Salinity Calibration fit with MATLAB EAS 199B Notes

Gerald Recktenwald Portland State University Department of Mechanical Engineering gerry@me.pdx.edu

EAS 199B: Salinity calibration fit

Overview

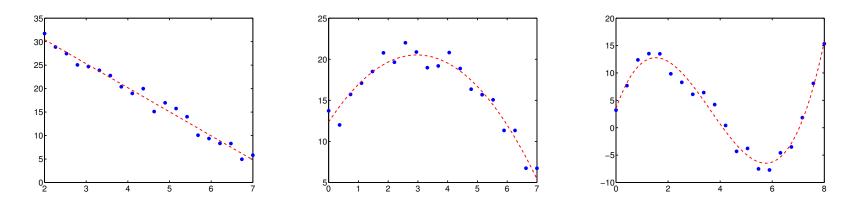
These slides are divided into three main parts

- 1. A review of least squares curve fitting
- 2. An introduction to least squares curve fitting with $\rm Matlab$
- 3. Application of least squares fitting to calibration of the salinity sensor

1. Review of Least Squares Curve Fitting

Introduction

Recall curve fitting notes from EAS 199A

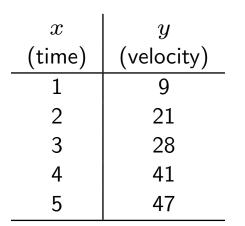


Basic Idea

- Given data set (x_i, y_i) , $i = 1, \ldots, n$
- Find a function y = f(x) that is *close* to the data

The least squares process avoids guesswork.

Some sample data



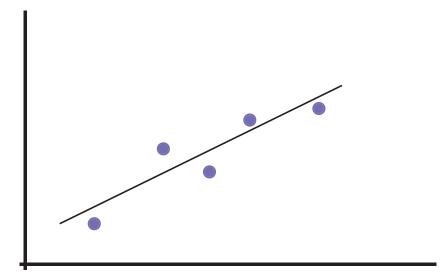
It is aways important to visualize your data. You should be able to plot this data by hand.

- Compute slope and intercept in a way that minimizes an error (to be defined).
- Use calculus or linear algebra to derive equations for m and b.
- There is only one slope and intercept for a given set of data that satisfies the least squares criteria.

Do not guess m and b! Use least squares!

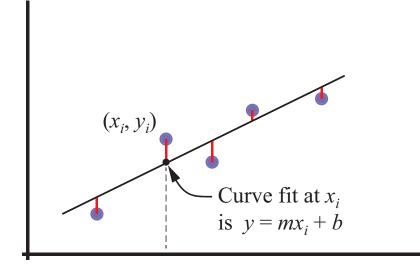
EAS 199B: Salinity calibration fit

Least Squares: The Basic Idea



The best fit line goes near the data, but not through them.

Least Squares: The Basic Idea



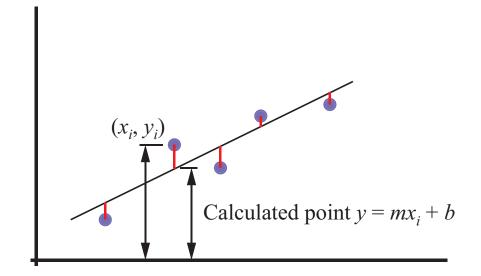
The best fit line goes near the data, but not through them.

The equation of the line is

$$y = mx + b$$

The data (x_i, y_i) are known. m and b are unknown.

Least Squares: The Basic Idea



The discrepancy between the known data and the unknown fit function is taken as the *vertical distance*

$$y_i - (mx_i + b)$$

The error can be positive or negative, so we use the *square of the error*

$$\left[y_i - (mx_i + b)\right]^2$$

Least Squares Computational Formula

Use calculus to minimize the sum of squares of the errors

Total error in the fit
$$=\sum_{i=1}^{n}[y_i-(mx_i+b)]^2$$

Minimizing the total error with respect to the two parameters m and b gives

$$m = \frac{n \sum x_i y_i - \sum x_i \sum y_i}{n \sum x_i^2 - (\sum x_i)^2} \qquad b = \frac{\sum y_i - m \sum x_i}{n}$$

Notice that b depends on m, so solve for m first.

The R^2 Statistic

 R^2 is a measure of how well the fit function follows the trend in the data. $0 \le R^2 \le 1$.

Define:

 \hat{y} is the value of the fit function at the known data points.

For a line fit $\hat{y}_i = c_1 x_i + c_2$

Then:

$$R^{2} = \frac{\sum (\hat{y}_{i} - \bar{y})^{2}}{\sum (y_{i} - \bar{y})^{2}} = 1 - \frac{\sum (y_{i} - \hat{y})^{2}}{\sum (y_{i} - \bar{y})^{2}}$$

When $R^2 \approx 1$ the fit function follows the trend of the data. When $R^2 \approx 0$ the fit is not significantly better than approximating the data by its mean.

2. Introduction to least squares curve fitting with ${\rm MATLAB}$

Least Squares Fitting with Matlab

Built-in functions

polyfit performs a polynomial curve fit and returns coefficients in a vector

```
c = polyfit(xdata,ydata,n)
```

polyval evaluates a polynomial curve fit and returns coefficients in a vector

```
xfit = linspace(min(xdata),max(xdata);
yfit = polyval(c,xfit);
```

GWR function expfit performs a linearized curve fit to $y = c_1 e^{c_2 x}$

```
c = expfit(xdata,ydata)
```

powfit performs a linearized curve fit to $y = c_1 x^{c_2}$

```
c = powfit(xdata,ydata)
```

Polynomial Curve Fits with polyfit (1)

Syntax:

c = polyfit(x,y,n)
[c,S] = polyfit(x,y,n)

x and y define the data n is the desired degree of the polynomial.

c is a vector of polynomial coefficients stored in order of descending powers of x

$$p(x) = c_1 x^n + c_2 x^{n-1} + \dots + c_n x + c_{n+1}$$

S is an optional return argument for polyfit. S is used as input to polyval

Polynomial Curve Fits with polyfit (2)

Evaluate the polynomial with polyval

Syntax:

yf = polyval(c,xf)
[yf,dy] = polyval(c,xf,S)

c contains the coefficients of the polynomial (returned by polyfit)

xf is a scalar or vector of x values at which the polynomial is to be evaluated

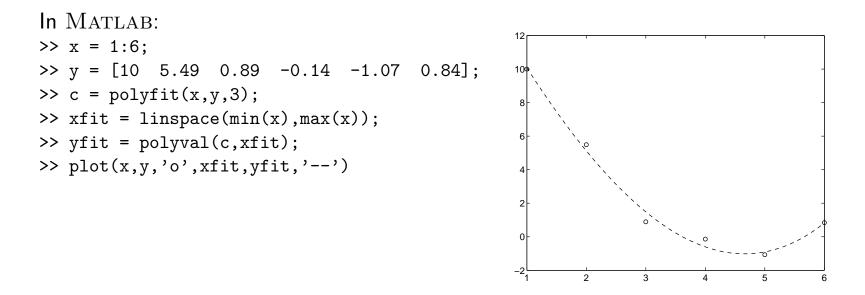
yf is a scalar or vector of values of the polynomials: yf = p(xf).

If S is given as an optional input to polyval, then dy is a vector of estimates of the uncertainty in yf

Example: Polynomial Curve Fit (1)

Fit a polynomial to Consider fitting a curve to the following data.

x	1	2	3	4	5	6
y	10	5.49	0.89	-0.14	-1.07	0.84



Fitting Transformed Non-linear Functions (1)

- Some nonlinear fit functions y=F(x) can be transformed to an equation of the form $v=\alpha u+\beta$
- perform a linear least squares fit on the transformed variables.
- Parameters of the nonlinear fit function are obtained by transforming back to the original variables.
- The linear least squares fit to the transformed equations does not yield the same fit coefficients as a direct solution to the *nonlinear* least squares problem involving the original fit function.

Examples:

$$y = c_1 e^{c_2 x} \longrightarrow \ln y = \alpha x + \beta$$
$$y = c_1 x^{c_2} \longrightarrow \ln y = \alpha \ln x + \beta$$
$$y = c_1 x e^{c_2 x} \longrightarrow \ln(y/x) = \alpha x + \beta$$

Fitting Transformed Non-linear Functions (2)

Consider

$$y = c_1 e^{c_2 x} \tag{1}$$

Taking the logarithm of both sides yields

 $\ln y = \ln c_1 + c_2 x$

Introducing the variables

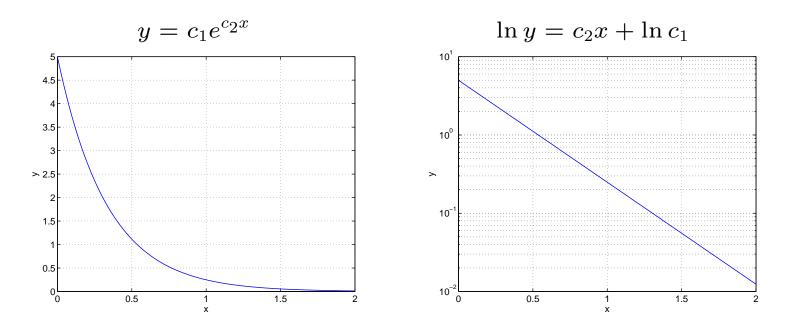
 $v = \ln y$ $b = \ln c_1$ $a = c_2$

transforms equation (1) to

$$v = ax + b$$

Fitting Transformed Non-linear Functions (3)

The preceding steps are equivalent to graphically obtaining c_1 and c_2 by plotting the data on semilog paper.



Fitting Transformed Non-linear Functions (4)

Consider $y = c_1 x^{c_2}$. Taking the logarithm of both sides yields

$$\ln y = \ln c_1 + c_2 \ln x \tag{2}$$

Introduce the transformed variables

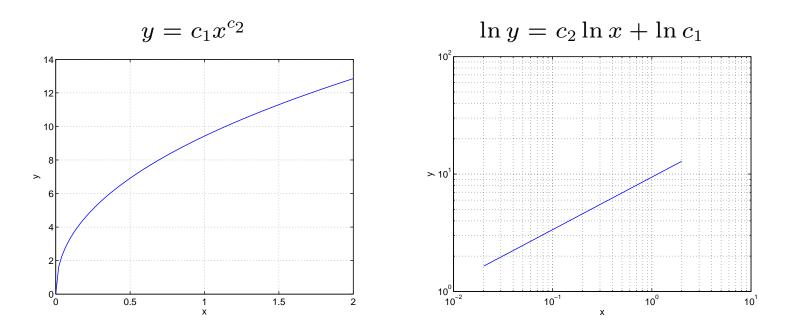
$$v = \ln y$$
 $u = \ln x$ $b = \ln c_1$ $a = c_2$

and equation (2) can be written

$$v = au + b$$

Fitting Transformed Non-linear Functions (5)

The preceding steps are equivalent to graphically obtaining c_1 and c_2 by plotting the data on log-log paper.



3. Application to calibration of the salinity sensor

MATLAB code for curve fitting Salinity Sensor Data (1)

The data set is small, so you can enter it manually

```
Sref = [0, 0.05, 0.10, 0.15]; % Calibration reference values
Rout = [ ... ] % your raw output
c = polyfit(Sref,Rout,1); % perform the fit
Sfit = linspace(min(Sref),max(Sref)); % Evaluate the fit
rfit = polyval(c,Rout) - Sref; % Evaluate the residuals
plot(Rout,rfit,'o')
```

Notes:

- The curve fit may work better if you leave off the Sref = 0 point
- How do you evaluate R^2

Forward and Reverse Calibration

