


 Open source software framework designed 
for storage and processing of large scale data 
on clusters of commodity hardware

 Created by Doug Cutting and Mike Carafella 
in 2005.

 Cutting named the program after his son’s 
toy elephant.



 Data-intensive text processing

 Assembly of large genomes

 Graph mining

 Machine learning and data mining

 Large scale social network analysis





•Contains Libraries and other modulesHadoop Common

•Hadoop Distributed File SystemHDFS

•Yet Another Resource NegotiatorHadoop YARN

•A programming model for large scale 

data processing

Hadoop 

MapReduce



What considerations led to its 
design



 What were the limitations of earlier large-
scale computing?

 What requirements should an alternative 
approach have?

 How does Hadoop address those 
requirements?



 Historically computation was processor-
bound
◦ Data volume has been relatively small

◦ Complicated computations are performed on that 
data

 Advances in computer technology has 
historically centered around improving the 
power of a single machine





 Moore’s Law
◦ The number of transistors on a dense integrated 

circuit doubles every two years

 Single-core computing can’t scale with 
current computing needs



 Power consumption limits the speed increase 
we get from transistor density



 Allows developers to 
use multiple 
machines for a single 
task



 Programming on a distributed system is 
much more complex
◦ Synchronizing data exchanges

◦ Managing a finite bandwidth

◦ Controlling computation timing is complicated



“You know you have a distributed system when 
the crash of a computer you’ve never
heard of stops you from getting any work 
done.” –Leslie Lamport

 Distributed systems must be designed with 
the expectation of failure



 Typically divided into Data Nodes and 
Compute Nodes

 At compute time, data is copied to the 
Compute Nodes

 Fine for relatively small amounts of data

 Modern systems deal with far more data than 
was gathering in the past



 Facebook
◦ 500 TB per day

 Yahoo
◦ Over 170 PB

 eBay
◦ Over 6 PB

 Getting the data to the processors becomes 
the bottleneck



 Must support partial 
failure

 Must be scalable



 Failure of a single component must not cause 
the failure of the entire system only a 
degradation of the application performance

 Failure should not 
result in the loss 
of any data



 If a component fails, it should be able to 
recover without restarting the entire system

 Component failure or recovery during a job 
must not affect the final output



 Increasing resources should increase load 
capacity

 Increasing the load on the system should 
result in a graceful decline in performance for 
all jobs
◦ Not system failure



 Based on work done by Google in the early 
2000s
◦ “The Google File System” in 2003

◦ “MapReduce: Simplified Data Processing on Large 
Clusters” in 2004

 The core idea was to distribute the data as it 
is initially stored
◦ Each node can then perform computation on the 

data it stores without moving the data for the initial 
processing



 Applications are written in a high-level 
programming language
◦ No network programming or temporal dependency

 Nodes should communicate as little as 
possible
◦ A “shared nothing” architecture

 Data is spread among the machines in 
advance
◦ Perform computation where the data is already 

stored as often as possible



 When data is loaded onto the system it is 
divided into blocks
◦ Typically 64MB or 128MB

 Tasks are divided into two phases
◦ Map tasks which are done on small portions of data 

where the data is stored

◦ Reduce tasks which combine data to produce the 
final output

 A master program allocates work to 
individual nodes



 Failures are detected by the master program 
which reassigns the work to a different node

 Restarting a task does not affect the nodes 
working on other portions of the data

 If a failed node restarts, it is added back to 
the system and assigned new tasks

 The master can redundantly execute the 
same task to avoid slow running nodes



HDFS



 Responsible for storing data on the cluster

 Data files are split into blocks and distributed 
across the nodes in the cluster

 Each block is replicated multiple times



 HDFS is a file system written in Java based on 
the Google’s GFS

 Provides redundant storage for massive 
amounts of data



 HDFS works best with a smaller number of 
large files
◦ Millions as opposed to billions of files

◦ Typically 100MB or more per file

 Files in HDFS are write once

 Optimized for streaming reads of large files 
and not random reads



 Files are split into blocks

 Blocks are split across many machines at load 
time
◦ Different blocks from the same file will be stored on 

different machines

 Blocks are replicated across multiple 
machines

 The NameNode keeps track of which blocks 
make up a file and where they are stored



 Default replication is 3-fold



 When a client wants to retrieve data

◦ Communicates with the NameNode to determine 
which blocks make up a file and on which data 
nodes those blocks are stored

◦ Then communicated directly with the data nodes to 
read the data



Distributing computation 
across nodes



 A method for distributing computation across 
multiple nodes

 Each node processes the data that is stored at 
that node

 Consists of two main phases
◦ Map

◦ Reduce



 Automatic parallelization and distribution

 Fault-Tolerance

 Provides a clean abstraction for programmers 
to use





 Reads data as key/value pairs
◦ The key is often discarded

 Outputs zero or more key/value pairs



 Output from the mapper is sorted by key

 All values with the same key are guaranteed 
to go to the same machine



 Called once for each unique key

 Gets a list of all values associated with a key 
as input

 The reducer outputs zero or more final 
key/value pairs
◦ Usually just one output per input key





What parts actually make up a 
Hadoop cluster



 NameNode
◦ Holds the metadata for the HDFS

 Secondary NameNode
◦ Performs housekeeping functions for the 

NameNode

 DataNode
◦ Stores the actual HDFS data blocks

 JobTracker
◦ Manages MapReduce jobs

 TaskTracker
◦ Monitors individual Map and Reduce tasks



 Stores the HDFS file system information in a 
fsimage

 Updates to the file system (add/remove 
blocks) do not change the fsimage file
◦ They are instead written to a log file

 When starting the NameNode loads the 
fsimage file and then applies the changes in 
the log file



 NOT a backup for the NameNode

 Periodically reads the log file and applies the 
changes to the fsimage file bringing it up to 
date

 Allows the NameNode to restart faster when 
required



 JobTracker
◦ Determines the execution plan for the job

◦ Assigns individual tasks

 TaskTracker
◦ Keeps track of the performance of an individual 

mapper or reducer



Other available tools



 MapReduce is very powerful, but can be 
awkward to master

 These tools allow programmers who are 
familiar with other programming styles to 
take advantage of the power of MapReduce



 Hive
◦ Hadoop processing with SQL

 Pig
◦ Hadoop processing with scripting

 Cascading
◦ Pipe and Filter processing model

 HBase
◦ Database model built on top of Hadoop

 Flume
◦ Designed for large scale data movement


