Overview of Discrete-Time Filters

- First-order filters
- Ideal filters
- Practical filters
- Frequency-selective filter specifications
- Ripple versus filter order tradeoff
- Application example
Discrete-Time Filters Overview

\[\sum_{k=0}^{N} a_k y[n - k] = \sum_{k=0}^{M} b_k x[n - k] \]

\[Y(e^{j\omega}) = \frac{\sum_{k=0}^{M} b_k e^{-jwk}}{\sum_{k=0}^{N} a_k e^{-jwk}} X(e^{j\omega}) \]

- Discrete-time filters are divided into two categories
 - **Finite impulse response (FIR):** \(h[n] = 0 \) for some \(a \) and \(b \) such that \(-\infty < a < n < b < +\infty\)
 - **Infinite impulse response (IIR):** not FIR

- Filters that can be described with difference-equations
 - FIR: \(N = 0 \)
 - IIR: \(N > 0 \)

- A simple FIR filter is the moving average filter
- A simple IIR filter is the first-order lowpass filter
Example 1: First-Order Filters

Consider the following filter:

\[y[n] - ay[n - 1] = (1 - a)x[n] \]

1. Solve for the filter’s transfer function
2. Find the cutoff frequency as a function of \(a\)
Example 1: Workspace
Example 1: Ω_c versus a
Example 1: $H(e^{j\omega})$ for various a

| Frequency (rads/sample) | $|H(e^{j\omega})|$ | $\angle H(e^{j\omega})$ (°) |
|------------------------|------------------|------------------|
| -3 | 0 | -50 |
| -2 | 0.5 | -40 |
| -1 | 1 | -30 |
| 0 | 1 | 0 |
| 1 | 0.5 | 30 |
| 2 | 0 | 50 |
| 3 | 0 | 70 |
Example 1: Filtered Signals

Intel Closing Daily Price Over 1 Year

- Raw signal
- Cutoff: 0.56
- Cutoff: 0.11

Time (day)

x[n], y_{0.1}[n], y_{0.6}[n]
Example 1: MATLAB Code

```matlab
%function [] = FirstOrderApplied();
close all;

d  = load('Intel.txt');  % Closing daily price
nd = length(d);
x  = d(nd:-1:1);  % Reorder so first element is oldest data
n  = (0:nd-1)';    % Discrete time index

%==============================================================================
% Plot the relationship between cutoff frequency and a
%==============================================================================
a = 0.00001:0.01:1;
w  = acos((1-4*a+a.^2)./(2*a));

figure
FigureSet(1,'LTX');
h = plot(a,w,'LineWidth',1.0);
ylabel('\omega_c (rad/sample)');
xlabel('a');
grid on;
box off;
AxisSet(8);
print -depsc FOCutoff;

%==============================================================================
% Plot the relationship between cutoff frequency and a
%==============================================================================
a = 0.1:0.1:0.9;
w  = -pi:0.01:pi;
H = zeros(length(a),length(w));

for cnt = 1:length(a)
    [h,w] = freqz(1-a(cnt),[1 -a(cnt)],w);
    H(cnt,:) = h;
```
```matlab
end;

figure
FigureSet(1,'LTX');
subplot(2,1,1);
h = plot(w,abs(H));xlim([-pi pi]);ylim([0 1.05]);
legend('a=0.1','a=0.2','a=0.3','a=0.4','a=0.5','a=0.6','a=0.7','a=0.8','a=0.9',2);
ylabel('|H(e^{j\omega})|');
grid on;box off;

subplot(2,1,2);
h = plot(w,rem(angle(H)*180/pi,180));xlim([-pi pi]);ylim([-70 70]);ylabel('\angle H(e^{j\omega}) (^o)');
xlabel('Frequency (rads/sample)');
grid on;box off;
AxisSet(8);
print -depsc FOTransferFunctions;

%==============================================================================
% Filter & Plot%==============================================================================
a = 0.58; % cutoff frequency approximately 0.1
w1 = acos((1-4*a+a.^2)./(2*a));
y1 = zeros(nd,1);
for cnt = 2:nd,
y1(cnt) = a*y1(cnt-1) + (1-a)*x(cnt);
end;

a = 0.90; % cutoff frequency approximately 0.1
w2 = acos((1-4*a+a.^2)./(2*a));
y2 = zeros(nd,1);
```
for cnt = 2:nd,
 y2(cnt) = a*y2(cnt-1) + (1-a)*x(cnt);
end;

figure
FigureSet(1,'LTX');
h = plot(n,x,'b',n,y1,'r',n,y2,'g');
set(h,'LineWidth',0.6);
ylabel('x[n], y_{0.1}[n], y_{0.6}[n]');
xlabel('Time (day)');
title('Intel Closing Daily Price Over 1 Year');
xlim([0 nd-1]);
ylim([19 36]);
box off;
grid on;
AxisSet(8);
legend('Raw signal',sprintf('Cutoff:%5.2f',w1),sprintf('Cutoff:%5.2f',w2),4);
print -depsc FOSignalFiltered;
• MATLAB can be used to design standard frequency selective filters that meet user-specified requirements
• These filters include: lowpass, highpass, bandpass, and bandstop
• Unlike continuous-time filters, these must have cutoff frequencies that range between 0 and π
Practical Filters

• Practical filters are usually designed to meet a set of specifications

• Lowpass and highpass filters usually have the following requirements
 – Passband range
 – Stopband range
 – Maximum ripple in the passband
 – Minimum attenuation in the stopband

• If we know the specifications, we can ask MATLAB to generate the filter for us

• There are four popular types of standard filters
 – Butterworth
 – Chebyshev Type I
 – Chebyshev Type II
 – Elliptic
Ripple Tradeoff

<table>
<thead>
<tr>
<th>Filter</th>
<th>Order</th>
<th>Passband</th>
<th>Stopband</th>
</tr>
</thead>
<tbody>
<tr>
<td>Butterworth</td>
<td>Largest</td>
<td>Smooth</td>
<td>Smooth</td>
</tr>
<tr>
<td>Chebyshev Type I</td>
<td>Moderate</td>
<td>Ripple</td>
<td>Smooth</td>
</tr>
<tr>
<td>Chebyshev Type II</td>
<td>Moderate</td>
<td>Smooth</td>
<td>Ripple</td>
</tr>
<tr>
<td>Elliptic</td>
<td>Lowest</td>
<td>Ripple</td>
<td>Ripple</td>
</tr>
</tbody>
</table>

• The four popular filter types differ in how they satisfy the specifications

• In the passband and stopband, each filter is either smooth or contains ripple

• Elliptic filters are also called equiripple filters and Cauer filters
Example 2: Lowpass Filter Specifications

Design a lowpass filter that meets the following specifications:

• The passband ripple is no more than 0.4455 dB
 \(0.95 \leq |H(e^{j\omega})| \leq 1\)
• The stopband attenuation is at least 26.02 dB \(|H(e^{j\omega})| \leq 0.05\)
• The passband ranges from 0–0.2\(\pi\) rad/sample
• The stopband ranges from 0.3\(\pi\)–\(\pi\) rad/sample

Plot the magnitude of the resulting transfer function on a linear-linear plot, the impulse response, and the step response. Try the Butterworth, Chebyshev I, Chebyshev II, and elliptic filters.
Example 3: Butterworth Lowpass

Butterworth Lowpass Filter Transfer Function Order: 10

|H(e^{j\omega})| vs Frequency (rad/sample)
Example 3: Butterworth Lowpass

Butterworth Lowpass Filter Impulse Response Order:10
Example 3: Butterworth Lowpass

Butterworth Lowpass Filter Step Response Order: 10
Example 3: Chebyshev-I Lowpass

Chebyshev–I Lowpass Filter Transfer Function Order: 5

Frequency (rad/sample)
Example 3: Chebyshev-I Lowpass

Chebyshev–I Lowpass Filter Impulse Response Order:5
Example 3: Chebyshev-I Lowpass

Chebyshev–I Lowpass Filter Step Response Order:5
Example 3: Chebyshev-II Lowpass

Chebyshev–II Lowpass Filter Transfer Function Order: 5

Frequency (rad/sample)
Example 3: Chebyshev-II Lowpass

Chebyshev-II Lowpass Filter Impulse Response Order:5
Example 3: Chebyshev-II Lowpass

Chebyshev–II Lowpass Filter Step Response Order:5

Time (n)

h[n]
Example 3: Elliptic Lowpass
Example 3: Elliptic Lowpass

Elliptic Lowpass Filter Impulse Response Order:4
Example 3: Elliptic Lowpass

Elliptic Lowpass Filter Step Response Order:4
%function [] = Lowpass();
clear all;
close all;

Wp = 0.20; % Passband ends
Ws = 0.30; % Stopband begins
Rp = -20*log10(0.95); % Maximum deviation from 1 in the passband (dB)
Rs = -20*log10(0.05); % Minimum attenuation in the stopband (dB)

for cnt = 1:4,
 if cnt==1,
 [od,wn] = buttord(Wp,Ws,Rp,Rs);
 [B,A] = butter(od,wn);
 stFilter = 'Butterworth';
 elseif cnt==2,
 [od,wn] = ellipord(Wp,Ws,Rp,Rs);
 [B,A] = ellip(od,Rp,Rs,wn);
 stFilter = 'Elliptic';
 elseif cnt==3,
 [od,wn] = cheb1ord(Wp,Ws,Rp,Rs);
 [B,A] = cheby1(od,Rp,wn);
 stFilter = 'Chebyshev-I';
 elseif cnt==4,
 [od,wn] = cheb2ord(Wp,Ws,Rp,Rs);
 [B,A] = cheby2(od,Rs,wn);
 stFilter = 'Chebyshev-II';
 else
 break;
 end;

sys = tf(B,A,-1);
wp = Wp*pi;
ws = Ws*pi;
%==
% Plot Magnitude on Linear Scale
%==

ymax = 1.05;
pbmax = 1;
pbmin = 10^(-Rp/20);
sbmax = 10^(-Rs/20);
wmax = pi;
w = 0:0.001:wmax;
[H,w] = freqz(B,A,w);
mag = abs(H);
phs = angle(H);
figure;
FigureSet(1,'LTX');
h = patch([0 wp wp 0],[0 0 pbmin pbmin],0.5*[1 1 1]);
set(h,'LineWidth',0.0001);hold on;
h = patch([0 ws ws wmax wmax 0],[pbmax pbmax sbmax sbmax ymax ymax],0.5*[1 1 1]);
set(h,'LineWidth',0.0001);
h = plot(w,mag,'r');set(h,'LineWidth',1.0);
hold off;
ylim([0 ymax]);xlim([0 wmax]);grid on;
ylabel('|H(e^{j\omega})|');
title(sprintf('%s Lowpass Filter Transfer Function Order: %d',stFilter,od));
xlabel('Frequency (rad/sample)');
box off;
AxisSet(8);
st = sprintf('print -depsc Lowpass%s',stFilter);
eval(st);

%==
% Impulse Response
%==

figure;
FigureSet(1,'LTX');
n = 0:100;
[x,t] = impulse(sys,n);
h = stem(t,x,'b');
set(h(1),'MarkerFaceColor','b');
set(h(1),'MarkerSize',2);
ylabel('h[n]');
xlabel('Time (n)');
title(sprintf('%s Lowpass Filter Impulse Response Order:%d',stFilter,od));
box off;
hold on;
 h = plot(xlim,[0 0],'k:');
 hold off;
AxisSet(8);
st = sprintf('print -depsc Lowpass%sImpulse',stFilter);
eval(st);

%==
% Step Response%==
figure;
FigureSet(1,'LTX');
n = 0:100;
[x,t] = step(sys,n);
h = stem(t,x,'b');
set(h(1),'MarkerFaceColor','b');
set(h(1),'MarkerSize',2);
ylabel('h[n]');
xlabel('Time (n)');
title(sprintf('%s Lowpass Filter Step Response Order:%d',stFilter,od));
box off;
hold on;
 h = plot(xlim,[1 1],'k:');
 hold off;
AxisSet(8);
st = sprintf('print -depsc Lowpass%sStep',stFilter);
eval(st);
end;
Practical Filter Tradeoffs

- **Butterworth**
 - Highest order $H(e^{j\omega})$
 + No passband or stopband ripple

- **Chebyshev Type I**
 + No stopband ripple

- **Chebyshev Type II**
 + No passband ripple

- **Elliptic**
 + Lowest order $H(e^{j\omega})$
 - Passband and stopband ripple
Application Example 1: Microelectrode Recording Filter

An engineer wishes to detect action potentials in a microelectrode recording with a simple threshold detector. The signal contains significant baseline drift. Action potentials typically last about 1 ms.

- What type of filter should the engineer use?
- What should the filter specifications be?
- What should the cutoff frequency(ies) be?
Application Example 1: Frequency-Selective Filters

Microelectrode Recording
Application Example 1: Frequency-Selective Filters
Application Example 1: Frequency-Selective Filters

Microelectrode Recording
Application Example 1: Frequency-Selective Filters

![Graph of Frequency-Selective Filters]

FT Magnitude

FT Magnitude Filtered

0 500 1000 1500 2000

0 10 20 30 40 50

%function [] = MER();
close all;

[x,fs,nbits] = wavread('Henderson2.wav');
x = decimate(x,2);
fs = fs/2;

k = round(fs*1):round(fs*3); % Look at only 5 s
x = x(k);
xn = length(x);

figure;
FigureSet(1,'LTX');
t = (k-1)/fs;
h = plot(t,x,'b');set(h,'LineWidth',0.6);
xrng = max(x)-min(x);
xlim([min(t) max(t)]);
ylim([min(x)-0.01*xrng max(x)+0.01*xrng]);
AxisLines;
xlabel('Time (sec)');
ylabel('');
title('Microelectrode Recording');
box off;
AxisSet(8);
print -depsc MERSignal;

X = fft(x,2^12);
nX = length(X);
k = 1:floor((length(X)+1)/2);
f = (k-1)*(fs)./(nX+1);

figure;
FigureSet(1,'LTX');
```matlab
subplot(2,1,1);
h = plot(f, abs(X(k)),'r');
set(h,'LineWidth',0.6);
xlim([min(f) max(f)]);
ylim([0 50]);
set(gca,'XTick',[0:500:max(f)]);
box off;
ylabel('FT Magnitude');

subplot(2,1,2);
h = plot(f, abs(X(k)),'r');
set(h,'LineWidth',0.6);
xlim([0 300]);
ylim([0 500]);
set(gca,'XTick',[0:500:max(f)]);
box off;
ylabel('FT Magnitude');
AxisSet(6);
print -depsc MERSpectralDensity;

Wp = 210/(fs/2); % Passband ends
Ws = 190/(fs/2); % Stopband begins
Rp = -20*log10(0.95); % Maximum deviation from 1 in the passband (dB)
Rs = -20*log10(0.05); % Minimum attenuation in the stopband (dB)
[od,wn] = ellipord(Wp,Ws,Rp,Rs);
[B,A] = ellip(od,Rp,Rs,wn,'high');
stFilter = 'Elliptic';

y = filtfilt(B,A,x);

figure;
FigureSet(1,'LTX');
k = 1:length(x);
t = (k-1)/fs;
subplot(2,1,1);
t = (k-1)/fs;
h = plot(t,x,'b');
```

Portland State University ECE 223 DT Filters Ver. 1.03 38
set(h,'LineWidth',0.6);
xrng = max(x)-min(x);
xlim([min(t) max(t)]);
ylim([min(x)-0.01*xrng max(x)+0.01*xrng]);
AxisLines;
xlabel('Time (sec)');
ylabel('');
title('Microelectrode Recording');
box off;
subplot(2,1,2);
h = plot(t,y,'g');
set(h,'LineWidth',0.6);
xlim([min(t) max(t)]);
ylim([min(x)-0.01*xrng max(x)+0.01*xrng]);
AxisLines;
xlabel('Time (sec)');
ylabel('');
box off;
AxisSet(8);
print '-depsc MERSignalFiltered;

Y = fft(y,2^12);
nY = length(Y);
k = 1:floor((length(Y)+1)/2);
f = (k-1)*(fs)/(nY+1);

figure;
FigureSet(1,'LTX');
subplot(2,1,1);
h = plot(f,abs(X(k)),'r');
set(h,'LineWidth',0.6);
xlim([min(f) max(f)]);
ylim([0 50]);
set(gca,'XTick',[0:500:max(f)]);
box off;
ylabel('FT Magnitude');
subplot(2,1,2);
h = plot(f,abs(Y(k)),'g');
set(h,'LineWidth',0.6);
xlim([min(f) max(f)]);
ylim([0 50]);
set(gca,'XTick',0:500:max(f));
box off;
ylabel('FT Magnitude Filtered');
AxisSet(6);
print -depsc MER Spectral Density Filtered;