True/False Questions

- 1. Answer whether the following statements are true or false and briefly explain your answer.
 - (a) [TRUE / FALSE] There exists a finite language that cannot be represented with a DFA. [5 pts]
 - (b) [TRUE / FALSE] For any NFA N you can create a new NFA N' that accepts the same [5 pts] language and has a single accept state.
 - (c) [TRUE / FALSE] For any DFA D you can create a new DFA D' that accepts the same [5 pts] language and has a single accept state.
 - (d) [TRUE / FALSE] For any context-free language, there exists a PDA that decides that [5 pts] language.
 - (e) [TRUE / FALSE] The intersection of a regular language and a context-free language is [5 pts] context-free.
 - (f) [TRUE / FALSE] Any ambiguous CFG can be converted into an equivalent unambiguous [5 pts] CFG.

Language Identification

2. For each of the following languages, determine if it is regular, context-free, or neither. Briefly explain your reasoning.

(a) $\{a^*b^*c^*\} - \{a^nb^nc^n \mid n \ge 0\}$	[5 pts]
A. Regular Language	
B. Context-Free Language	
C. Neither	
(b) $\{w \mid w \in \{a, b\}$ contains an equal number of a's and b's $\}$	[5 pts]
A. Regular Language	
B. Context-Free Language	
C. Neither	
(c) $\{0^k u 0^k \mid k \ge 1 \text{ and } u \in \Sigma^*\}$	[5 pts]
A. Regular Language	
B. Context-Free Language	
C. Neither	

Drawing DFAs

3. Draw a DFA that recognizes the following language over the alphabet $\Sigma = \{0, 1\}$.	[5 pts]
$\{w \mid w \text{ contains the substring } 10001\}$	

4. Draw a DFA that recognizes the following	language over the alphabet $\Sigma = \{a, b\}.$	[5 pts]
---	---	----------

 $\{w \mid w \text{ has exactly } 2 a \text{'s and at least } 2 b \text{'s} \}$

5. Draw a DFA that recognizes the following language over the alphabet $\Sigma = \{a, b\}$. [5 pts]

 $\{w \mid w \text{ has an even number of a's and one or two b's}\}$

6.	Draw a DFA tha	at recognizes the following language over the alphabet $\Sigma = \{a, b\}$.	[5 pts]
		$\{w \mid w \text{ starts with an a and has at most two b's}\}$	
7.	Draw a DFA the	at recognizes the following language over the alphabet $\Sigma = \{a, b\}$.	[5 pts]
		$\{w \mid w \text{ has an even length and an odd number of a's}\}$	
8.	Draw a DFA the	at recognizes the following language over the alphabet $\Sigma = \{a, b\}$.	[5 pts]
		$\{w \mid w \text{ is not an element of } a^*b^*\}$	
9.	Draw a DFA tha	at recognizes the following language over the alphabet $\Sigma = \{a, b\}$.	[5 pts]
		$\{w \mid w \text{ is any string that does not contain exactly 3 a's}\}$	
10.	Draw a DFA the	at recognizes the following language over the alphabet $\Sigma = \{0, 1\}$.	[5 pts]
		$\{w \mid w \text{ contains the substring } 0101\}$	
11.	Draw a DFA the	at recognizes the following language over the alphabet $\Sigma = \{0, 1\}$.	[5 pts]
		$\{w \mid w \text{ has length} \ge 3 \text{ and the third symbol is a } 0\}$	
12.	Draw a DFA the	at recognizes the following language over the alphabet $\Sigma = \{a, b\}$.	[5 pts]
		$\{w \mid w \text{ has length of at most } 5\}$	
13.	Draw a DFA the	at recognizes the following language over the alphabet $\Sigma = \{a, b\}$.	[5 pts]
		$\{w \mid w \in a^n b^n \text{ where } n \le 2\}$	
14.	Draw a DFA the	at recognizes the following language over the alphabet $\Sigma = \{0, 1\}$.	[5 pts]
		$\{w \mid \text{ every odd position in w contains a } 1\}$	
15.	Draw a DFA tha	at recognizes the following language over the alphabet $\Sigma = \{a, b\}$.	[5 pts]

- $\{a, aa, aaa, b, bb, bbb\}$
- 16. Draw a DFA that recognizes the following language over the alphabet Σ = {a, b}. [5 pts]
 {w | w contains an even number of a's and an odd number of b's and does not contain the substring ab}
 (hint: can you describe this language more simply)
- 17. Draw a DFA that recognizes the following language over the alphabet $\Sigma = \{0, 1\}$. [5 pts] $\{w \mid w \text{ is all strings that do not contain a pair of 1's that are separated by an odd number of symbols}$

18. Draw a DFA that recognizes the following language over the alphabet $\Sigma = \{a, b\}$. [5 pts]

 $\{w \mid w \text{ has at least three } a$'s and at least 2 b's $\}$

19. Draw a DFA that recognizes the following language over the alphabet $\Sigma = \{a, b\}$. [5 pts]

 $\{w \mid w \text{ has an even number of a's and each a is followed by at least one b}\}$

Drawing NFAs

20. Draw an NFA that recognizes the following language over the alphabet $\Sigma = \{0, 1\}$. [5 pts]

 $\{w \mid w \in 0^*\}$ with 1 state

21. Draw an NFA that recognizes $A \circ B$ for the following languages A and B over the alphabet [5 pts] $\Sigma = \{0, 1\}.$

 $A = \{w \mid w \text{ contains an even number of 0's}\}$

 $B = \{ w \mid w \text{ ends with } 0011 \}$

22. Draw an NFA that recognizes $A \circ B$ for the following languages A and B over the alphabet [5 pts] $\Sigma = \{0, 1\}.$

 $A = \{w \mid w \text{ contains a 0 in every odd numbered space}\}\$

 $B = \{ w \mid w \text{ ends with } 000 \}$

23. Draw an NFA that recognizes the following language over the alphabet $\Sigma = \{a, b, c, d\}$. [5 pts]

 $\{w \mid w \text{ does not contain every symbol in}\Sigma\}$

Regular Language Pumping Lemma

24. Use the regular language pumping lemma to show that each of the following languages are not regular.

(a) $\{0^n 1^n 2^n \mid n \ge 0\}$	[10 pts]
(b) $\{w \in \{a, b, c\}^* \mid w \text{ contains more } a$'s than b 's a	[10 pts]
(c) $\{a^{2^n} \mid n \ge 0\}$	[10 pts]
(d) $\{ww \mid w \in \{a, b\}^*\}$	[10 pts]
(e) $\{a^m b^n \mid n > m\}$	[10 pts]
(f) $\{a^p \mid p \text{ is prime}\}$	[10 pts]
(g) $\{w \mid w \in \{a, b\}^*$ and w contains an equal number of a's and b's $\}$	[10 pts]

Regular Language Proofs

25. Prove that the language:

 $\{w \mid w \text{ is a multiple of } k \text{ represented in binary}\}$

is regular for all finite values of k. (Hint: You need to describe a general construction for all k. Recall the homework and try some small values of k if you need to see the pattern.)

[10 pts]

Midterm Practice

26.	Prove that every NFA can be converted to an equivalent one with a single accept state.	[5 pts]
27.	For the following languages over the alphabet, $\Sigma = \{0, 1\}$:	[10 pts]
	$WW_k = \{ww \mid w \in \Sigma^* \text{ and } w \text{ is of length } k\}$	
	(a) Show that for each k, no DFA can recognize WW_k with fewer than 2^k states. (b) Describe a much smaller NFA for $\overline{WW_k}$, the complement of WW_k .	
28.	We define the $avoids$ operation for languages A and B to be	[10 pts]
	A avoids $B = \{ w \mid w \in A \text{ and } w \text{ doesn't contain any string in } B \text{ as a substring} \}$	
	Prove that the class of regular languages is closed under the <i>avoids</i> operation. (Hint: you can construct the <i>avoids</i> operation using things we've already proven in class)	
Co	ontext-Free Grammars	
29.	Write a context-free grammar for the following language over the alphabet $\Sigma = \{a, b\}$.	[5 pts]
	$\{w \mid w \text{ the length of } w \text{ is odd}\}$	
30.	Write a context-free grammar for the following language over the alphabet $\Sigma = \{a, b\}$.	[5 pts]
	{ The empty set}	
31.	Write a context-free grammar for the following language over the alphabet $\Sigma = \{a, b\}$.	[5 pts]
	$\{w \mid w \text{ contains more } a$'s then b 's $\}$	
32.	Write a context-free grammar for the following language over the alphabet $\Sigma = \{a, b\}$.	[5 pts]
	$\{a^ib^j\mid i\neq j\}$	
33.	Write a context-free grammar for the following language over the alphabet $\Sigma = \{a, b\}$.	[5 pts]
	$\{x_1 \# x_2 \# \dots \# x_k \mid k \ge 1, \text{ each } x_i \in \Sigma^*, \text{ and for some } i \text{ and } j, x_i = x_j^R\}$	
34.	Write a context-free grammar for the following language over the alphabet $\Sigma = \{a, b\}$.	[5 pts]
	$\{w \# x \mid w^R \text{ is a substring of } x\}$	
35.	Write a context-free grammar for the following language over the alphabet $\Sigma = \{a, b\}$.	[5 pts]
	$\{w \mid w \text{ contains at least as many } a$'s as b 's}	
36.	Write a context-free grammar for the following language over the alphabet $\Sigma = \{a, b\}$.	[5 pts]
	$\{xy \mid x, y \in \Sigma^* \text{ and } x = y \text{ but } x \neq y\}$	

37. Write a context-free grammar for the following language over the alphabet $\Sigma = \{a, b\}$. [5 pts]

 $\{w \mid w \text{ does not contain the substring } aa\}$

38. Write a context-free grammar for the following language over the alphabet $\Sigma = \{a, b, c\}$. [5 pts]

$$\{a^i b^j c^k \mid i = j \text{ or } j = k\}$$

Context-Free Pumping Lemma

39. Use the context-free pumping lemma to show that the following language over the alphabet, [10 pts] $\Sigma = \{a, b, c\}$ is not context-free.

$$B = \{a^{i}b^{j}c^{k} \mid i > j > k \ge 0\}$$

40. Use the context-free pumping lemma to show that the following language over the alphabet, [10 pts] $\Sigma = \{0, 1\}$ is not context-free.

$$C = \{0^n \# 0^{2n} \# 0^{3n} \mid n \ge 0\}$$

41. Use the context-free pumping lemma to show that the following language over the alphabet, [10 pts] $\Sigma = \{a, b\}$ is not context-free.

$$\{www \mid w \in \{a, b\}^*\}$$

Context-Free Language Proofs

42. If A and B are regular languages then the following language C is context-free: [10 pts]

 $C = \{xy \mid x \in A \text{ and } y \in B \text{ and } |x| = |y|\}$