


 Open source software framework designed 
for storage and processing of large scale data 
on clusters of commodity hardware

 Created by Doug Cutting and Mike Carafella 
in 2005.

 Cutting named the program after his son’s 
toy elephant.



 Data-intensive text processing

 Assembly of large genomes

 Graph mining

 Machine learning and data mining

 Large scale social network analysis





•Contains Libraries and other modulesHadoop Common

•Hadoop Distributed File SystemHDFS

•Yet Another Resource NegotiatorHadoop YARN

•A programming model for large scale 

data processing

Hadoop 

MapReduce



What considerations led to its 
design



 What were the limitations of earlier large-
scale computing?

 What requirements should an alternative 
approach have?

 How does Hadoop address those 
requirements?



 Historically computation was processor-
bound
◦ Data volume has been relatively small

◦ Complicated computations are performed on that 
data

 Advances in computer technology has 
historically centered around improving the 
power of a single machine





 Moore’s Law
◦ The number of transistors on a dense integrated 

circuit doubles every two years

 Single-core computing can’t scale with 
current computing needs



 Power consumption limits the speed increase 
we get from transistor density



 Allows developers to 
use multiple 
machines for a single 
task



 Programming on a distributed system is 
much more complex
◦ Synchronizing data exchanges

◦ Managing a finite bandwidth

◦ Controlling computation timing is complicated



“You know you have a distributed system when 
the crash of a computer you’ve never
heard of stops you from getting any work 
done.” –Leslie Lamport

 Distributed systems must be designed with 
the expectation of failure



 Typically divided into Data Nodes and 
Compute Nodes

 At compute time, data is copied to the 
Compute Nodes

 Fine for relatively small amounts of data

 Modern systems deal with far more data than 
was gathering in the past



 Facebook
◦ 500 TB per day

 Yahoo
◦ Over 170 PB

 eBay
◦ Over 6 PB

 Getting the data to the processors becomes 
the bottleneck



 Must support partial 
failure

 Must be scalable



 Failure of a single component must not cause 
the failure of the entire system only a 
degradation of the application performance

 Failure should not 
result in the loss 
of any data



 If a component fails, it should be able to 
recover without restarting the entire system

 Component failure or recovery during a job 
must not affect the final output



 Increasing resources should increase load 
capacity

 Increasing the load on the system should 
result in a graceful decline in performance for 
all jobs
◦ Not system failure



 Based on work done by Google in the early 
2000s
◦ “The Google File System” in 2003

◦ “MapReduce: Simplified Data Processing on Large 
Clusters” in 2004

 The core idea was to distribute the data as it 
is initially stored
◦ Each node can then perform computation on the 

data it stores without moving the data for the initial 
processing



 Applications are written in a high-level 
programming language
◦ No network programming or temporal dependency

 Nodes should communicate as little as 
possible
◦ A “shared nothing” architecture

 Data is spread among the machines in 
advance
◦ Perform computation where the data is already 

stored as often as possible



 When data is loaded onto the system it is 
divided into blocks
◦ Typically 64MB or 128MB

 Tasks are divided into two phases
◦ Map tasks which are done on small portions of data 

where the data is stored

◦ Reduce tasks which combine data to produce the 
final output

 A master program allocates work to 
individual nodes



 Failures are detected by the master program 
which reassigns the work to a different node

 Restarting a task does not affect the nodes 
working on other portions of the data

 If a failed node restarts, it is added back to 
the system and assigned new tasks

 The master can redundantly execute the 
same task to avoid slow running nodes



HDFS



 Responsible for storing data on the cluster

 Data files are split into blocks and distributed 
across the nodes in the cluster

 Each block is replicated multiple times



 HDFS is a file system written in Java based on 
the Google’s GFS

 Provides redundant storage for massive 
amounts of data



 HDFS works best with a smaller number of 
large files
◦ Millions as opposed to billions of files

◦ Typically 100MB or more per file

 Files in HDFS are write once

 Optimized for streaming reads of large files 
and not random reads



 Files are split into blocks

 Blocks are split across many machines at load 
time
◦ Different blocks from the same file will be stored on 

different machines

 Blocks are replicated across multiple 
machines

 The NameNode keeps track of which blocks 
make up a file and where they are stored



 Default replication is 3-fold



 When a client wants to retrieve data

◦ Communicates with the NameNode to determine 
which blocks make up a file and on which data 
nodes those blocks are stored

◦ Then communicated directly with the data nodes to 
read the data



Distributing computation 
across nodes



 A method for distributing computation across 
multiple nodes

 Each node processes the data that is stored at 
that node

 Consists of two main phases
◦ Map

◦ Reduce



 Automatic parallelization and distribution

 Fault-Tolerance

 Provides a clean abstraction for programmers 
to use





 Reads data as key/value pairs
◦ The key is often discarded

 Outputs zero or more key/value pairs



 Output from the mapper is sorted by key

 All values with the same key are guaranteed 
to go to the same machine



 Called once for each unique key

 Gets a list of all values associated with a key 
as input

 The reducer outputs zero or more final 
key/value pairs
◦ Usually just one output per input key





What parts actually make up a 
Hadoop cluster



 NameNode
◦ Holds the metadata for the HDFS

 Secondary NameNode
◦ Performs housekeeping functions for the 

NameNode

 DataNode
◦ Stores the actual HDFS data blocks

 JobTracker
◦ Manages MapReduce jobs

 TaskTracker
◦ Monitors individual Map and Reduce tasks



 Stores the HDFS file system information in a 
fsimage

 Updates to the file system (add/remove 
blocks) do not change the fsimage file
◦ They are instead written to a log file

 When starting the NameNode loads the 
fsimage file and then applies the changes in 
the log file



 NOT a backup for the NameNode

 Periodically reads the log file and applies the 
changes to the fsimage file bringing it up to 
date

 Allows the NameNode to restart faster when 
required



 JobTracker
◦ Determines the execution plan for the job

◦ Assigns individual tasks

 TaskTracker
◦ Keeps track of the performance of an individual 

mapper or reducer



Other available tools



 MapReduce is very powerful, but can be 
awkward to master

 These tools allow programmers who are 
familiar with other programming styles to 
take advantage of the power of MapReduce



 Hive
◦ Hadoop processing with SQL

 Pig
◦ Hadoop processing with scripting

 Cascading
◦ Pipe and Filter processing model

 HBase
◦ Database model built on top of Hadoop

 Flume
◦ Designed for large scale data movement


