Arduino Programming
Part 5: Functions Redux
and Intro to Arrays

EAS 199B,Winter 2013

Gerald Recktenwald
Portland State University
gerry@me.pdx.edu

Goals

Review operation of the Salinity Sensor

% Motivation for turning power on and off
% Circuit for salinity sensor

Create functions for reading the conductivity sensor

+ Only one function is needed (only one used at a time)
+ Different functions have different features

% Change input data handling by using different functions
% Main program stays largely unchanged

Introduction to arrays

% Use arrays to store readings

+ Compute average and standard deviation of the readings

Measuring salinity

S5V

Principle of operation

<—e |_/W\:i|_
+ lons migrate to electrodes \ —

10 kQ
% lons exchange electrons with . |
- anode — oxidation cathode — reduction
brobes, causing current flow. (lss of electrons) |1 Y| (gain of electrons)
+ Na+ is a spectator ion. e'@ @
% lon concentrations increase (@) (o)
at electrodes when power is T\GD b |@ 1@
left on. @,\'\@ @ \’@ @
% Therefore, only turn on @ﬁ‘ @\‘
10N Mig ratlon
power during the time when
reading is made. Leave it off (@)
OtherWise. @ Na* is a spectator ion

Measuring salinity

Sensor circuit @ Digital output

% It’s a voltage divider -
salinty sensor

<+ Resistance decreases as salt . .
(variable resistance)

concentration increases

* Voltage across fixed resistor
increases when sensor resistance O 4@ Analog input
decreases, i.e. when salt
concentration increases

10 kQ

Study Questions

What is the voltage on the input pin for each of these
conditions:

R/
0’0

\¢
%®

7/
L X4

ft
ft
ft

NeE €

ne €

Ne€ €

ectrica
ectrica

ectrica

resistance of t
resistance of t

resistance of t

he water is zero!?
he water is 10k()?

he water is 00?

What is the input reading for each of those conditions!?

IF the resistance varied linearly with
salinity, would the voltage vary

linearly with salinity?

@——@ Digital output

§ salinty sensor

(variable resistance)

@——@a Analog input

fm kO

Programs for Reading the Salinity Sensor

|. Read one value at a time

% Encapsulate the code in a function so it can be reused

2. Read multiple values and return an average

<+ Code in a2 new function

3. Read multiple values and return average and standard
deviation

+ Yet another function
+ Use an array to store readings, then compute statistics
+ Returning two values requires pointers

All three programs use the same circuit

Measuring salinity

Measurement algorithm

% Turn on the power with digital output
to supply 5V to the voltage divider

@ Digital output

salinty sensor
(variable resistance)

* WWait for voltage transient to settle
+ Read the voltage across fixed resistor
% Turn off the power O

@ Analog input

10 kQ

Single reading of conductivity sensor

int power pin = 4; // Digital I/O pin, Global variable

void setup() N

{ @—a@ Digital output
Serial.begin(9600); § salint’fly se.ntsor
pinMode (power pin, OUTPUT); anable resisiance)

} @—@a Analog input

void loop() E§1om1

{ 1
int input pin = 2; // Analog input pin —

int reading;

digitalWrite(power pin, HIGH); // Turn on sensor
delay(100); // wait to settle
reading = analogRead(input pin); // Measure voltage
digitalWrite(power pin, LOW); // Turn off power

Serial.println(reading);

Create a function to read the sensor

Why use functions?

% Code in the loop function is just high level commands
» Overall logic is easier to read and change

» Reduce likelihood of error as overall code logic changes
% Keep details of sensor-reading contained in the function
» Variables defined in the function are “local”

» Details can change, e.g. to increase speed or reduce memory usage
without changing the logic of the main function.

» Reuse the code in other projects: build a library of reusable components

Use a function to make a single reading

int salinity power pin = 4; // Digital I/O pin, Global variable

void setup()

{
Serial.begin(9600);

pinMode (power pin, OUTPUT);
}

void loop()

{
int salinity input pin = 2; // Analog input pin
int salinity;

salinity = salinity reading(salinity power pin, salinity input pin);
Serial.println(salinity);

}
A —

int salinity reading(int power pin, int input pin) {

int reading;

digitalWrite(power pin, HIGH); // Turn on the sensor
delay(100); // Wait to settle
reading = analogRead(input pin); // Read voltage
digitalWrite(power pin, LOW); // Turn off the sensor

return reading;

Encapsulate single reading in a function

int salinity power pin = 4; // Digital I/O pin, Global variable

void setup()

{
Serial.begin(9600);

pinMode (power pin, OUTPUT);
}

void loop()

{
int salinity input pin = 2; // Analog input pin
int salinity;

salinity = salinity reading(salinity power pin, salinity input pin);
Serial.println(salinity);
; Local variables power_pin

[/ === . . .
int salinity reading(int power pin, int input pin) { and mPuF—Pm eX|st.onIy
inside salinity reading

int reading;

digitalWrite(power pin, HIGH); // Turn on the sensor
delay(100); // Wait to settle
reading = analogRegd(input pin); // Read voltage
digitalWrite(power pin, LOW); // Turn off the sensor

return reading;

Encapsulate single reading in a function

int salinity power pin = 4; // Digital I/O pin, Global variable

void setup()

{
Serial.begin(9600);

pinMode (power pin, OUTPUT);
}

void loop()
{

int salinity input pin = 2; // Analog input pin
int salinity;

salinity = salinity reading(salinity power pin, salinity input pin);
Serial.println(salinity);

Value of the local variable
called “reading” is returned

int salinity reading(int power pin, int input pin) { . _
and stored in the variable

int reading; called “salinity.
digitalWrite(power pin, HIGH); // Turn on the sensor

delay(100); // Wait to settle

reading = analogRead(input pin); // Read voltage

digitalWrite(power pin, LOW); // Turn off the sensor
return

Improve the function: Average several readings

Average is a measure of central tendency

n
1 Z
T “

1=1

X

670 672 674 676 678 680

Improve the function: Compute standard deviation

Standard deviation is a measure of spread

:%g

n
o = : E (2; — T)° '
/I/— O : O =
\n—l . : 0.902
1=1 :
o |
O
O O 00O OO
0000000000

670 672 674 676 678 680

First improvement: Average several readings

This loop() function does not need to know the details

int salinity power pin = 4; // Digital I/0 pin, Global variable

void setup()

{
Serial.begin(9600);
pinMode (power pin, OUTPUT);
}
void loop()
{
int salinity input pin = 2; // Analog input pin
int nave = 20; // Number of readings to average
float salinity; // Float stores fractional reading from computed average

salinity = salinity reading average(salinity power pin, salinity input pin, nave);
Serial.println(salinity);

First improvement: Average several readings

This loop() function does not need to know the details

int salinity power pin = 4; // Digital I/0 pin, Global variable

void setup()

{
Serial.begin(9600);

pinMode (power pin, OUTPUT);

}
void loop()
{
int salinity input pin = 2; // Analog input pin
int nave = 20; // Number of readings to average
float salinity; // Float stores fractional reading from computed average

salinity = salinity reading average(salinity power pin, salinity input pin, nave);
Serial.println(salinity);

salinity reading average Iis a user-written function to compute the average of nave
samples from the salinity sensor

First improvement: Average several readings
Details are hidden in read_salinity_average

float salinity reading average(int power pin, int input pin, int nave) {

int is
float reading, sum; // Use floats for more precision and to prevent overflow of sum

sum = 0.0;

for (i=1; i<=nave; i++) {
digitalWrite(power pin, HIGH); // Supply power to the sensor
delay(100); // Wait for sensor to settle
sum += analogRead(input pin); // Add reading to the running sum
digitalWrite(power pin, LOW); // Turn off power to the sensor
delay(10); // wait between readings

}

reading = sum/float(nave);
return reading;

Compute average and standard deviation

Code is more complex
% C functions can only “return” one value
% C functions can modify inputs that are passed by address
% The address of a variable is its location in memory
% The address can be assigned to another variable called a pointer

% Pointers are challenging for the beginner

A simple example of pointers

Pass the value of x into the function |

void loop() {

int x = 2;
int y; /

change value(x, &y);

}

Pass the address of y into the function |

volid change value(int a, int *b) {

*b = z*a;

}

A simple example of pointers

Pass the value of x into the function |

void loop() {

int x = 2;
int y; /

change value(x, &y);

Pass the address of y into the function |

*b is the pointer to (the address of)

} the second input argument
[/ =mmmmmmmmmmmmmmmmemeeeee e
volid change value(int a, int *b) {

*b = 2%*a;

N\

change what is stored in *b

A simple example of pointers

Pass the value of x into the function |

void loop() {

int x = 2;
int y; /

change value(x, &y); *b is the pointer to (the address of)

Pass the address of y into the function |

} :
the second input argument
[/ ==
volid change value(int a, int *b) { Note: change value
does not return a value — its
*b = 2%a; : :
} return type is void. When
change value(x,&y) is
executed, the value stored in y

change what is stored in *b is changed.

Compute average and standard deviation

void salinity reading stats(int power pin, int input pin, int nave, float *ave, float *stdev) {

int i, n;

float sum; // Use a float to prevent overflow

float reading[BUFFER LENGTH]; // Array to store readings

n = min(nave, BUFFER LENGTH); // Make sure we don't over-run the data buffer

// -- Store readings in an array

for (i=0; i<n; i++) { // First array index is 0, last is n-1
digitalWrite(power pin, HIGH); // Supply power to the sensor
delay(100); // Wait for sensor to settle
reading[i] = analogRead(input pin); // Add reading to the running sum
digitalWrite(power pin, LOW); // Turn off power to the sensor
delay(10); // wait between readings

}

// -- Compute average and standard deviation.

for (sum=0.0, i=0; i<n; i++) {
sum += reading[i];

}

*ave = sum/float(nave);

for (sum=0.0, i=0; i<n; i++) {
sum += pow(reading[i] - *ave, 2);

}

*stdev = sqrt(sum/float(n-1));

Use salinity reading_stats

Digital I/O pin

Size of array to store readings for computation of ave and stdev
Reduce BUFFER LENGTH to save memory if statistics are OK
with smaller sample size

Pass the address of ave
and address of stdev

salinity reading stats(salinity power pin, salinity input pin, nave, &ave, &stdev);

int salinity power pin = 4; //
#define BUFFER LENGTH 100 //
//
//
void setup()
{
Serial.begin(9600);
pinMode(salinity power pin, OUTPUT);
}
void loop()
{
int salinity input pin = 2;
int nave = 20;
float ave, stdev;
Serial.print(ave); Serial.print(", ");
}

Use ave and stdev
as hormal variables

Serial.println(stdev);

Learning C++ Pointers for REAL Dummies
http://alumni.cs.ucr.edu/~pdiloren/C++_Pointers/

