Calibration of **Conductivity Sensors EAS 199B**

cal · i · brate [kal-uh-breyt]

*-verb (used with object), -*brat · ed, -brat · ing.

1. to determine, check, or rectify the graduation of (any instrument giving quantitative measurements).

Calibration

- Associate sensor output with salt concentration
- Relate sensor output and salt concentration using an equation (linear regression)
- The goal is to be able to compute the salt concentration based on sensor output

The Basic Idea

- Adding salt to the water will increase the availability of Cl⁻ ions at the anode
- More ions at the anode will increase the rate at which chemical reactions can occur
- The "electrical resistance" of the salt water will decrease as more salt is added to the water
- The analog voltage on the + side of the $10k\Omega$ resistor will increase as more salt is added
- Correlating this voltage with the salt concentration will allow us to "calibrate" the conductivity sensor

The Circuit and Sketch

```
int salinity power pin = 4; // Digital I/O pin, Global variable
void setup()
 Serial.begin(9600);
 pinMode(power pin, OUTPUT);
void loop()
 int salinity input pin = 2; // Analog input pin
 int salinity;
 salinity = salinity reading( salinity power pin, salinity input pin );
 Serial.println(salinity);
int salinity reading( int power pin, int input pin ) {
 int reading;
 digitalWrite( power pin, HIGH );
                                  // Turn on the sensor
 delay(10);
                                     // Wait to settle
 reading = analogRead( input pin ); // Read voltage
 digitalWrite( power pin, LOW ); // Turn off the sensor
 return reading;
```


Salt Concentrations

- Each group of students should put about 1.5 inches of water in four bottles
- The four bottles should contain . . .
 - DI water
 - 0.05% weight NaCl
 - 0.10% weight NaCl
 - 0.15% weight NaCl
- Please take ONLY the amount that you will need to use TODAY
- Be sure to label your water bottles
- Swish a small amount of DI water around in your bottle to wash out impurities before filling with calibration water

Capture data during calibration

Calibration steps in the lab

- 1. Configure your flow loop as required for homework
- 2. Implement the conductivity sensor circuit on your breadboard
- 3. Flush tank with DI water.
 - a. Pour enough DI water into your fishtank to fill the flow loop
 - b. Turn on the pump to run the flow loop for about a minute to "wash out" the impurities.
 - c. Turn the three-way valve toward the drain to flush the system
 - d. Repeat to completely clean the system
- 4. Fill the system with DI water
- 5. Collect calibration data
 - a. Wait for the system to come into equilibrium
 - b. Copy a large (50 to 100) readings from the Serial Monitor to a text file or Excel
 - c. Save the file with a name that allows you to identify it later
- 6. Fill the system with 0.05 wt% salt water. Flush once, and refill with 0.05 wt% salt water
- 7. Repeat steps 5a through 5c
- 8. Repeat steps 5 through 7 for 0.10 wt% salt water and 0.15 wt% salt water

Analysis of calibration data

- 1. Use MATLAB to create a histogram of your data
- 2. Compute the mean, standard deviation and median of the data
- 3. Record the data in the following table

Wt% NaCl	n	Mean	Standard deviation	Median
0				
 0.05				
 0.10				
 0.15				

Steps

- 1. Configure your flow loop as required for homework
- Implement the conductivity sensor circuit on your breadboard
- Flush tank with DI water.
 - a. Pour enough DI water into your fishtank to fill the flow loop
 - b. Turn on the pump to run the flow loop for about a minute to "wash out" the impurities.
 - c. Turn the three-way valve toward the drain to flush the system
 - d. Repeat to completely clean the system
- 4. Fill the system with DI water
- Collect calibration data for DI water
- Fill the system with 0.05 wt% salt water. Flush once, and refill with 0.05 wt% salt water
- Collect calibration data for 0.05wt% salt water
- Repeat steps 6 and 7 for 0.10 wt% salt water and 0.15 wt% salt water

salt concentration (%wt)	output to LCD	
0.00		
0.05		collect this data
0.10		
0.15		

Fit Output of Sensor to Salt Concentration

