
EAS	 199B:	 Salinity	 control	 data	 v.	 2.1,	 29	 March	 2013	 p.	 1	

Preparation	 for	 Salinity	 Control	 	 EAS	 199B	

This document describes a set of measurements and analyses that will help you to write
an Arduino program to control the salinity of water in your fish tank. The goal is develop
a handful of simple models to characterize the behavior of the fish tank system. The
models are not complete without measurements, and the data you collect will be specific
to your fish tank. The following models are derived from measurements

• Calibration equations for the salinity sensor
• The control deadband
• The deadtime between salinity adjustments
• The flow rate through the solenoid valves

In addition to the empirical models, two models are obtained from mass balances
• A batch mixing model to predict how much salty or fresh water needs to be

added when the system is out of the deadband
• An overflow bypass model to account for short-circuiting of added salty or fresh

water to the overflow instead of being mixed.
 Although the immediate goal is to develop a working Arduino program for
controlling salinity of the fish tank, the models have additional value in helping you
understand the behavior of your system. Learning to reason with these models will also
develop your knowledge of sensors and control techniques, and to lay the foundation for
working with more complex electromechanical systems.
 After the models and empirical parameters of your fish tank have been established,
two additional details are considered

• Display of the system status on an LCD panel
• Arduino code for implementing the deadtime without blocking execution.

1.	 Summarize	 the	 calibration	 data	 for	 the	 salinity	 sensor	
We assume that you have calibrated your salinity sensor in an earlier exercise. Record the
summary data from your calibration experiments in Table 1. Determine which calibration
point has the most variation, and use the data from that measurements to compute
∆UCL = ∆LCL = 3σ.

Table 1 Summary of calibration data for the salinity sensor.

Wt%
NaCl n Mean

Standard
deviation Median

 0
 0.05
 0.10
 0.15

 ∆UCL = ∆LCL = ______________

EAS	 199B:	 Salinity	 control	 data	 v.	 2.1,	 29	 March	 2013	 p.	 2	

2.	 Obtain	 piecewise	 linear	 regression	 for	 the	 inverse	 calibration	
Use linear regression to determine the expected output in terms of the salinity. Make sure
you have at least 5 digits for each of your curve fit coefficients. Figure 1 shows the
qualitative appearance of the forward and inverse calibration relationships.
 Write an Arduino function to return the calibration for salinity value as a function
of the output of the salinity sensor. Figure 2 is an incomplete listing of such a function.
The rbreak value is the value of the reading where the fit formulas change if you are
using a piecewise calibration equation. The code inside the final else block should
prevent bad input from causing trouble in the control algorithm.

Figure 1 Forward and inverse calibration relationships. The inverse calibration is

used to determine salinity from the reading of the voltage divider for the
salinity sensor.

float salinity_value(int reading) {

 int rbreak = ...; // separation between linear segments
 int rlimit = 1023; // upper limit of acceptable readings

 if (reading<rbreak) {
 // do something

 } elseif (reading<rlimit) {
 // do something else

 } else {
 // do something to be safe

 }
 return(salinity);
}

Figure 2 Unfinished Arduino code for computing salinity as a function of salinity
sensor reading.

Analog
output

S wt %

S wt %

Curve fit to calibration data

extrapolation
region

ex
tra

po
la

tio
n

re
gi

on

Analog output0
0

0

1023

1023
0

0.05

0.05

0.10

0.10

0.15

0.15

Inverse curve fit to calibration data

EAS	 199B:	 Salinity	 control	 data	 v.	 2.1,	 29	 March	 2013	 p.	 3	

3.	 Determine	 the	 deadtime	 compensation	
The deadtime is the time interval between the introduction of a disturbance to the fish
tank salinity, and the re-establishment of equilibrium. The deadtime of most fish tanks
(for EAS 199B) is on the order 10 seconds. After making an adjustment to the fish tank
salinity – by either adding salty or fresh water – you should wait one deadtime interval
before making another adjustment. To measure deadtime, you need to set up an
experiment to measure the salinity and print the raw analog reading to the Serial Monitor.
The Arduino code for measuring the deadtime is not the same code that you use to
control the salinity.

Deadtime	 measurement	 code	
 Figure 3 shows a simple Arduino code to print the time and salinity for each reading
to the Serial Monitor. As a backup, make an independent measurement of the time delay
with a stopwatch or cell phone timer. IMPORTANT: You must keep track of the time
when the disturbance was made to the system, e.g., when the fresh or salty water was
added.

// File: analog_input_with_millis.ino
//
// Read an analog input and write the system time in milliseconds
// and the analog input value to the serial monitor

unsigned long start_time; // Allows computation of time since
 // the start of sketch
void setup() {
 Serial.begin(9600);
 start_time = millis(); // Time at beginning of the sketch
}

void loop() {
 int reading = analogRead(1); // Reading on channel 1
 Serial.print(millis()-start_time); // Time from start of sketch
 Serial.print("\t"); // Tab character
 Serial.println(reading); // Print reading and newline
 delay(10);
}

Figure 3 Arduino code to demonstrate printing of time from start of a sketch along
with a value read from an analog input.

 The deadtime measurement should allow you to collect a large number (say, at least
50) measurements of salinity. If you are averaging individual analog input measurements,
we recommend that each averaged reading is completed in no more than one second. The
time limit of 1 second per reading is an arbitrary but practical goal that provides a balance
between capturing the system variability and not waiting so long that the system may
drift. Use the following calculation as a template for estimating whether your code can
produce at least one reading per second.
 10 ms for each reading: 5ms settling time and 5 ms between readings
 20 readings for each average
 2 ms allowance for Serial.println() (conservative)
 ⇒ 202 ms per reading ⇒ ~5 readings/second

EAS	 199B:	 Salinity	 control	 data	 v.	 2.1,	 29	 March	 2013	 p.	 4	

Of course, you should also verify with an experiment that your code produces at least one
reading per second.

Estimating	 the	 deadtime	 from	 salinity	 measurements	
Estimate the deadtime with the following procedure. The starting and ending values of
mass fraction of salt should not matter. You are measuring the time it takes your system
to respond to the change in mass fraction.

1. Choose a value of salinity near the middle of the operating range, say
Xs = 0.0010. Run your system at that Xs until the output of the salinity sensor
stabilizes.

2. With the system stable at the initial salinity value, start (or re-start) your salinity
reading code to begin the data collection.

3. Add a small amount of water with a different mass fraction, say Xs = 0.01. Start
the stopwatch, and note the output of the millis() command in the Serial
Monitor window.

4. Wait for the system to come into equilibrium again. When it does, stop the
stopwatch and record the time interval. Copy all of the data – from the first
equilibrium condition to the second equilibrium condition – and paste into a data
file for plotting and analysis.

5. Plot the raw readings versus time, and use your timing measurement to
determine the deadtime.

Refer to the plot in Figure 4 as an example of a deadtime measurement. Note that the
deadtime is not equal to the time during which the output from the salinity sensor is
changing from one nominal value to another, i.e., it is not just the steep ramp interval in
Figure 2. The start of the deadtime interval occurs before the salinity reading changes
significantly. Therefore, the start time must be recorded by your observation of when the
disturbance began. It cannot be determined solely from the plot.

Figure 4 Typical result of deadtime measurement. Gray dots are measurements and

dashed read lines are averages of measurements

0 10 20 30 40 50 60

500

550

600

650

700

Time (s)

R
aw

 a
na

lo
g

ou
tp

ut

Data
Mean values

deadtime ≈ 13 s

Disturbance occurs
before salinity reading
starts to change

EAS	 199B:	 Salinity	 control	 data	 v.	 2.1,	 29	 March	 2013	 p.	 5	

4.	 Determine	 the	 flow	 rate	 through	 the	 solenoid	 valves.	
Measure the amount of water that flows from the top reservoir when the solenoid valve is
open for 1 second. Use a delay command to repeat this measurement at least 10 times.
Use the scales to weigh the water. Assume both valves are the same unless you have
enough time to check the valves separately. Compute the mean and standard deviation of
your measurements. Table 2 provides a sample of the data collection and reporting for the
mass flow measurements. It would be a good idea to use a spreadsheet to store the data
and perform the conversion and averaging.

Table 2 Layout of a table for collecting and analyzing measurements of
mass flow rate through the solenoid valves.

Reading #
Mass (g)
(valve 1)

∆t1 (s) Mass (g)
(valve 2)

∆t2 (s)
!! (g/s) !! (g/s)

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 Mean
 Std. dev.

5.	 Write	 equations	 used	 in	 the	 control	 code.	
Let Xsp be the mass fraction at the setpoint. The instructor will give you a value of Xsp
when the fish tank is tested. You can assume that 0.0005 ≤ Xsp ≤ 0.0010. The Xsp value
will be given as a wt% of NaCl, but you will need to convert it to an appropriate value in
your code. Given the setpoint, compute the UCL and LCL used in the control algorithm:

 LCL = Xsp – ∆LCL (1a)
 UCL = Xsp + ∆UCL (1b)
The fractional form for mass fraction (0.001 instead of 0.1%) is recommended.
 Let Xs be the measured value of salinity, i.e., the measured mass fraction of salt in
the tank. The error in the salinity reading is
 E = Xs – Xsp (2)
where E is dimensionless, and is a measure of mass fraction difference. Let G be the gain
applied to the error. For example, a gain of 0.75 would mean that 0.75 E of the error is to
be corrected in one change to the system.

EAS	 199B:	 Salinity	 control	 data	 v.	 2.1,	 29	 March	 2013	 p.	 6	

 Use an analysis of the system as a batch process to predict the amount of DI or salty
water to be added to the system to make a correction of G×E. Figure 5 shows a schematic
of the batch model for correction of the salinity of water in the tank.

Figure 5 Schematic of the mass addition to correct an error in the tank salinity.

Define the following variables.
mt mass of water in the tank, both before and after the correction
Xs,i mass fraction of salt in the tank before correction (i = initial)
Xsp set point for mass fraction of salt in the tank
madd mass of water added to correct the error in mass fraction
Xs,add mass fraction of salt in the added water
Xs,f mass fraction of salt in the tank after correction (f = final)
mover mass of water leaving the tank via the overflow, mover = madd
Xs,over mass fraction of salt in the overflow
F fraction of added water that short-circuits to the outflow without mixing
G gain of the control system
!sol mass flow rate through the solenoid valve

In the in-class example problem, we assumed that 15 percent of the added water was
immediately short-circuited to the overflow. In general, we use F to designate the short-
circuit fraction. Then
 Xs,over = (1 – F)Xs,i + F Xs,add (3)
where 0 ≤ F ≤ 1. The in-class example problem showed that the final salinity after a
correction applied with gain G is
 Xs,f = Xs,i + G (Xsp – Xs,i) (4)
where 0 ≤ G ≤ 1. The mass necessary to make this correction is

 !!,add = !!,!
! !sp!!!,!

(!!!)(!!,!""!!!,!)
 (5)

The time that the solenoid is open is
 !" = !!,add

!sol
 (6)

where !sol is the mass flow rate through the valve when it is open. Equations (1), (5) and
(6) are used in the Arduino control code.

Tank Tank

OverAdd

Initial

mt Xs,i madd Xs,add mover Xs,overmt Xs,f

Final

EAS	 199B:	 Salinity	 control	 data	 v.	 2.1,	 29	 March	 2013	 p.	 7	

6.	 Display	 status	 of	 system	 on	 the	 LCD	 panel	
Write an Arduino function to display the status of the fish tank on the LCD panel. The
layout of the panel must use the template in Figure 6. The standardization of the display
helps instructors correctly inspect many different fish tank designs.
 The first and last rows of the display are labels that do not change during operation
of the salinity control algorithm. The second row indicates the control settings for the
LCL, SP and UCL. These values do not normally change during the operation of the tank.
However, a potentiometer can be used to change the SP, which will also change the LCL
and UCL. The third row of the display shows current status of the solenoid valves, and in
the middle shows the current reading of the salinity sensor.

Figure 6 Layout of the LCD display for the salinity control verification.

Display of floating point values with the LiquidCrystal library is not straightforward. A
detailed example of the problem and solution is provided on the howto web page for the
class:

http://web.cecs.pdx.edu/~eas199/B/howto/LCDwiring/arduino_to_LCD.html

The trick is to use the built-in dtostrf() function to convert the floating point value to a
a string, and then display the strain on the LCD panel with lcd.print(). Figure 7 lists
an excerpt of code that can display the second line in Figure 6.

float LCL=0.072, SetPt=0.100, UCL=0.108;
char float_buffer[16]; // string buffer to hold formatted value

lcd.setCursor(0,1);
dtostrf(float_buffer,5,3,LCL); lcd.print(float_buffer);
lcd.print(" ");
dtostrf(float_buffer,5,3,SetPt); lcd.print(float_buffer);
lcd.print(" ");
dtostrf(float_buffer,5,3,UCL); lcd.print(float_buffer);

Figure 7 Section of Arduino code that demonstrates how the dtostrf() function
converts a floating point value to a string that can be displayed on the LCD
panel with lcd.print(). Note that the values of LCL, SetPt, and UCL
should be computed with formulas, and not assigned as constants as is done
in the simple example presented here. Also note that SP appears to be a
reserved word, and using SP as a variable name produces a hard to find
compilation bug.

 	

01234567890123456789
 LCL SetPt UCL
0.072 0.100 0.108
Salty Current DI
 OFF 0.148 ON

0
1
2
3

EAS	 199B:	 Salinity	 control	 data	 v.	 2.1,	 29	 March	 2013	 p.	 8	

7.	 Implement	 the	 control	 algorithm	 in	 Arduino	 code	
The main steps in the control algorithm are

1. Measure salinity and update the LCD panel
2. If the system is not in the dead time:

a. If salinity is greater than upper limit:
 Add fresh water: open valve, wait, close valve.
b. If salinity is less than lower limit:
 Add salty water: open valve, wait, close valve.

3. Return to step 1.
Each of these steps needs to be refined. Note that these steps are different from the steps
described in the overview document presented at the beginning of the class. The
algorithm in the overview document were presented before we explained the need for
deadtime.

Measure	 salinity	 and	 update	 the	 LCD	 panel	
Each time the salinity is measured, the value displayed on the LCD panel should be
updated. To make the display responsive to system changes, the salinity should be
measured frequently. Although the salinity can be measured at any time, the decision on
whether to act on the measurement needs to account for the deadtime.

If	 the	 system	 is	 not	 in	 the	 deadtime…	
The simplest way to implement the deadtime delay is to use a command link

delay(deadtime);

in your code. Don’t do that! Using a simple to delay to implement the deadtime blocks
the program from doing any other useful tasks while it waits. By blocking execution, the
code cannot update the LCD display. Later, when temperature control is added, blocking
execution will prevent the temperature from being measured or updated.
 Figure 8 shows the structure of an Arduino sketch that prevents the system from
adding DI or salty water during the deadtime without blocking execution. The code uses
a global variable last_salinity_update to store the time when the most recent change
to the salinity was completed. The time is measured by the internal system clock, which
is read with the millis() command. The decision on whether or not to allow salinity
changes is made with the statement

if ((millis() – last_salinity_update) > deadtime) {

The value of (millis() – last_salinity_update) is the difference between the
current time and the last salinity change. The logic for changing the salinity is contained
inside that “if” block.

Add	 fresh	 or	 salty	 water	
Follow these steps

1. Compute the amount of water to be added from Equation (5). Xs,i is the measured
mass fraction, and Xsp is the set point.

2. Open the solenoid valve for a time period ∆t given by Equation (6)

EAS	 199B:	 Salinity	 control	 data	 v.	 2.1,	 29	 March	 2013	 p.	 9	

// File: wait_for_deadtime.ino
//
// Structure of salinity control code to implement a deadtime
// during which no salinity correction is made. This code is
// incomplete and will not compile.

unsigned long last_salinity_update; // Time of last correction

void setup() {
 Serial.begin(9600);
 last_salinity_update = millis(); // Initial value; change later
}

void loop() {
 float LCL, UCL, salinity;
 int deadtime = ... ;

 salinity = salinity_reading(...);
 update_LCD(...);

 // -- Check for deadtime
 if ((millis() – last_salinity_update) > deadtime) {

 if (salinity>UCL) {
 // add DI water: steps are missing in this code
 last_salinity_update = millis();
 }

 if (salinity<LCL) {
 // add salty water: steps are missing in this code
 last_salinity_update = millis();
 }
 }
}

Figure 8 Arduino code to demonstrate how to test whether the system should ignore
salinity errors during the deadtime.

