Exam 1a
October 23, 2002

ECE 221: Electric Circuits
Dr. McNames

- Write the first letter in your last name, your 6-digit identification number, and your student identification number below.
- Do not begin the exam or look at the problems until instructed to do so.
- You have 100 minutes to complete the exam.
- Do not use separate scratch paper. If you need more space, use the backs of the exam pages.
- If you have extra time, double check your answers. If you run out of time, write a note describing your strategy and equations that can be used to help solve the problem.

Problem 1:_____ / 13
Problem 2:_____ / 8
Problem 3:_____ / 15
Problem 4:_____ / 14

Total:_____ / 50

First Letter in Last Name:______________
6-Digit Identification Number:____________
Student Identification Number:____________
1. **Fundamental Concepts (13 pts)**

Use the following table and circuit diagram to answer the following questions. The column labeled PSC represents whether the passive sign convention (PSC) is satisfied for each circuit element.

<table>
<thead>
<tr>
<th>Voltage (V)</th>
<th>Current (I)</th>
<th>PSC (Y/N)</th>
<th>Power (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>5</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>b</td>
<td>3</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>c</td>
<td>20</td>
<td>-5</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>-12</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>2</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>g</td>
<td>15</td>
<td>-5</td>
<td>-30</td>
</tr>
<tr>
<td>h</td>
<td>-10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. (8 pts) Fill in the missing values in the table above.

b. (1 pt) Which circuit elements could be resistors? Recall that resistors can only dissipate power. (Circle)

 a b c d e f g h

 a b c d e f g h

c. (1 pt) Which circuit elements could be voltage sources? (Circle)

d. (1 pt) How many essential nodes are in the circuit?

 \[n = \]

e. (1 pt) How many meshes are in the circuit?

 \[m = \]

f. (1 pt) What is the total power absorbed in the circuit.

 \[P_{\text{abs}} = \]
2. **Resistive Networks (8 pts)**
Find the equivalent resistance of the circuits shown below.

a. (2 pts)

\[R_{eq} = \text{__________} \]

b. (2 pts)

\[R_{eq} = \text{__________} \]
2. Resistive Networks Continued (8 pts)
Find the equivalent resistance of the circuits shown below.

c. (2 pts)

\[R_{eq} = \] ________

d. (2 pts)

\[R_{eq} = \] ________
3. Mesh Current Method (15 points)

![Circuit Diagram](image)

a. (11 pts) Use the mesh-current method to write three independent equations in terms of the currents i_a, i_b, and i_c. Do not use any other variables in your equations. If appropriate, use a supermesh. You do not need to simplify your equations.

Equation 1:

Equation 2:

Equation 3:

b. (3 pts) Solve for the currents i_a, i_b, and i_c.

\[i_a = \quad \quad \quad i_b = \quad \quad \quad i_c = \]

c. (1 pt) How much power is being absorbed by the dependent source?

\[P_{500} = \]
4. Node Voltage Method & Supernodes (14 points)

![Circuit Diagram]

a. (9 pts) Use the node-voltage method to write three independent equations in terms of the node voltages v_1, v_2, and v_3. Do not use any other variables in your equations. If appropriate, use a supernode. You do not need to simplify your equations.

Eq. 1:

Eq. 2:

Eq. 3:

b. (3 pts) Solve for the node voltages v_1, v_2, and v_3.

$v_1 =$

$v_2 =$

$v_3 =$

c. (1 pt) What is i_a?

$i_a =$

d. (1 pt) What is v_p?

$v_p =$