Cascade switching of an LED

EAS 199B Winter 2013

Objectives

- Be able to describe the circuit that uses an NPN transistor to switch an LED on and off
- Be able to describe the circuit that uses an NPN transistor and a relay to switch an LED on and off
- Be able to describe the role of a fly-back diode on a relay coil or solenoid valve
- Be able to describe the cascade switching circuit used to control the solenoid valves for the fish tank

Use Digital I/O pin to switch LED on/off

Digital I/O pin \rightarrow LED

Digital output

Code to blink the LED

```
int LED_pin = 11; // array of pins for digital output

void setup() {
    pinMode( LED_pin, OUTPUT );
}

void loop() {
    digitalWrite( LED_pin, HIGH);
    delay(1000);
    digitalWrite( LED_pin, LOW);
    delay(1000);
}
```

In the following examples, the Arduino code does not need to change when the electrical circuit is changed. The Arduino code only needs to used a single digital output pin, which in this code is LED_pin.

Use a Transistor to switch LED on/off

 $\mathsf{Digital}\;\mathsf{I/O}\;\mathsf{pin}\to\mathsf{Transistor}\to\mathsf{LED}$

NPN Transistors as Switches

Transistors can be used as switches: By applying relatively small voltage to the Base, electrical current will flow from the collector to the base.

C is the collector. B is the base E is the emitter

NPN Transistors as Switches

When used as a switch, $I_{C\!E}$ the current from the collector to the emitter is large compare to $I_{B\!E}$, the current from the base to the emitter.

C is the collector. B is the base E is the emitter

Use a Relay switch the LED on/off

 $\mathsf{Digital}\;\mathsf{I/O}\;\mathsf{pin}\to\mathsf{Transistor}\to\mathsf{Relay}\to\mathsf{LED}$

Compare switching circuits

