A New Visualization Technique for Intracranial Pressure Pulse Waveform Morphology

Mateo Aboy¹, James McNames¹, Tim Ellis¹,²

¹Biomedical Signal Processing Laboratory
²Engineering Data Analysis and Modeling
Electrical and Computer Engineering, Portland State University
Portland, OR, USA
Outline

- Introduction
 - Physiology
 - Morphology
- Objective
 - Morphogram Description
 - Significance
- Algorithm
 - Overview
 - Block Diagram
- Assessment Methodology
- Results and Discussion
 - Morphogram Examples
 - Assessment Discussion
- Conclusion
- Appendix
 - Algorithm Details (if necessary)
Introduction: Physiology

- Traumatic brain injury (TBI) is the leading cause of death among children and infants
- TBI damage: secondary injury resulting from loss or impairment of cerebral autoregulation (CAR):
 a. CAR regulates intracranial pressure (ICP)
 b. Diminished CAR capacity \rightarrow elevated ICP
 c. Elevated ICP \rightarrow brain blood supply interrupted
 d. Brain cells die
Introduction: Physiology

- Elevated ICP requires swift intervention
- Monitoring and interpreting intracranial pressure is essential
- Mean ICP is standard measure
Introduction: Pulse Wave Morphology

- Normal vs. abnormal
- Correspondence to mean ICP
- Several indices based on pulse morphology exist
- Impractical to examine in time domain
 → Difficult to gain new insight
Objective

- Develop visualization technique that displays morphology versus signal metrics
- Turn ICP signals into 2-D color map of individual pulses:
 - Color indicating pulse amplitude
 - Pulses oriented vertically and sorted horizontally based on index of interest
Significance

• Only intuitive morphology visualization analysis tool
• Allow researchers to explore the efficacy of examining pulse morphology
 ➔ Effect new insights in underlying physiological mechanisms
 ➔ Potential for creation of new indices
Algorithm Block Diagram

1. Resample
2. Calculate mean ICP
3. Detect beat minima
4. High-pass filter
5. Smooth pulse amplitudes
6. Display colormap
7. Calculate average pulse length
Algorithm Overview

- **Beat minima**
 - automatic detection algorithm
 - manual detection
- **Beat-by-beat ICP mean and heart rate**
- **High-pass filter**
- **With beat-by-beat index of interest:**
 - Smooth pulse amplitudes
 - Display colormap
Smoothing

- Make morphogram robust
 - Missed detections
 - Artifacts
 - Regions of sparse data
- Smooth amplitudes at each step along average pulse length
- Specific implementation:
 - MATLAB
 - Gaussian kernel smoothing
 - Metric range determines kernel width
Smoothing: Implementation

Time = 40% of pulse length
Smoothing: Result
Assessment Methodology

- Residual distribution
- Pulse wave distribution
- Pulse wave snapshots
- Residual scatter snapshots
- Histogram
Results: Original Signal
Results Continued: Morphogram with Mean ICP
Results Continued: Morphogram with Heart Rate
Results Continued: Morphogram with Time
Results Continued: Signal Two
Results Continued: Signal Three
Results Continued: Signal Four
Results Continued: Signal Five
Discussion

- Assessment visualizations indicate good performance
- Expected rounding of pulse morphology with increased mean ICP
- Interesting residual scatter observation
Conclusion

• Project meets objective
 ➔ Morphogram accurately and intuitively reveals pulse morphology

• Need to examine more signals
 ➔ Will try to analyze 96 GB of ICP data
 ➔ Existence of counter examples would be significant

• Morphogram will be a valuable analysis tool
(Appendix) Algorithm: Signal Processing

ICP signal x

1. Resample x from $f_s = 125$ to $f_s = 500$ Hz

2. Apply high-pass filter ($f_c = 0.5$ Hz) to obtain x_h

3. Calculate beat minima

 $b = [b_0, b_1, \ldots b_n]$

 using BSP Toolbox PressureDetect and EditAnnotations functions
(Appendix) Algorithm: Signal Processing

4. Calculate average pulse length, p_l

$$p_l = \frac{1}{n-1} \sum_{i=1}^{n-1} b_{i+1} - b_i$$

5. Calculate mean ICP $a = [a_0, a_1, \ldots, a_n]$

$$a_k = \frac{1}{b_{k+1} - b_k + 1} \sum_{k=b_k}^{b_{k+1}} x(k)$$
(Appendix) Algorithm: Signal Processing

6. Calculate heart rate vector, \(h = [h_0, h_1, \ldots, h_n] \)

\[
h_k = \frac{f_s}{b_{k+1} - b_k}
\]

7. Use beat-by-beat index measure for calculations; in this example, taken to be mean ICP
(Appendix) Algorithm: Smoothing

8. Create vectors of amplitudes at each step i along p_l

 $$y_i = [y_{i,0}, y_{i,1}, \ldots, y_{i,n}]^T$$

 $$y_{i,k} = x_h(b_k + i)$$

9. Employ (kernel) smoothing over scattered data

 $$\hat{y}_{i,k} = \frac{\sum_{j=1}^{n} y_{i,j} w_\sigma \left(| a_1 + \frac{a_n - a_1}{\hat{n}} k - a_j | \right)}{\sum_{j=i}^{n} w_\sigma \left(| a_1 + \frac{a_n - a_1}{\hat{n}} k - a_j | \right)}$$

 $$w_\sigma = ce^{-u^2}$$
10. Create image matrix, \(Y \), using smoothed amplitude vectors

\[
\hat{y}_i = [\hat{y}_{i,0}, \hat{y}_{i,1}, \ldots, \hat{y}_{i,\hat{n}}]^T
\]

\[
Y = [\hat{y}_0, \hat{y}_1, \ldots, \hat{y}_{p_1}]
\]

\(\hat{n} \) = user-specified length of evenly-spaced evaluations

\[\rightarrow \] Kernel width determined by minimizing leave-one-out CVE using several indices and signals

\[\rightarrow \] Kernel type should make little difference

11. Display image matrix, \(Y \), using imagesc function