Concrete Mixing In-class Problem

EAS 199B

A batch of masonry cement is made by mixing three 5 -gallon buckets of wet sand with one $70 \mathrm{lb}_{\mathrm{f}}$ bag of masonry mix and 3 gallons of water. The sand used in the mix is partially wet, containing an unknown amount of water.
a. If the final batch of "mud" contains 11.3% water by weight when the desired consistency is reached, how many gallons of water did the sand used in the mixture contain? Assume the wet sand and dry sand occupy the same volume. Answer: 1.48 gal.
b. What is the weight of the final batch of mud?

Be sure to follow the systematic presented in class when solving this problem. Remember that learning the correct solution process is just as important as getting the correct answer.

Potentially useful information for this problem:
Specific weight of water $=8.33 \mathrm{lb}_{\mathrm{f}} / \mathrm{gal}$.
Specific weight of dry sand $=111 \mathrm{lb}_{\mathrm{f}} / \mathrm{ft}^{3}$.
$1 \mathrm{gal}=0.1337 \mathrm{ft}^{3}$

ES 199B	Hw4 problem 3
Initial: 3 -gallon pails of wet sand with	
	$\begin{array}{l}\text { unknown water content }\end{array}$

70 lb bag of masonry mix
3 gallons of water

Final: Unknot mass of "mud" made by mixing all the ingredients form the initial state. The final mixture is $11.3 \% \mathrm{H}_{2} \mathrm{O}$
(1) This is a batch problem. The initial and final states are known and there is no flow.
(2) Schematic

$$
\begin{aligned}
& x_{w, i}=? \quad 701 l_{f} d m \quad \text { gad } H_{2} 0 \\
& x_{s, i}=\text { ? mammy } \quad m_{w, a d d}=\rho^{v} \\
& x_{w, i}+x_{s i}=1 \\
& W_{m, i}=701 \mathrm{lff}_{\mathrm{f}}
\end{aligned}
$$

From the wet sand mixture we know that

$$
\begin{aligned}
W_{s, i} & =\gamma v \\
& =\left(111 \frac{16 \mathrm{f}}{\mathrm{ft}^{3}}\right)(15 \mathrm{gal})\left(\frac{0.1337 \mathrm{ft}^{3}}{\mathrm{gal}}\right)=222.6 \mathrm{llf} \\
W_{s, i} & =222.6 \mathrm{lbf}=W_{\mathrm{cm}, \text { sand }}
\end{aligned}
$$

We can also calculate the weight of the three gallons of added water

$$
\begin{aligned}
& W_{w, a d d}=\gamma_{w} \mathrm{~g} \\
&=\left(8.33 \frac{\mathrm{lbf}}{\mathrm{gal}}\right)(3 \mathrm{gal})=24.99 \mathrm{l}_{f}=W_{w}=8.33 \mathrm{lb} / \mathrm{gal} \\
&
\end{aligned}
$$

(3) Write masses of each constituent at the mitral and final state Initial Final
water $W_{w s, i} X_{w, i}+W_{w, \text { add }}^{v}=W_{\text {mud }} X_{w, f}^{v}$
sand $W_{\text {dmysund }}^{2}=W_{\text {mud }} x_{s, f}$ $\underset{\text { mix }}{\text { dix masmen }} \quad W_{d m, \operatorname{mix}}^{2}=W_{\text {mad }} X_{m, f}$

Total $W_{d y, \text { sand }}^{2}+w_{d y, \text { mix }}^{2}+W_{w s, i} x_{w, i}+w_{w, \text { add }}^{2}=w_{\text {mad }}$
Unknown: $\quad w_{w s, i}, x_{w, t}, w_{\text {mad }}, x_{s, f} \quad\left(x_{m, f}=1-x_{w, f}-x_{s, f}\right)$ Four equations

Combine Equation (1) and (4)

$$
W_{w s, i} X_{w, i}+W_{w, a d d}=\left(W_{d r y, \text { sand }}+W_{d r, m i x}+W_{w s i} X_{w, i}+W_{w, a d d}\right) X_{w, f}
$$

group $W_{s i} X_{w, i}$

$$
\begin{gathered}
w_{w s, i} x_{w, i}\left[1-x_{w, f}\right]=\left(w_{\text {dr,soud }}+w_{d m_{y, m i x}}+w_{w, a d d}\right) x_{w, f} \\
\\
-w_{w, a d d}
\end{gathered}
$$

Substitute known values to simplify

$$
\begin{aligned}
& x_{w, t}=0.113 \quad w_{\text {aysand }}=222.6 \mathrm{kf} \\
& W_{d_{\text {I mix }}}=70 \mathrm{lbf} \\
& W_{w, \text { add }}=\frac{24.99 \mathrm{l} \mathrm{l}_{\mathrm{f}}}{317.59 \mathrm{lbf}} \\
& \Rightarrow w_{w s, i} x_{w, i}(1-0.113)=(\underbrace{317.59 \mathrm{llf})(0.113)-24.99}_{10.90 \mathrm{lhf}} \mathrm{lb}_{\mathrm{f}} \\
& \therefore W_{w, i i} X_{w, i}=12,29 I_{f}=W_{w, i}
\end{aligned}
$$

Substitute this result back into Equation (1)

$$
\begin{aligned}
w_{\text {mud }} & =\frac{1}{x_{w, f}}\left[w_{w s, i} x_{w, i}+w_{w, a d d}\right] \\
& =\frac{1}{0.113}\left[12.291 b_{f}+24.99 \mathrm{lb}_{f}\right]=329.88 \\
W_{\text {mud }} & =329.9 \mathrm{l} \mathrm{~b}_{f}
\end{aligned}
$$

Compute the volume of water in the mitial wet sand

$$
\begin{aligned}
W_{w, i}=\gamma_{w} v_{w} \Rightarrow v_{w} & =\frac{w_{w, i}}{\gamma_{w}}=\frac{12.29 \mathrm{l} \mathrm{~b}_{f}}{8,33 \mathrm{lf} / \mathrm{gal}} \\
v_{w} & =1.48 \mathrm{gal}
\end{aligned}
$$

CHECK: Use Equations (2) and (3) to compute $X_{s, f}$ and $X_{m, f}$ and then test whether $x_{w, f}+x_{s, f}+x_{m, f}=1$

$$
\begin{aligned}
& \text { Equation }(2) \Rightarrow X_{\text {sf }}=\frac{W_{\text {dm sand }}}{W_{\text {mud }}}=\frac{222.6 \mathrm{lbf}_{\mathrm{f}}}{329.9 \mathrm{l}_{f}}=0.6749 \\
& \text { Equation }(3) \Rightarrow X_{\text {mf }}=\frac{W_{\text {dm mix }}}{W_{\text {mud }}}=\frac{70 \mathrm{lb}_{f}}{329.9 \mathrm{l}_{\mathrm{f}}}=0.2122
\end{aligned}
$$

Now test:

$$
\begin{aligned}
x_{w, f}+x_{s, f}+x_{m, f} & \stackrel{?}{=} 1 \\
0.113+0,6749+0,2122 & \stackrel{2}{=} 1
\end{aligned}
$$

$$
0.9999 \stackrel{2}{=} 1 \quad . \quad \text { Close enough }
$$ given the round ils ewers in the intermediate calculations

