Analog Artist Tutorial

This tutorial is designed to introduce you to the tools we will use in ECE 746. It will introduce you to the **Cadence Environment**, specifically **Composer**, **Analog Artist** and the **Results Browser**.

The following typeface and color conventions will be used in this document:

- General Text: add cadence
- Commands / Menu Selections: add cadence
- Screen Output: add cadence

1. Starting the Cadence Environment:

% add cadence

Use the following commands to start Cadence applications:

openbook Cadence online documentation

icde &Basic digital and analog design entryicds &Front end designicms &Front end analog, mixed signal and microwave designicca &Cell based chip assemblylayout &Basic layout with interactive DRClayoutPlus &Basic layout plus automated design toolsmsfb &Mixed-signal IC designicfb &Front to back design

spectre <input file> &Spectre circuit simulatorverilog <input file> &Verilog HDL simulatorsignalscan &Analog/digital waveform display

We are now using version 4.4.5 of the Cadence IC tools. If you require version 4.4.2, please type "add cad442" instead.

Problems with the tools? Wondering where SimWaves went? Check the FAQ at

http://www.ece.ncsu.edu/cadence/doc/cdsuser/

% mkdir Artist % cd Artist % icfb &

A few seconds later, you'll see CIW (Command Interpreter Window) and Library Manager

File Tools Options Tec	hnology File		Help 1
Loading layers.cxt	c/tools/plot/.cdsplotinit		
Loading NCSU SKILL rout END OF SITE CUSTOMIZATI			
Loading NCSU SKILL rou	tines		
mouse L:	М :	R:	
>			

Library Manager: Directoryy.ncsu.edu/users/g/gma2/Artist File Edit View Design Manager File Show Categories Show Files						
Library	— Cell — — —	View				
Ĭ	Ĭ.	Ĭ.				
NCSU_Analog_Parts NCSU_Digital_Parts NCSU_Sheets_8ths basic cdsDefTechLib cmosx_Basic cmosx_Cells cmosx_LPCells cmosx_Pads cmosx_dodBorders cmosx_genericBasic cmosx_mosisLocal						
- Messages						
Loading NCSU Library Manager customizationsdone.						

2. Create a Design Library:

In Library Manager, Click File -> New -> Library In the Name field, enter "ArtistTutorial" In the Technology Library box, select Attach to existing tech library -> TSMC 0.30u Press OK

ОК	Cancel	Apply			Help
Library					
Name	Art:	istTuto	rial[
Path:	Ĭ.				
Techno	logy Libr	ary			
Other		ou must		n (i.e., layout) data you do not need a tech library isting tech library or compile one.	<i>.</i>
	🔷 No te	ch librai	ry needed		
	🔶 Attac	h to exi	sting tech library>	TSMC 0.30u CMOS025 (5M, HV FET)	-
	🔷 Comp	ile tech	library		
Misc.					
	I/O Pa	d Type:	🔷 🔶 Perimeter 🐟 A	nea annay	7

🗖 Library Manag	er: Directoryy.ncsu.edu/users/{	g/gma2/Artist 🛛 🗖						
<u>File Edit View Design</u>	Manager	<u>H</u> elp						
🗌 Show Categories 🛛 🗌 S	Show Categories Show Files							
_ Library	Cell	- View						
ArtistTutorial	I	¥						
ArtistTutorial NCSU_Analog_Parts NCSU_Digital_Parts NCSU_Sheets_8ths NCSU_TechLib_tsmc03 basic cdsDefTechLib cmosx_Basic cmosx_Cells cmosx_Cells cmosx_Pads cmosx_dodBorders cmosx_genericBasic cmosx_mosisLocal								
Messages								
Loading NCSU Library Manager customizationsdone.								

Then the Library Manager will refresh as follows:

3. Create a Schematic:

In Library Manager, select ArtistTutorial From the Menu Bar, select File -> New -> CellView Fill the Form as follows, then click OK

ок	Cancel	Defaults		Help		
Library N	ame	ArtistT	utorial	_		
Cell Name	• [myInverter				
View Nan	ne 📔	schematič				
Tool Composer-Schematic						
Library path file						
csu.edu/users/g/gma2/Artist/cds.lib						

A blank Schematic window will then appear. We need to generate a schematic as shown below:

Cmd	:	Sel:	0	Sta	atus: Re	ady				T=25	C Simu	lator:	hspice	eS 2
Tools	Design	Window	Edit	Add	Check	Sheet	Options	NCSU						Help
														·
					vdd									
€²														
କୁ ²			V	dd!	VØ			vdd	MØ					
~				G	ydc:	=5				Ø.Øn 👘				
V			a	nd!	· .			UI IUO	l=300 m:1	n 				
\mathbf{R}			۲		· ·	N E		, č	1) ou			
							· · ·	ουτ	📫 м1 👘					
34									tsmc254 w=45	, Ø,ØÅUT	cø			
\cap								· IL . gnd!	=3ØØ <mark> </mark> m:1	n i 🖓	└	DutCo	яр	
						IN	ען דעיוישׂ			gnd!				
鷴						ਾਪ	÷) v1.2	5		- · ·				
Q						gnd!	tr=5	ØØ.Øp						
							•		•					
							gnd .							
• ۲														
abc n	a nouse L:	showCli	ickInf	•()		M: :	schHiMous	ePopUp()		R: schZe	oomFit(1.0 0	. 9)	
<u>~</u> ,								1.1.1						

To generate a schematic like this, you will need to go through the following steps:

From the Schematic Window menu, select Add -> instance The Component Browser, will then pop up.

Commands	Help	3
Library Flatten Filter	NCSU_Analog_I	Parts
pbsim pbsim4 pjfet pmos4 pmos4_ pmos_h pnp userpn	hv v P	
P_Tran	sistors	

In the Library field, select NCSU_Analog_Parts

We will place the following instances in the **Schematic Window** from the **NCSU_Analog_Parts** library as instructed below:

N_Transistor	:	nmos
P_Transistor	:	pmos
Supply_Nets	:	vdd , gnd
Voltage_Sources	:	vdc,vpulse
$R_L C$:	cap

Note: pay attention to the parameters specified in *vdc, vpulse,* and *cap*. These parameters are very important in simulation

A. Place pmos instance:

In **Component Browser**, select **P_Transistor** and then **pmos** Place it in the **Schematic Window**

Hide	Cancel	Defaults				Help
Library	NCSU_An	alog_Parts			Brow	se
Cell	pmos					
View	symbol					
Names	Ĭ.					
Array		Rows 1		Columns	1	
Rotat	e	Side	ways		Upside Dov	vn
Model na	900		tsmc2	:5P		
Model Ty	/pe		🔶 sys	tem 🔷 us	er	
Bulk nod	e connecti	on	vddl			
Multiplier			1			
Fingers			1			
			1. Charles			1

B. Place nmos instance:

In **Component Browser**, select **N_Transistor** and then **nmos** Place it in the **Schematic Window**

Hide	Cancel	Defaults			Help
Library	NCSU_An	alog_Parts	;		Browse
Cell	nnos				
View	symbolį́				
Names	Ĭ.				
Array	I	Rows 1		Columns	. <u>1</u> .
Rotat	e	Side	ways		Upside Down
Model na	me		tsmc2	5N	
Model Ty	pe		🔶 sys	stem 🔷 us	ser
Bulk node	e connecti	on	gnd lį́		
Multiplier			1		
Fingers			1		
			Z		

C. Place gnd instance:

In **Component Browser**, select **Supply_Nets** and then **gnd** Place it in the **Schematic Window**

Hide	Cancel	Defaul	ts		Help
Library	NCSU_An	alog_P:	arts		Browse
Cell	gnđ				
View	symbolį				
Names					_
Array	l	Rows	1	Columns	1
Rotate	e		Sideways		Upside Down

D. Place vdd instance:

In **Component Browser**, select **Supply_Nets** and then **vdd** Place it in the **Schematic Window**

Hide	Cancel	Defaults		Help
Library	NCSU_Anal	Log_Parts		Browse
Cell	vdď			
View	symbol			
Names	Ĭ			
Array	R	ows 1	Columns	; <u>1</u> .
Rotat	e	Sideways		Upside Down

E. Place IN pin:

From the Schematic Window menu, select Add -> Pin... In the Pin Name field, enter "IN" In the Direction field, select input Place it in the Schematic Window

Hide Cancel	Defaults		Help
Pin Names	IN		
Direction	input 😑	Bus Expansion 🔶 o	ff 🔷 on
Usage	schematic 🗖	Placement 💦 🔶 s	ingle 🔷 multiple
Rotate	Si	deways	Upside Down

F. Place OUT pin:

From the Schematic Window menu, select Add -> Pin... In the Pin Name field, enter "OUT" In the Direction field, select output Place it in the Schematic Window

Hide Cancel	Defaults		Help
Pin Names	OUT		
Direction	output 🖃	Bus Expansion 🔺	off 🔷 on
Usage	schematic 🖃	Placement 🛛 🔺	🕨 single 🐟 multiple
Rotate	S	ideways	Upside Down

G. Place vdc instance

In **Component Browser**, select **Voltage Sources** and then **vdc** In the DC voltage field, enter "**5 v**" Place it in the **Schematic Window**

Hide	Cancel Defa	ults		Help
Library	NCSU_Analog_	Partš		Browse
Cell	vdc			
View	symbol			
Names	Ĭ.			
Array	Rows	1.	Columns	1
Rotat	ie 🛛	Sideways		Jpside Down
AC magn	itude			
AC phase	9	Ĭ.		
DC volta	ge	5 V		
Noise file	e name	Ĭ.		
Number (of noise/freq pai	irs 🕅		
		Y		

H. Place vpulse instance

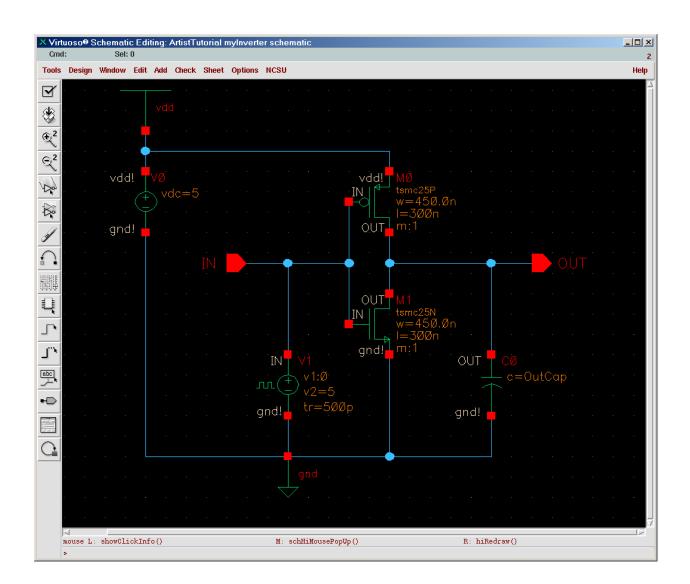
In **Component Browser**, select **Voltage_Sources** and then **vpulse** Enter the values as shown in the following form (next page) Place it in the **Schematic Window**

🗙 Edit Object Properti	es	×
OK Cancel Apply [Defaults Previous Next	Help
Annula Ta Oply Cu	rrent 🖃 🛙 instance 🖃 🛛	
Show _ syst	tem 🔳 user 📕 CDF	
Browse	Reset Instance Labels Display	
Property	Value	Display
Library Name	NCSU_Analog_Parts	off 🖃
Cell Name	vpulse	off 🚍
View Name	symboli	off 🖃
Instance Name	Vl	off 🖃
	Add Delete Modify	1
User Property	Master Value Local Value	Display
lvslgnore	TRUE	off 🖃
CDF Parameter	Value	Display
AC magnitude	Ĭ.	off 🖃
AC phase	Ĭ	off =
Voltage 1	0 V <u>í</u>	off 💷
Voltage 2	5 V <u>ř</u>	off 🖃
Delay time	j0 s	off 🖃
Rise time	500p sį	off 🚍
Fall time	500p 🧃	off 🚍
Pulse width	3n si	off 🖃
Period	6ns	off 🖃
DC voltage	Ĭ.	off 🚍
Noise file name	<u>I.</u>	off 🖃
Number of noise/freq pai		off 🖃
Temperature coefficient		off 🖃
Temperature coefficient		off 🖃
Nominal temperature	Ĭ	off 🖃
Frequency	Ĭ	off 🖃
Number of harmonics	1	off 🖃
Gibb's compensation	<u> </u>	off 🖃
DC source	Ĭ	off 🖃

I. Place cap instance

In Component Browser, select **R L C** and then cap

In the Capacitance field, enter "OutCap F"


(This **Design Variable** will be used in **Artist**.)

Place it in the Schematic Window

OK Cancel Apply)efaults Prev	ious Next		Help								
	Show system user CDF											
Browse	Reset Insta	ance Labels Di	splay									
Property		Value		Display								
Library Name	NCSU_Analo	g_Parts		off 🖃								
Cell Name	capi			off 😑								
View Name	symboli			off 🖃								
Instance Name	CQ			off 🖃								
	Add	Delete	Modify									
CDF Parameter		Value		Display								
Capacitance	OutCap	F.		off 💷								
Initial condition				off 🖃								
Model name	Ĭ.			off 🖃								
Width	Ĭ.			off 🖃								
Length				off 🖃								
Multiplier	1			off 😑								

J. Place wires

In the Schematic Window menu, select Add -> Wire (narrow) Place the wire to connect all the instances Select Design -> Check and Save. CIW will report any errors. Your schematic should look like the one shown below.

4. Set up the Simulation Environment

You are now prepared to simulate your circuit.

From the Schematic Window menu, select **Tools** -> **Analog Environment** A window will pop-up. This window is the **Analog Artist Simulation Window**.

Stat	tus: Re	ady						-	T=25 (C Si	imulato	r: hspice	s 4
Sessi	on Se	tup	Analyses	Vari	ables	Outputs	Simulatio	on	Resul	ts	Tools		Help
	De	sign			Analyses								
Library	/ Arti:	stTu	torial	#	Туре	A	rguments.			• • • •		Enable	⊐ AC F TRAN
Cell	myIn												
View	schei	mati	c										
E	Design '	Varia	bles	Outputs							Ē		
# N	ame	Va	alue	#	Name	/Signal/	Expr	Val	ue	Plo	t Save	March	. J
													8
													\$
>													\sim

A. Choose a Simulator

From the **Analog Artist** menu, select **Setup** -> **Simulator/Directory/Host**. Enter the fields as shown below.

Choose **hspiceS** as your simulator.

Your simulation will run in the specified Project Directory.

You may choose any valid pathname and filename that you like.

OK Cancel	Defaults	Help
Simulator	hspice S 🖃	
Project Directory	~/cadence/simulation]	
Host Mode	$igstarrow$ local $\ \bigtriangledown$ remote $\ \diamondsuit$ distributed	
Host		
Remote Directory		

B. Choose Analysis

We will do Transient Analysis on the circuit that we just produced.

From the **Analog Artist** menu, select **Analyses** -> Choose... Fill out the form as follows:

OK Cancel Defaults	s Apply	Help
Analysis 🔷 dc 🔷	noise 🔷 ac 🔶 tran	
т	ransient Analysis	
From 0 1	To 15rį	By 0.1n]
Max Step		
Enabled 📕		

C. Add a Variable

From the Analog Artist menu, select Variables -> Edit The Editing Design Variables form will appear. Fill out the form as shown below, and then click Add to send this Variable to the Table of Design Variables.

(We entered the OutCap Design Variable in section 3.I.)

OK Cancel	Apply Apply & Run Simulatio	n		Help
:	Selected Variable	Та	able of De	sign Variables
Name	OutCapi	#	Name	Value
Value (Expr)	0.01p			
Add Delete	Change Next Clear Find			
Cellview Varial	oles Copy From Copy To			

D. Setup Output

When using Transient Analysis, the transient voltage will be saved automatically. We can save the current through capacitor C0 in the schematic by doing the following:

From the Analog Artist menu, select

Outputs -> To be Saved -> Select On Schematic


In the Schematic Window, click on the lower terminal (not the wire) of capacitor C0.

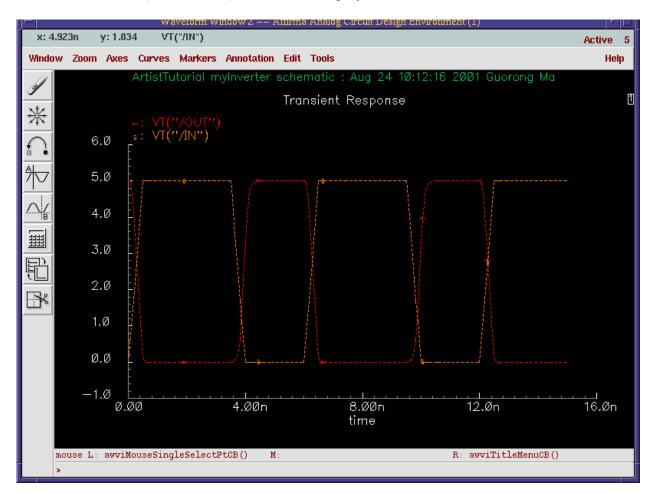
After you click on the terminal, the Analog Artist Window should look like this:

S	tatus: Re	eady							T=25	C Sir	nulato	r: hspice	S 3
Ses	ssion Se	etup	Analyses	Varia	ables	Output	s Sin	nulation	Resu	ts T	Tools		Help
	De	esign		Analyses								Ļ	
Libr	ary Arti	istTu	torial	#	Туре		Argum	ents				Enable	⊐ AC ⊏ TRAN
Cell	myIr	wert	er	1	tran		0	15n	100p)		yes	⊐DC a a a
Viev	V sche	emati	с										I I X Y Z
	Design	Varia	bles	Outputs							₽		
#	Name	Va	alue	#	Name	/Signal	./Expr	Va	due	Plot	Save	March	4
1	OutCap	10)f	1	CO/M	INUS				no	yes	no	
>				,									\sim

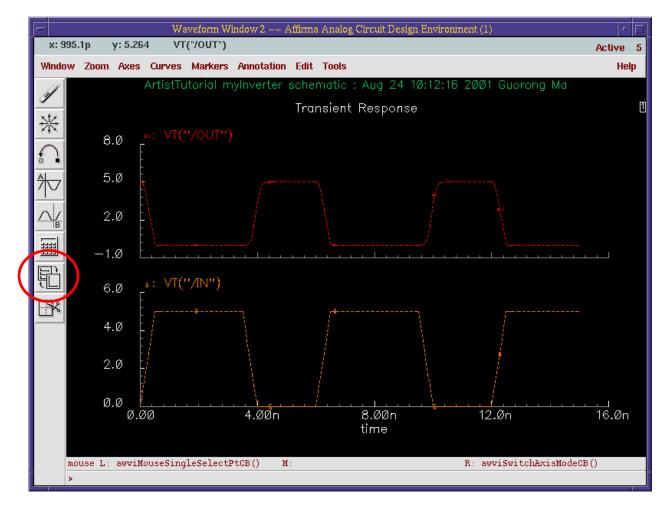
5. Run Simulation

From the Analog Artist menu, select Simulation -> Run, Look at the echoing information in the CIW window. If the simulation succeeds, the window will display "...successful."

6. View Waveforms


From the Analog Artist menu, select

```
Results -> Direct Plot -> Transient Signal
The Waveform Window will then pop up
```


In the Schematic Window,

```
Click on the IN wire and then Click on the OUT wire
Press ESC on your keyboard
```

The two curves (IN and OUT) will then be displayed in this window:

Press the **Switch Axis Mode** icon (circled in Red) on the left side of the **Waveform Window** The waveforms will then be displayed separately as shown below:

7. Use Calculator

In Artist Window, go to Tools -> Calculator.

The Calculator Window will then pop up, as shown below:

	- Calculator -												
Window M	Window Memories Constants Options Help 6												
I	I												
🔷 standard 💊 RF													
browser	vt	it			()	sto	rci	Sp	Special Functions 🚘			
wave	vf	if	cle	ar	space	0	sin	asin	mag	In	exp	abs	
family	vs	is	-	•	undo	eex	COS	acos	phase	log10	10**x	int	
erplot	vdc	idc	-	7	8	9	tan	atan	real	dB10	y**x	1/x	
plot	ор	opt	+	4	5	6	sinh	asinh	imag	dB20	x**2	sqrt	
printvs	vn	var	*	1	2	3	cosh	acosh	fl	f2	f3	f4	
print	mp		-I	0	•	+1-	tanh	atanh					

In Calculator Window, go to Options -> Set Algebraic

We are going to use the calculator to plot both the current through the capacitor and the absolute value of the capacitor current.

In Waveform Window, select Window -> Reset to clear the input and output plots from the window.

In the **Calculator Window**, click on the it button (3rd column of buttons on the top).

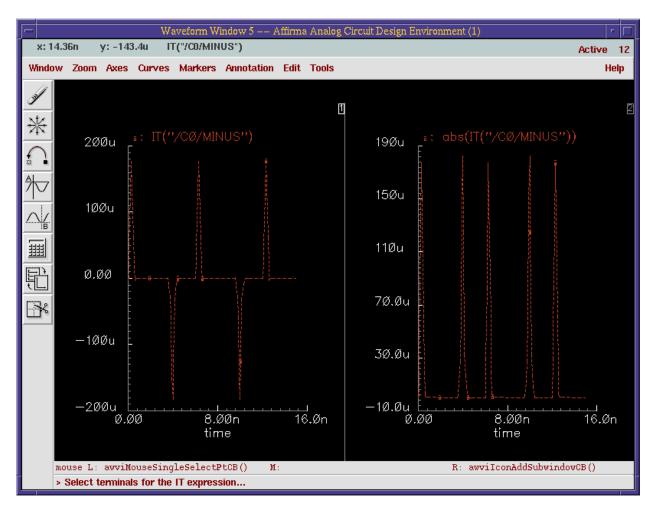
In the Schematic Window, click on the lower terminal of the capacitor.

Returning to the Calculator Window, the text area at the top should like this:

X Calcu	lator												_	
Window	Memories	Constants	Options										Help	6
[IT("/CO/	/MINUS")													
							🔶 st	andar	d 🔷	RF				_
hrowcou	- L	H		1	1	1	sto	rcl	1	Sn	ecial F	iuncti	ons _	

In the Calculator Window, press the **plot** button to plot this waveform in the Waveform Window.

In the Waveform Window, press the Add Subwindow button (bottom button on left).

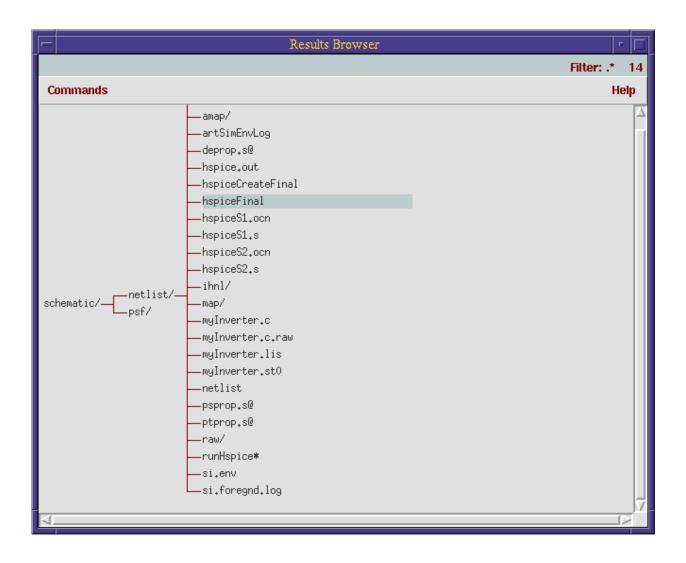

In the **Calculator Window**, press the **clear** button (4th Column, top) to erase the text area, press the **abs** button (last column, top), and press the **it** button.

In the Schematic Window, click on the lower terminal of the capacitor.

Returning to the Calculator Window, the text area at the top should like this:

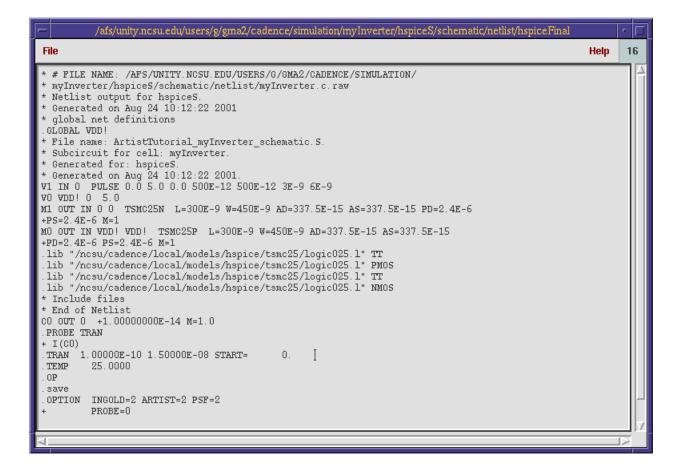
🗙 Calcu	lator									_	미지
Window	Memories	Constants	Options							Help	6
abs(IT("/CO/MINUS"](('									
						🔶 sta	ndard \prec	RF			
hmwsei	rl vt l	it.		<u>(</u>]	1 [sto	rcl	Speci	ial Funct	tions 🖃	1

In the Calculator Window, press the **plot** button to plot this waveform in the Waveform Window.


Your Waveform Window should now look like this:

8. Use Results Browser

In Artist Window menu, select Tools -> Result Browser In the pop-up window that appears, click OK


Browse Project Hierarchy					
OK Cancel	Defaults	Help			
Project Directory	ers/r/ravett/cadence/simulation/myInverter/hspic	e₫			

The **Results Browser Window** will then be displayed

In Results Browser Window, click netlist/ and then click hspiceFinal

A text window will then show the hspice netlist file for your circuit.

This is the end of the tutorial. On the last few pages we've added an extra section on using a PWL (piece wise linear) voltage source instead of a pulse source, for your edification. Our thanks go to Guorong Ma (gma2@unity.ncsu.edu) for writing the original version of this tutorial, which we have edited to bring to you. If there are any questions, please email either one of us:

ravett@eos.ncsu.edu mwbaker@eos.ncsu.edu

Thanks,


Ryan and Matt - Everyone's favorite ECE 746 TA's

Appendix:

9. Using PWL voltage sources.

Assuming you have gone through the previous tutorial and have successfully built your inverter, we will now show you how to use a PWL voltage source instead of the pulse source that the tutorial source. A PWL voltage source is a source whose output voltage is dependent on a list of time and voltage pairs that is set by the designer. This list defines what the output voltage should be at the given times, with the voltage being linearly interpolated between these points. This allows a designer to simulate things like digital input streams.

First, we must remove the old pulse source: In the **Schematic Window**, click on the pulse source object

Then click on the delete button to remove it (the pencil eraser icon)

Now from the Schematic Window menu, select Add -> Instance... The Component Browser should now pop up, like so:

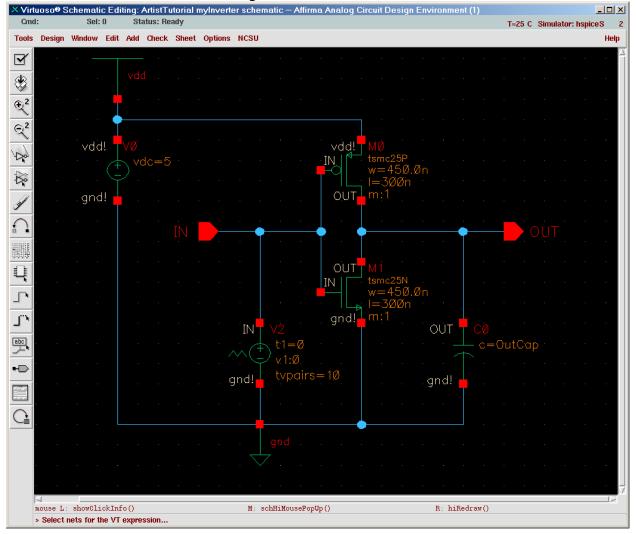
× Compon	ent Browser	_	
Commands		Help	3
Library	NCSU_Analo	og_Parts	=
Flatten			
Filter	4		
CONTEN Curren Diodes H_Spic Microw Misc_P N_Tran P_Tran	t_Sources e_Only ave_Parts		

In Component Browser, sele	ct Voltage _	Sources a	nd then vpwl .
The Add Instance Window s	hould now loo	ok something	like this:

×Add I	nstance				×
Hide	Cancel	Defaults			Help
Library	NCSU_An	alog_Par	ts		Browse
Cell	vpwl				
View	symboli				
Names	Ĭ.				
Array		Rows	1	Columns	1 <u>ľ</u>
Rotat	e	Si	deways	L	pside Down
				<u> </u>	<u> </u>
Number o	of pairs of	points	Ž		
AC magni		•	Ĭ.		
AC phase			Ĭ		
Time 1			Ĭ		
Voltage 1			0 V <u>í</u>		
Time 2			Ĭ		
Voltage 2	:		0 V <u>ř</u>		
DC volta	ge				
Delay tin	ne				
Noise file	e name				
Number o	of noise/fr	eq pairs	Q		
DC curre	nt				
Offset ve	oltage		Ĭ.		
Scale fac	:tor		Ĭ.		
Time sca			Ĭ.		
Period of					
Transitio			¥		
-	ture coeffi		ŭ.		
-	ture coeff				
	temperatu -	re	i. Y		
DC sourc	-				
кереатес	l function		ļ.		

While this option list looks very intimidating, we are really only concerned with a few of these many options.

The most important parts of this list are the "Number of pairs of points", which specifies how many (time, voltage) pairs you will be defining for this source, and the "Time X" and "Voltage X" entries where you actually define the point list.


For this tutorial we will do a simple 10-point list:

In the Add Instance Window, fill in the "Number of pairs of points" entry box with "10".

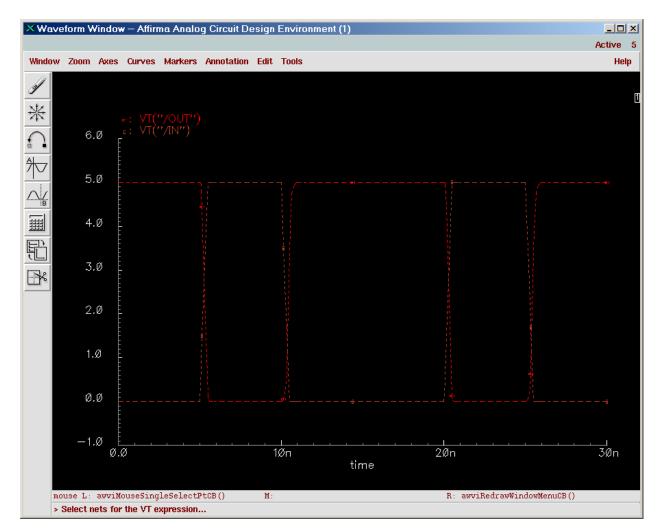
When the **Add Instance Window** finishes updating itself, fill in the time and voltage boxes with the following:

CDF Parameter	Value	Display
Number of pairs of points	10	off 🖃
AC magnitude	¥	off 🗖
AC phase	Ľ	off 🖃
Time 1	0 š	off 🖃
Voltage 1	0 v <u>ř</u>	off 🖃
Time 2	5n š	off 🖃
Voltage 2	0 v <u>ř</u>	off 🖃
Time 3	5.5n sž	off 🖃
Voltage 3	5 v <u>ř</u>	off 🚍
Time 4	10n š	off 🖃
Voltage 4	5 v <u>ř</u>	off 🖃
Time 5	10.5n š	off 🖃
Voltage 5	0 V <u>ř</u>	off 🖃
Time 6	20n s <u>í</u>	off 🖃
Voltage 6	0 V <u>ř</u>	off 💷
Time 7	20.5n š	off 🖃
Voltage 7	5 Vi	off 🖃
Time 8	25n s <u>í</u>	off 💷
Voltage 8	5 V <u>i</u>	off 🖃
Time 9	25.5n š	off 🖃
Voltage 9	0 V <u>ř</u>	off 🖃
Time 10	30n š	off 🖃
Voltage 10	0 V <u>ř</u>	off 🖃

- In the **Schematic Window**, add the source instance in the vacant spot left from where we removed the pulse source.
- In the Schematic Window, click the Check and Save button, and fix any errors it highlights.

Your schematic should look something like this:

Now we need to test our new circuit to see the PWL source in action.


Status: Ready	uit Design Environment (1)	□ × 4
Session Setup Analy	ses Variables Outputs Simulation Results Tools	Help
Design	Analyses	٠Ę
Library ArtistTutoria	# Type Arguments Enable	⊐ AC E TRAN
Cell myInverter	1 tran 0 15n 100p yes	⊐ DC
View schematic		X Y Z
Design Variables	Outputs	Ē
# Name Value	# Name/Signal/Expr Value Plot Save March	
1 OutCap 10f	1 CO/MINUS no yes no	~
		107

In **Analog Artist Window**, double-click on the entry highlighted below, which we set during the tutorial.

In the window that pops up, change the transient analysis so that it runs for 30 ns, like shown here:

🗙 Choosing Analyses — Affirma Analog Circuit Desig	n 🗵						
OK Cancel Defaults Apply	Help						
Analysis 🗼 dc 🔷 noise 🔷 ac 🔶 tran							
Transient Analysis							
From 0 To 30rě By 0. 1rě							
Max Step							
Enabled 📕							

Now, we can run the simulation just like we did in the tutorial. The plot in the **Waveform Window** should look like this:

Congratulations! You've just used a PWL voltage source.