all modified URLs contain Dc = 0 to accommodate clients
without JavaScript. JavaScript-enabled clients will extract
the true Dc from the tag and fix the URL before using it.

When a request is denied, the filter returns an error page
to the user, shown in Figure 2. The page embeds a browser-
reload script along with the challenge so that JavaScript en-
abled browsers will automatically solve the challenge and
follow the link; most clients will not observe this page dis-
played as it will be reloaded with the content they requested.

Figure 2: The error page for using an invalid solution.

JavaScript-enabled browsers use the script file provided
by the server to solve the embedded work functions. Pro-
tected images are solved before a page is loaded so that
they render without delay. However, protected hyperlinks are
only solved when the user navigates them, to prevent wast-
ing computation on links that will not be traversed.

We argue this is the first proof-of-work system to facilitate
incremental deployment because it has two properties not
seen in other proof-of-work systems:

• Transparency: The system runs without input from
users or content developers. Specifically, clients do not
need to manually solve proof-of-work and web design-
ers do not need to modify content.

• Backwards Compatability: To participate, clients do
not need to install software. Those who do not enable
JavaScript still retain the ability to access the content,
although at lower priority.

4. REFERENCES
[1] W. Feng, E. Kaiser, W. Feng, and A. Luu, “The Design

and Implementation of Network Puzzles,” in IEEE
INFOCOM, March 2005.

[2] W. Feng and E. Kaiser, “The Case for Public Work,” in
Global Internet, May 2007.

[3] C. Dwork and M. Naor, “Pricing via Processing or
Combatting Junk Mail,” in CRYPTO, August 1992.

[4] T. Aura, P. Nikander, and J. Leiwo, “DoS-Resistant
Authentication with Client Puzzles,” in Workshop on
Security Protocols, April 2000.

[5] D. Dean and A. Stubblefield, “Using Client Puzzles to
Protect TLS,” in USENIX Security Symposium, August
2001.

[6] X. Wang and M. Reiter, “Mitigating
Bandwidth-Exhaustion Attacks Using Congestion
Puzzles,” in ACM CCS, October 2004.

[7] B. Waters, A. Juels, J. Halderman, and E. Felten, “New
Client Puzzle Outsourcing Techniques for DoS
Resistance,” in ACM CCS, October 2004.


