

What is Apache Hadoop?

» Open source software framework designed
for storage and processing of large scale data
on clusters of commodity hardware

» Created by Doug Cutting and Mike Carafella
in 2005.

» Cutting named the program after his son’s
toy elephant.

—

Uses for Hadoop

» Data-intensive text processing

» Assembly of large genomes

» Graph mining

» Machine learning and data mining

» Large scale social network analysis

—

Who Uses Hadoop?

Ehe New Aork Times

ehY

“
g PMorganChase

eHarmony’
/ tuitter inte [EHEE

amazoncom —
(.”?rackspaca S~ VISA

HHHHHHH]

2 NING < YAHoO!

—

The Hadoop Ecosystem

pEle[eTe} s N @0]gal1ale]g™ - Contains Libraries and other modules
HDFS - Hadoop Distributed File System

Hadoop YARN - Yet Another Resource Negotiator

Hadoop - A programming model for large scale
MapReduce data processing

Motivations for Hadoop

» What were the limitations of earlier large-
scale computing?

» What requirements should an alternative
approach have?

» How does Hadoop address those
requirements?

—

Early Large Scale Computing

» Historically computation was processor-
bound

- Data volume has been relatively small

- Complicated computations are performed on that
data

» Advances in computer technology has
historically centered around improving the
power of a single machine

—

Advances in CPUs

» Moore’s Law

- The number of transistors on a dense integrated
circuit doubles every two years

» Single-core computing can’t scale with
current computing needs

—

Single-Core Limitation

» Power consumption limits the speed increase
we get from transistor density

Distributed Systems

» Allows developers to
use multiple
machines for a single
task

—

Distributed System: Problems

» Programming on a distributed system is
much more complex

> Synchronizing data exchanges
- Managing a finite bandwidth
> Controlling computation timing is complicated

—

Distributed System: Problems

“You know you have a distributed system when
the crash of a computer you’ve never

heard of stops you from getting any work
done.” -Leslie Lamport

» Distributed systems must be designed with
the expectation of failure

—

Distributed System: Data Storage

» Typically divided into Data Nodes and
Compute Nodes

» At compute time, data is copied to the
Compute Nodes

» Fine for relatively small amounts of data

» Modern systems deal with far more data than
was gathering in the past

—

How much data?

» Facebook
> 500 TB per day

» Yahoo
o Over 170 PB

» eBay
> Over 6 PB

» Getting the data to the processors becomes
the bottleneck

—

Requirements for Hadoop

» Must support partial
failure

» Must be scalable

Partial Failures

» Failure of a single component must not cause
the failure of the entire system only a
degradation of the application performance

» Failure should not
result in the loss
of any data

Q
N 5“-3

ey —
= =

Component Recovery

» If 2 component fails, it should be able to
recover without restarting the entire system

» Component failure or recovery during a job
must not affect the final output

—

Scalability

» Increasing resources should increase load
capacity

» Increasing the load on the system should

result in a graceful decline in performance for
all jobs

- Not system failure

—

Hadoop

» Based on work done by Google in the early

2000s
> “The Google File System” in 2003

- “MapReduce: Simplified Data Processing on Large
Clusters” in 2004

» The core idea was to distribute the data as it
is initially stored

- Each node can then perform computation on the
data it stores without moving the data for the initial
processing

—

Core Hadoop Concepts

» Applications are written in a high-level
programming language
> No network programming or temporal dependency
» Nodes should communicate as little as
possible
- A “shared nothing” architecture
» Data is spread among the machines in
advance

- Perform computation where the data is already
stored as often as possible

—

High-Level Overview

» When data is loaded onto the system it is
divided into blocks
> Typically 64MB or 128MB

» Tasks are divided into two phases

- Map tasks which are done on small portions of data
where the data is stored

- Reduce tasks which combine data to produce the
final output

» A master program allocates work to
individual nodes

—

Fault Tolerance

» Failures are detected by the master program
which reassigns the work to a different node

» Restarting a task does not affect the nodes
working on other portions of the data

» If a failed node restarts, it is added back to
the system and assighed new tasks

» The master can redundantly execute the
same task to avoid slow running nodes

—

Overview

» Responsible for storing data on the cluster

» Data files are split into blocks and distributed
across the nodes in the cluster

» Each block is replicated multiple times

—

HDFS Basic Concepts

» HDFS is a file system written in Java based on
the Google’s GFS

» Provides redundant storage for massive
amounts of data

—

HDFS Basic Concepts

» HDFS works best with a smaller number of
large files

- Millions as opposed to billions of files
> Typically TOOMB or more per file

» Files in HDFS are write once

» Optimized for streaming reads of large files
and not random reads

—

How are Files Stored

» Files are split into blocks
» Blocks are split across many machines at load
time
- Different blocks from the same file will be stored on
different machines

» Blocks are replicated across multiple
machines

» The NameNode keeps track of which blocks
make up a file and where they are stored

—

Data Replication

» Default replication is 3-fold

HDFS Data Distribution

A

Node A Node B Node C Node D Node E

Input File

—

Data Retrieval

» When a client wants to retrieve data

o Communicates with the NameNode to determine
which blocks make up a file and on which data
nodes those blocks are stored

- Then communicated directly with the data nodes to
read the data

—

MapReduce Overview

» A method for distributing computation across
multiple nodes

» Each node processes the data that is stored at
that node

» Consists of two main phases
- Map
- Reduce

—

MapReduce Features

» Automatic parallelization and distribution
» Fault-Tolerance

» Provides a clean abstraction for programmers
to use

—

The Mapper

» Reads data as key/value pairs
- The key is often discarded

» Outputs zero or more key/value pairs

—

Shuffle and Sort

» Output from the mapper is sorted by key

» All values with the same key are guaranteed
to go to the same machine

—

The Reducer

» Called once for each unique key

» Gets a list of all values associated with a key
as input

» The reducer outputs zero or more final
key/value pairs
- Usually just one output per input key

—

MapReduce: Word Count

The overall MapReduce word count process

Splitting Mapping Shuffling Reducing Final result

Bear, 1 Bear, 2

Bear, 1
Deer Bear River

Deer Bear River
Car Car River
Deer Car Bear

Car, 1
Car, 1

Car, 1

Car Car River

Deer, 1
Deer, 1

Deer Car Bear

River, 1
River, 1

Overview

» NameNode
- Holds the metadata for the HDFS

» Secondary NameNode

- Performs housekeeping functions for the
NameNode

» DataNode
o Stores the actual HDFS data blocks

» JobTracker
- Manages MapReduce jobs

» TaskTracker
> Monitors individual Map and Reduce tasks

—

The NameNode

» Stores the HDFS file system information in a
fsimage

» Updates to the file system (add/remove
blocks) do not change the fsimage file
- They are instead written to a log file

» When starting the NameNode loads the
fsimage file and then applies the changes in
the log file

—

The Secondary NameNode

» NOT a backup for the NameNode

» Periodically reads the log file and applies the
changes to the fsimage file bringing it up to
date

» Allows the NameNode to restart faster when
required

—

JobTracker and TaskTracker

» JobTracker

- Determines the execution plan for the job
> Assigns individual tasks

» TaskTracker

- Keeps track of the performance of an individual
mapper or reducer

—

Why do these tools exist?

» MapReduce is very powerful, but can be
awkward to master

» These tools allow programmers who are
familiar with other programming styles to
take advantage of the power of MapReduce

—

Other Tools

» Hive
- Hadoop processing with SQL
» Pig
- Hadoop processing with scripting

» Cascading
- Pipe and Filter processing model

» HBase
- Database model built on top of Hadoop

» Flume
- Designed for large scale data movement

—

