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Preparation	  for	  Salinity	  Control	   	   EAS	  199B	  
 
This document describes a set of measurements and analyses that will help you to write 
an Arduino program to control the salinity of water in your fish tank. The goal is develop 
a handful of simple models to characterize the behavior of the fish tank system. The 
models are not complete without measurements, and the data you collect will be specific 
to your fish tank. The following models are derived from measurements 

• Calibration equations for the salinity sensor 
• The control deadband 
• The deadtime between salinity adjustments 
• The flow rate through the solenoid valves 

In addition to the empirical models, two models are obtained from mass balances 
• A batch mixing model to predict how much salty or fresh water needs to be 

added when the system is out of the deadband 
• An overflow bypass model to account for short-circuiting of added salty or fresh 

water to the overflow instead of being mixed. 
 Although the immediate goal is to develop a working Arduino program for 
controlling salinity of the fish tank, the models have additional value in helping you 
understand the behavior of your system. Learning to reason with these models will also 
develop your knowledge of sensors and control techniques, and to lay the foundation for 
working with more complex electromechanical systems. 
 After the models and empirical parameters of your fish tank have been established, 
two additional details are considered 

• Display of the system status on an LCD panel 
• Arduino code for implementing the deadtime without blocking execution. 

1.	   Summarize	  the	  calibration	  data	  for	  the	  salinity	  sensor	  
We assume that you have calibrated your salinity sensor in an earlier exercise. Record the 
summary data from your calibration experiments in Table 1. Determine which calibration 
point has the most variation, and use the data from that measurements to compute 
∆UCL = ∆LCL = 3σ. 

Table 1 Summary of calibration data for the salinity sensor. 

Wt% 
NaCl n Mean 

Standard 
deviation Median 

 0     
 0.05     
 0.10     
 0.15     

  ∆UCL = ∆LCL = ______________ 
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2.	   Obtain	  piecewise	  linear	  regression	  for	  the	  inverse	  calibration	  
Use linear regression to determine the expected output in terms of the salinity. Make sure 
you have at least 5 digits for each of your curve fit coefficients. Figure 1 shows the 
qualitative appearance of the forward and inverse calibration relationships. 
 Write an Arduino function to return the calibration for salinity value as a function 
of the output of the salinity sensor. Figure 2 is an incomplete listing of such a function. 
The rbreak value is the value of the reading where the fit formulas change if you are 
using a piecewise calibration equation. The code inside the final else block should 
prevent bad input from causing trouble in the control algorithm. 
 

 
Figure 1 Forward and inverse calibration relationships. The inverse calibration is 

used to determine salinity from the reading of the voltage divider for the 
salinity sensor. 

 
 

float salinity_value(int reading) { 
 
    int rbreak = ...;     //  separation between linear segments 
    int rlimit = 1023;    //  upper limit of acceptable readings 
 
    if ( reading<rbreak ) { 
        // do something 
 
    } elseif ( reading<rlimit ) { 
        // do something else 
 
    } else { 
        // do something to be safe 
 
    } 
    return(salinity); 
} 

Figure 2 Unfinished Arduino code for computing salinity as a function of salinity 
sensor reading. 
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3.	   Determine	  the	  deadtime	  compensation	  
The deadtime is the time interval between the introduction of a disturbance to the fish 
tank salinity, and the re-establishment of equilibrium. The deadtime of most fish tanks 
(for EAS 199B) is on the order 10 seconds. After making an adjustment to the fish tank 
salinity – by either adding salty or fresh water – you should wait one deadtime interval 
before making another adjustment. To measure deadtime, you need to set up an 
experiment to measure the salinity and print the raw analog reading to the Serial Monitor. 
The Arduino code for measuring the deadtime is not the same code that you use to 
control the salinity. 

Deadtime	  measurement	  code	  
 Figure 3 shows a simple Arduino code to print the time and salinity for each reading 
to the Serial Monitor. As a backup, make an independent measurement of the time delay 
with a stopwatch or cell phone timer.  IMPORTANT: You must keep track of the time 
when the disturbance was made to the system, e.g., when the fresh or salty water was 
added. 

//  File:  analog_input_with_millis.ino 
// 
//  Read an analog input and write the system time in milliseconds 
//  and the analog input value to the serial monitor 
 
unsigned long start_time;   //  Allows computation of time since 
                            //  the start of sketch 
void setup() { 
  Serial.begin(9600); 
  start_time = millis();    //  Time at beginning of the sketch 
} 
 
void loop() { 
  int reading = analogRead(1);        // Reading on channel 1 
  Serial.print(millis()-start_time);  // Time from start of sketch 
  Serial.print("\t");                 // Tab character 
  Serial.println(reading);            // Print reading and newline 
  delay(10); 
} 

Figure 3 Arduino code to demonstrate printing of time from start of a sketch along 
with a value read from an analog input. 

 The deadtime measurement should allow you to collect a large number (say, at least 
50) measurements of salinity. If you are averaging individual analog input measurements, 
we recommend that each averaged reading is completed in no more than one second. The 
time limit of 1 second per reading is an arbitrary but practical goal that provides a balance 
between capturing the system variability and not waiting so long that the system may 
drift. Use the following calculation as a template for estimating whether your code can 
produce at least one reading per second. 
 10 ms for each reading:  5ms settling time and 5 ms between readings 
 20 readings for each average 
 2 ms allowance for Serial.println()  (conservative) 
  ⇒ 202 ms per reading ⇒ ~5 readings/second 
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Of course, you should also verify with an experiment that your code produces at least one 
reading per second. 

Estimating	  the	  deadtime	  from	  salinity	  measurements	  
Estimate the deadtime with the following procedure. The starting and ending values of 
mass fraction of salt should not matter. You are measuring the time it takes your system 
to respond to the change in mass fraction. 

1. Choose a value of salinity near the middle of the operating range, say 
Xs = 0.0010. Run your system at that Xs until the output of the salinity sensor 
stabilizes. 

2. With the system stable at the initial salinity value, start (or re-start) your salinity 
reading code to begin the data collection. 

3. Add a small amount of water with a different mass fraction, say Xs = 0.01. Start 
the stopwatch, and note the output of the millis() command in the Serial 
Monitor window. 

4. Wait for the system to come into equilibrium again. When it does, stop the 
stopwatch and record the time interval. Copy all of the data – from the first 
equilibrium condition to the second equilibrium condition – and paste into a data 
file for plotting and analysis. 

5. Plot the raw readings versus time, and use your timing measurement to 
determine the deadtime. 

Refer to the plot in Figure 4 as an example of a deadtime measurement. Note that the 
deadtime is not equal to the time during which the output from the salinity sensor is 
changing from one nominal value to another, i.e., it is not just the steep ramp interval in 
Figure 2. The start of the deadtime interval occurs before the salinity reading changes 
significantly. Therefore, the start time must be recorded by your observation of when the 
disturbance began. It cannot be determined solely from the plot. 

 
Figure 4 Typical result of deadtime measurement. Gray dots are measurements and 

dashed read lines are averages of measurements 
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4.	   Determine	  the	  flow	  rate	  through	  the	  solenoid	  valves.	  
Measure the amount of water that flows from the top reservoir when the solenoid valve is 
open for 1 second. Use a delay command to repeat this measurement at least 10 times. 
Use the scales to weigh the water. Assume both valves are the same unless you have 
enough time to check the valves separately. Compute the mean and standard deviation of 
your measurements. Table 2 provides a sample of the data collection and reporting for the 
mass flow measurements. It would be a good idea to use a spreadsheet to store the data 
and perform the conversion and averaging. 

Table 2 Layout of a table for collecting and analyzing measurements of 
mass flow rate through the solenoid valves. 

Reading # 
Mass (g) 
(valve 1) 

∆t1 (s) Mass (g) 
(valve 2) 

∆t2 (s) 
!! (g/s) !! (g/s) 

 1       
 2       
 3       
 4       
 5       
 6       
 7       
 8       
 9       
 10       
    Mean   
    Std. dev.   

 
5.	   Write	  equations	  used	  in	  the	  control	  code.	  
Let Xsp be the mass fraction at the setpoint. The instructor will give you a value of Xsp 
when the fish tank is tested. You can assume that 0.0005 ≤ Xsp ≤ 0.0010. The Xsp value 
will be given as a wt% of NaCl, but you will need to convert it to an appropriate value in 
your code. Given the setpoint, compute the UCL and LCL used in the control algorithm: 

  LCL  =  Xsp  –  ∆LCL (1a) 
  UCL  =  Xsp  +  ∆UCL (1b) 
The fractional form for mass fraction (0.001 instead of 0.1%) is recommended. 
 Let Xs be the measured value of salinity, i.e., the measured mass fraction of salt in 
the tank. The error in the salinity reading is 
  E  =  Xs  –  Xsp (2) 
where E is dimensionless, and is a measure of mass fraction difference. Let G be the gain 
applied to the error. For example, a gain of 0.75 would mean that 0.75 E of the error is to 
be corrected in one change to the system. 
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 Use an analysis of the system as a batch process to predict the amount of DI or salty 
water to be added to the system to make a correction of G×E. Figure 5 shows a schematic 
of the batch model for correction of the salinity of water in the tank. 

 
Figure 5 Schematic of the mass addition to correct an error in the tank salinity. 

Define the following variables. 
mt mass of water in the tank, both before and after the correction 
Xs,i mass fraction of salt in the tank before correction (i = initial) 
Xsp set point for mass fraction of salt in the tank 
madd mass of water added to correct the error in mass fraction 
Xs,add mass fraction of salt in the added water 
Xs,f mass fraction of salt in the tank after correction (f = final) 
mover mass of water leaving the tank via the overflow, mover = madd 
Xs,over mass fraction of salt in the overflow 
F fraction of added water that short-circuits to the outflow without mixing 
G gain of the control system 
!sol  mass flow rate through the solenoid valve 

 
In the in-class example problem, we assumed that 15 percent of the added water was 
immediately short-circuited to the overflow. In general, we use F to designate the short-
circuit fraction. Then 
  Xs,over = (1 – F)Xs,i  +  F Xs,add (3) 
where 0 ≤ F ≤ 1. The in-class example problem showed that the final salinity after a 
correction applied with gain G is 
  Xs,f  =  Xs,i  +  G (Xsp – Xs,i) (4) 
where 0 ≤ G ≤ 1. The mass necessary to make this correction is 

  !!,add = !!,!
! !sp!!!,!

(!!!)(!!,!""!!!,!)
 (5) 

The time that the solenoid is open is 
  !" = !!,add

!sol
 (6) 

where !sol is the mass flow rate through the valve when it is open. Equations (1), (5) and 
(6) are used in the Arduino control code. 

Tank Tank

OverAdd

Initial

mt  Xs,i madd  Xs,add mover  Xs,overmt  Xs,f

Final
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6.	   Display	  status	  of	  system	  on	  the	  LCD	  panel	  
Write an Arduino function to display the status of the fish tank on the LCD panel. The 
layout of the panel must use the template in Figure 6. The standardization of the display 
helps instructors correctly inspect many different fish tank designs. 
 The first and last rows of the display are labels that do not change during operation 
of the salinity control algorithm. The second row indicates the control settings for the 
LCL, SP and UCL. These values do not normally change during the operation of the tank. 
However, a potentiometer can be used to change the SP, which will also change the LCL 
and UCL. The third row of the display shows current status of the solenoid valves, and in 
the middle shows the current reading of the salinity sensor. 

 
Figure  6 Layout of the LCD display for the salinity control verification. 

Display of floating point values with the LiquidCrystal library is not straightforward. A 
detailed example of the problem and solution is provided on the howto web page for the 
class: 

http://web.cecs.pdx.edu/~eas199/B/howto/LCDwiring/arduino_to_LCD.html 

The trick is to use the built-in dtostrf() function to convert the floating point value to a 
a string, and then display the strain on the LCD panel with lcd.print(). Figure 7 lists 
an excerpt of code that can display the second line in Figure 6. 
 

float LCL=0.072, SetPt=0.100, UCL=0.108; 
char float_buffer[16];   // string buffer to hold formatted value 
 
lcd.setCursor(0,1); 
dtostrf(float_buffer,5,3,LCL);    lcd.print(float_buffer); 
lcd.print("  "); 
dtostrf(float_buffer,5,3,SetPt);  lcd.print(float_buffer); 
lcd.print("  "); 
dtostrf(float_buffer,5,3,UCL);    lcd.print(float_buffer); 

 

Figure  7 Section of Arduino code that demonstrates how the dtostrf() function 
converts a floating point value to a string that can be displayed on the LCD 
panel with lcd.print(). Note that the values of LCL, SetPt, and UCL 
should be computed with formulas, and not assigned as constants as is done 
in the simple example presented here. Also note that SP appears to be a 
reserved word, and using SP as a variable name produces a hard to find 
compilation bug. 

 	  

01234567890123456789
 LCL   SetPt   UCL
0.072  0.100  0.108
Salty Current  DI
 OFF   0.148   ON

0
1
2
3
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7.	   Implement	  the	  control	  algorithm	  in	  Arduino	  code	  
The main steps in the control algorithm are 

1. Measure salinity and update the LCD panel 
2. If the system is not in the dead time: 

a. If salinity is greater than upper limit: 
        Add fresh water: open valve, wait, close valve. 
b. If salinity is less than lower limit: 
        Add salty water: open valve, wait, close valve. 

3. Return to step 1. 
Each of these steps needs to be refined. Note that these steps are different from the steps 
described in the overview document presented at the beginning of the class. The 
algorithm in the overview document were presented before we explained the need for 
deadtime. 

Measure	  salinity	  and	  update	  the	  LCD	  panel	  
Each time the salinity is measured, the value displayed on the LCD panel should be 
updated. To make the display responsive to system changes, the salinity should be 
measured frequently. Although the salinity can be measured at any time, the decision on 
whether to act on the measurement needs to account for the deadtime. 

If	  the	  system	  is	  not	  in	  the	  deadtime…	  
The simplest way to implement the deadtime delay is to use a command link 

delay(deadtime); 

in your code. Don’t do that! Using a simple to delay to implement the deadtime blocks 
the program from doing any other useful tasks while it waits. By blocking execution, the 
code cannot update the LCD display. Later, when temperature control is added, blocking 
execution will prevent the temperature from being measured or updated. 
 Figure 8 shows the structure of an Arduino sketch that prevents the system from 
adding DI or salty water during the deadtime without blocking execution. The code uses 
a global variable last_salinity_update to store the time when the most recent change 
to the salinity was completed. The time is measured by the internal system clock, which 
is read with the millis() command.  The decision on whether or not to allow salinity 
changes is made with the statement 

if ( ( millis() – last_salinity_update ) > deadtime ) { 

The value of (millis() – last_salinity_update) is the difference between the 
current time and the last salinity change. The logic for changing the salinity is contained 
inside that “if” block. 

Add	  fresh	  or	  salty	  water	  
Follow these steps 

1. Compute the amount of water to be added from Equation (5). Xs,i is the measured 
mass fraction, and Xsp is the set point. 

2. Open the solenoid valve for a time period ∆t given by Equation (6) 
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//  File:  wait_for_deadtime.ino 
// 
//  Structure of salinity control code to implement a deadtime 
//  during which no salinity correction is made.  This code is 
//  incomplete and will not compile. 
 
unsigned long last_salinity_update;  //  Time of last correction 
 
void setup() { 
  Serial.begin(9600); 
  last_salinity_update = millis();   //  Initial value; change later 
} 
 
void loop() { 
  float LCL, UCL, salinity; 
  int deadtime = ... ; 
 
  salinity = salinity_reading( ... ); 
  update_LCD( ... ); 
 
  // -- Check for deadtime 
  if ( ( millis() – last_salinity_update ) > deadtime ) { 
 
    if ( salinity>UCL ) { 
      //  add DI water:  steps are missing in this code 
      last_salinity_update = millis(); 
    } 
 
    if ( salinity<LCL ) { 
      //  add salty water:  steps are missing in this code 
      last_salinity_update = millis(); 
    } 
  } 
} 

Figure 8 Arduino code to demonstrate how to test whether the system should ignore 
salinity errors during the deadtime. 

 


