

conductivity sensor implementation

conductivity measurement circuit

we use the same voltage divider circuit used earlier for the photoresistor circuit

$\Delta V \downarrow conductivity\ sensor + \Delta V \downarrow 10 k\Omega\ resistor = 5\ volts$

- what happens to the electrical resistance of the water as it becomes more salty?
 it decreases
- if the resistance of the salt water decreases, then what happens to the voltage drop across the

it decreases

conductivity sensor?

• if the voltage drop across the conductivity sensor decreases, then how does this influence the voltage drop across the $10k\Omega$ resistor?

it increases

 so, increasing the salinity of the water causes the analog input read by the Arduino to increase or decrease)?

0 to 1023

what happens when salt is added to water????

- The ionically bonded NaCl molecules dissociate into Na+ and Cl- ions and become mobile
- they are surrounded by polar water molecules (they are hydrated)

applying voltage to induce electron flow

electrons are really not directly conducting through the water from one electrode to the other (like when electrons move through a copper wire)

reduction occurs at the negatively charged cathode:

$$2 H \downarrow 2 O(l) + 2e \uparrow - \rightarrow H \downarrow 2 (g) + 2OH \uparrow$$

oxidation occurs at the positively charged anode:

$$2 Cl1-(aq)\rightarrow Cl12(g)+2e1-$$

why is H₂O reduced and not Na⁺???

	Electrode Reduction Half-Reaction	Voltage Output (when electrode is coupled wit ion solution using a platinum	h a 1.0M H+
increasingly	$F_2(g) + 2e^- \rightarrow 2F^-(aq)$	+2.87 V	
inert	$H_2O_2(aq) + 2H^+ + 2e^- \rightarrow 2H_2O(l)$	+1.78 V	
	$Au^{3+}(aq) + 3e^- \rightarrow Au(s)$	+1.52 V	
	$Cl_2(g) + 2e^- \rightarrow 2Cl^-(aq)$	+1.36 V	reactions further
	$O_2(g) + 2H_2O(l) + 4e^- \rightarrow 4OH^-(aq)$	+0.40 V	down in the table are
	$Cu^{2+}(aq) + 2e^- \rightarrow Cu(s)$	+0.34 V	
	$2H^+ + 2e^- \rightarrow H_2(g)$	0.00 V	less likely to occur
	$Ni^{2+}(aq) + 2e^- \rightarrow Ni(s)$	-0.25 V	
	$2H_2O(l) + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	-0.83 V	
increasingly active	$Al^{3+}(aq) + 3e^- \rightarrow Al(s)$	-1.66 V	
	$Na^+(aq) + e^- \rightarrow Na(s)$	-2.71 V	
	$Li^{-1}(aq) + e^- \rightarrow Li(s)$	-3.04 V	

- reactions with positive voltages will occur spontaneously
- you must apply external voltage across the electrodes to make a reaction with a negative potential occur

the net reaction of conductivity system

	Possible Half-Reaction	Reference Voltage
1	$2H_2O(l) + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	-0.83 V
2	$2Cl^-(aq) \rightarrow Cl_2(g) + 2e^-$	-1.36 V (direction & sign swapped)
3	$Na^+(aq) + e^- \rightarrow Na(s)$	-2.71 V

the <u>net</u> reaction occurring in the system is . . .

anode
$$2Cl^{-}(aq) \rightarrow Cl_{2}(g) + 2e^{-}$$
 -1.36 V cathode $2H_{2}O(l) + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq)$ -0.83 V net reaction $2Cl^{-}(aq) + 2H_{2}O(l) \rightarrow Cl_{2}(g) + H_{2}(g) + 2OH^{-}(aq)$ -2.19 V

- we must apply at least 2.19 V to the conductivity circuit to drive the reaction
- applying 5 V is sufficient, and higher voltages will increase the rate of oxidation & reduction reactions

system wiring

