- Given a set of \(n \) points \(S \), find the smallest convex polygon containing all the points.
- We'll present the convex polygon as the ordered sequence of vertices.
Brute Force #1 \(O(n^4) \)

- Any point inside any triangle is not part of the hull
- Sort by polar angle around a centroid

Brute Force #2 \(O(n^2) \)

- For each line segment (pair of points) if all other points are on the same side of that line, the segment is part of the hull.
Graham's Scan

1. Find a known point on the hull P
2. Sort the remaining points by polar angle in counter-clockwise order around P
3. Process the points in consecutive triples $P_iP_2P_3$
 - If $\angle P_1P_2P_3 < 180^\circ$ then P_2 is in the interior of the triangle PP_1P_3 therefore not part of the hull
- If $\angle P_1P_2P_3 < \pi$ discard P_2 and try $P_0P_2P_3$

- otherwise advance to $P_2P_3P_4$
GrahamScan(Q)
1. let \(p_0 \) be the point in \(Q \) with the lowest \(y \)-coordinate \(\Theta(n) \)
2. let \(\langle p_1, p_2, \ldots, p_m \rangle \) be the remaining points in \(Q \)
 sorted by polar angle around \(p_0 \) \(\Theta(n \log n) \)
3. if \(m < 2 \)
 4. return "convex hull is empty"
5. else let \(S \) be an empty stack
6. \(\text{Push}(p_0, S) \)
7. \(\text{Push}(p_1, S) \)
8. \(\text{Push}(p_2, S) \)
9. for \(i = 3 \) to \(m \)
10. \(\text{while} \) the angle formed by \(p_i \) and the top 2 elements of \(S \) makes a non-left turn
11. \(\text{Pop}(S) \)
12. \(\text{Push}(p_i, S) \)
13. return \(S \)
PotD: Singleton Finder

- Given a sorted array in which each element appears twice and one element appears only once. Give a divide and conquer algorithm to find that element with complexity $O(\log n)$

- Example

 input: [1, 1, 3, 3, 4, 5, 5, 7, 7, 8, 8]
 output: 4