Fingering instability in an inverse Saffman-Taylor experiment

Farzam Zoueshtiagh¹, Ilyesse Bihi^{1,2}, Jason E. Butler², Christine Faille³, Michaël Baudoin¹ ¹University of Lille, IEMN-CNRS 8520 ²University of Florida ³University of Lille, INRA-PIHM

STANDARD Saffman-Taylor fingering instability

- It occurs when a low viscous fluid displaces a more viscous fluid.
- It results from the decrease of flow resistance as the fluid of lower viscosity replaces the more viscous one.

INVERSE Saffman-Taylor fingering instability

It is revisited experimentally when a viscous fluid (water) displaces air when partially wetting particles are lying on the walls.

Though the displacement of air with a liquid is typically stable, the presence of the particles results in a fingering instability

Varying experimental parameters: $2ml/h \le Q \le 2000ml/h$, $0.01 \le C \le 0.7$ and $0.1mm \le H \le 1mm$

Conclusion: This inverse Saffman-Taylor fingering instability is driven by the integration of partially wetting particles into the liquid-air interface which results from the minimization of the interfacial energy.

Reference: I. Bihi, M. Baudoin, J.E. Butler, C. Faille, F. Zoueshtiagh, (2016) Inverse Saffman-Taylor Experiments with Particles Lead to Capillarity Driven Fingering Instabilities, *Phys. Rev. Lett.* 117, 034501

