Programming Assignment 2
Simple Grammar Analyzer

Due: December 4, 2015

(CS311 Fall 2015

Overview

In this project you will be writing a program to read in a grammar and a string and determine
if the grammar can generate that string. Unlike with project 1 where any DFA was a possible
input, you will only need to be able to deal with specific grammars. You may use any programming
language you choose.

Projects should be sent to dleblanc@pdzx.edu with the following subject line:
CS311 Fall 2015 Project2 *your name*

Your e-mail should contain as attachments your completed working code and a 1-2 page, not
including sample inputs/outputs, writeup describing your work. The writeup must be submitted
as a PDF. If your code is comprised of several files please zip the files before sending. As an
alternative, you can send a link to a repository containing your code.

1 Encoding a Grammar [25 pts]

For this part of the project you need to find a way to represent a Context-Free Grammar as a file
so that your program can read that file in part 2. For this project we will be restricting ourselves
to a very small subset of the possible grammars that can exist. There are two main criteria the
grammars need to have.

1. All rules in the grammar must have a terminal as the first symbol on the right hand side of
the rule.

2. No variable in the grammar can have two rules with the same terminal as the first symbol on
the right hand side.

For full credit you must encode the following languages and at least one additional language of
your choosing.

{a"#b" | n > 0}
{w#w™ | w e {0,1}}
{a'#V#F# | i = j and i, j, k > 0}
If you are having trouble creating grammars that obey the described criteria feel free to contact

me or talk with your classmates. The encoding must be your own work, but I won’t be as strict on
the grammars.



2 Reading the Grammar [10 pts]

Once you have created the grammars you need to read them into some data structure of your
choice. Read the next section to see how the grammars will be used to parse a string. The process
will be similar to the pushdown automatons we discussed in class. You will also need to implement
a way for the user to enter a string to be parsed. A simple command-line interface is what I
recommend, but you are welcome to make another choice if you have other ideas.

3 Parsing the String [25 pts]

To parse a string you will need to maintain a stack and an input buffer. Begin by pushing the
start variable onto the stack. Then repeat the following until you empty the input buffer.

1. Pop an element from the stack.

2. If the popped element is a variable, look at the next character in the input and use that to
determine which rule to apply. Then push the right hand side of that rule onto the stack. If
no rule matches the next input reject the string.

3. If the popped element is a terminal, make sure it matches the next character in the input and
remove both. If it does not match reject the string.

4. If the stack is empty and the input buffer is not, reject the string.

5. If both the stack and the input buffer are empty, accept the string.

4 Testing [20 pts]

Once you have finished the program you will need to perform some thorough tests. You may
assume that the grammar files are in whatever format you specify. Be sure to test a wide variety of
input strings for each grammar. At minimum you need to test each possible accepting or rejecting
path, as well as any corner cases that may exist for you language. A good strategy is to manually
generate a small set of test cases for each grammar and then randomly generate some additional
string that can be used. You may submit the tests in their own file or at the end of your writeup.

5 Writeup [20 pts]

Your writeup should walk through each of the above steps and explain why you took the approach
you did. I would also like answers to the following questions.

1. Why were those particular restrictions placed on the grammars?
2. If those restrictions weren’t there, how would your program need to change?
3. What would happen if the grammar were ambigious?

4. What other approaches might be used to tell if a string can be generated by a given grammar?



