Advanced Programming
Andrew Black and Tim Sheard

Lecture 10
Grammars
NFAs
Grammars 1

• Grammar
 – A set of tokens (terminals): T
 – A set of non-terminals: N
 – A set of productions \{ \text{lhs} \rightarrow \text{rhs} , \ldots \}
 • \text{lhs} \in N
 • \text{rhs} is a sequence of N U T
 – A Start symbol: S (in N)
In Haskell

data Production symbol =
 Prod { lhs:: symbol
 , rhs:: [symbol] }

data Grammar symbol =
 Gr { -- the set of terminal symbols
 term:: [symbol]
 -- the set of non-terminals
 , nonterm:: [symbol]
 -- the set of productions
 , prod:: [Production symbol]
 -- the start symbol
 , start:: symbol }

Record syntax

term :: Grammar a -> [a]
Main> :t nonterm
nonterm :: Grammar a -> [a]
Main> :t prod
prod :: Grammar a -> [Production a]
Main> :t start
start :: Grammar a -> a

Main> :t lhs
lhs :: Production a -> a
Main> :t rhs
rhs :: Production a -> [a]
Example Grammar

g1 = Gr ["1","2","","[","",""]"
 ["list1","elem","list2","list3"]
 [Prod "list1" ["[", "list2", "]"]]
 ,Prod "list2" []
 ,Prod "list2" ["elem", "list3"]
 ,Prod "list3" [",", "elem", "list3"]
 ,Prod "list3" []
 ,Prod "elem" ["1"]
 ,Prod "elem" ["2"]
 "list1"
Terminals = {"","", "1", "2", "[", "]"}
NonTerminals = {elem, list1, list2, list3}
Start = list1
 list1 -> [list2]
 list2 ->
 list2 -> elem list3
 list3 -> , elem list3
 list3 ->
 elem -> 1
 elem -> 2
Shortcut construction

- We can build a grammar form a list of its productions
 - Provide only the productions
 - All lhs symbols comprise N
 - All other symbols comprise T
 - Lhs of first production is S

```
shortcut ps = Gr term nonterm ps start
  where (Prod start _ : _) = ps
    nonterm = norm(map (\ (Prod lhs rhs) -> lhs) ps)
    all = concat(map (\ (Prod lhs rhs) -> lhs:rhs) ps)
    term = norm all \ nonterm
```
Example 2

prods2 =
[Prod "Sent" ["nounPhrase","verbPhrase"]
,Prod "nounPhrase" ["properNoun"]
,Prod "nounPhrase" ["article", "noun"]
,Prod "article" ["a "]
,Prod "article" ["the "]
,Prod "properNoun" ["Tom "]
,Prod "noun" ["cat "]
,Prod "noun" ["man "]
,Prod "verbPhrase" ["verb", "object"]
,Prod "verb" ["ate "]
,Prod "verb" ["stole "]
,Prod "object" ["article", "adjective", "noun"]
,Prod "adjective" ["pretty "]
,Prod "adjective" ["red "]
]
Main> shortcut prods2

Terminals = {"Tom ", "a ", "ate ", "cat ", "man ", "pretty ", "red ", "stole", "the "}
NonTerminals = {Sent, adjective, article, noun, nounPhrase, object, properNoun, verb, verbPhrase}
Start = Sent
 Sent -> nounPhrase verbPhrase
 nounPhrase -> properNoun
 nounPhrase -> article noun
 article -> a
 article -> the
 properNoun -> Tom
 noun -> cat
 noun -> man
 verbPhrase -> verb object
 verb -> ate
 verb -> stole
 object -> article adjective noun
 adjective -> pretty
 adjective -> red
Example 3

prods3 =
[Prod "E" ["T","E'", ",$"]
,Prod "E'" ["+", "T", "E'"]
,Prod "E'" []
,Prod "T" ["F", "T'"]
,Prod "T'" ["+", "F", "T'"]
,Prod "T'" []
,Prod "F" ["(" , "E", ")"]
,Prod "F" ["Id"]
,Prod "Id" ["x"]
]

g3 = shortcut prods3
Pretty Printed

Terminals = {"$", "(" , ")", "*", "+", "x"}
NonTerminals = {E, E', F, Id, T, T'}
Start = E
 E -> T E' $
 E' -> + T E'
 E' ->
 T -> F T'
 T' -> * F T'
 T' ->
 F -> (E)
 F -> Id
 Id -> x
Meaning of a grammar

• A grammar can be given several meanings
 – As a generator
 – As a recognizer

• Any recursive grammar generates an infinite set of strings
Generating Grammars

• Start with a non-terminal
• Rewriting rules
 – Pick a non-terminal to replace. Replace it with the rhs of one of its production.
• Repeat until no non-terminals remain

• A sentence of G: \(L(G) \)
 – Start with S
 – only terminal symbols
 – all strings derivable from G in 1 or more steps
Technique

- Start with a nonterm
 - choose `nounPhrase`
- Pick a production
 - choose:
 - `nounPhrase -> article noun`
- Generate all strings from each symbol in the rhs
 - `article = ["a ","the "]`
 - `noun = ["cat ","man "]`
- Make all possible combinations
 - “a cat”
 - “a man”
 - “the cat”
 - “the man”
- If there is more than 1 production for a symbol, compute sentences for each one, and then union them together.
All Possible combinations

oneEach :: [[String]] -> [String]
oneEach [] = ["""]
oneEach (x:xs) = [a++b | a <- x
 , b <- oneEach xs]

Main> oneEach [["x","y"],["1","2"],["A","B","C"]]
["x1A","x1B","x1C","x2A","x2B","x2C" ,"y1A","y1B","y1C","y2A","y2B","y2C"]
First Try

genA :: Grammar String -> String -> [String]

genA (Gr term nonterm ps start) symbol
 | elem symbol term = [symbol]

genA (gram@(Gr term nonterm ps start)) symbol
 = concat many
 where startsWith sym (Prod lhs rhs) = lhs==sym
 prods = filter (startsWith symbol) ps
 oneRhs (Prod lhs rhs) =
 oneEach(map (genA gram) rhs)
 many = map oneRhs prods
Test it

test1 = mapM putStrLn (genA g2 "Sent")

Main> test1
Tom ate a pretty cat
Tom ate a pretty man
Tom ate a red cat
Tom ate a red man
Tom ate the pretty cat
Tom ate the pretty man
Tom ate the red cat
Tom ate the red man
Tom stole a pretty cat
Tom stole a pretty man
Tom stole a red cat
Tom stole a red man
Tom stole the pretty cat
Tom stole the pretty man
Tom stole the red cat
Tom stole the red man
a cat ate a pretty cat
a cat ate a pretty man
...

Let's try it on grammar g1

- What happens?
- Why?

Terminals = {"", "1", "2", "[", "]"}
NonTerminals = {elem, list1, list2, list3}
Start = list1
 list1 -> [list2]
 list2 ->
 list2 -> elem list3
 list3 -> , elem list3
 list3 ->
 elem -> 1
 elem -> 2
Cut of generation after using a non-term n times

• Create a table of cutoff depths for each non-term.
 – type Tab = [(String, Int)]

• Operations on tables
 – Decrementing the cutoff for a given symbol
 decrement :: String -> Tab -> Tab
decrement s [] = []
decrement s ((x, n):xs)
 | s==x = (x, n-1):xs
 | True = (x, n):decrement s xs

 – Finding the cutoff
 find :: Eq a => a -> [(a, b)] -> b
find s ((x, n):xs) | s==x = n
 | True = find s xs
Second try

\[
\text{genB} :: \text{Grammar String} \rightarrow \text{Tab} \rightarrow \text{String} \rightarrow [\text{String}]
\]

\[
\text{genB} \ (\text{Gr term nonterm ps start}) \ \text{table symbol} \\
\quad | \ \text{elem symbol term} = [\text{symbol}]
\]

\[
\text{genB} \ (\text{gram@(Gr term nonterm ps start)}) \ \text{table symbol} \\
\quad | \ \text{find symbol table} \leq 0 = [] \\
\quad | \ \text{True} = \text{concat many}
\]

where \text{startsWith sym} \ (\text{Prod lhs rhs}) = \text{lhs==sym}

\text{prods} = \text{filter} \ (\text{startsWith symbol}) \ \text{ps}

\text{new sym} = \text{decrement sym table}

\text{oneRhs} \ (\text{Prod lhs rhs}) =

\quad \text{oneEach(map (genB gram (new lhs)) rhs)}

\text{many} = \text{map oneRhs prods}
Putting it all together

gen n (gram@(Gr term nonterm ps start))
 = genB gram table start
where table = map f nonterm
 f sym = (sym,n)
Test it

Main> gen 3 g1
["[]","[1,1,1]","[1,1,2]","[1,1]","[1,2,1]","[1,2,2]","[1,2]","[1]","[2,1,1]","[2,1,2]","[2,1]","[2,2,1]","[2,2,2]","[2,2]","[2]"}
Top Down Parsing

- Begin with the start symbol and try to derive the parse tree from the root which matches the given string.
- Consider the grammar:
 \[\text{Exp} \rightarrow \text{id} \]
 \[\quad | \text{Exp} + \text{Exp} \]
 \[\quad | \text{Exp} \times \text{Exp} \]
 \[\quad | (\text{Exp}) \]

 Derives \(x, x+x, x+x+x, \)
 \(x \times y \)
 \(x + y \times z \ldots \)
Example Parse (top down)

- stack input
 Exp x + y * z
 Exp x + y * z
 / | \ Exp + Exp
 / | \ Exp + Exp
 / | \ Exp + Exp
 / | \ Exp + Exp
 / | \ Exp + Exp
 / | \ Exp + Exp
 id(x)
Top Down Parse (cont)

```
Exp                      y * z
/ | \                     /
Exp + Exp                id(x)  Exp * Exp
| / | \                   |    / \    
id(x)  Exp *  Exp        id(x)  Exp *  Exp
/ | \                    /    /    \    
Exp        z             Exp +  Exp
/ | \                    |    /    \    
Exp        Exp           id(x)  Exp *  Exp
/ | \                    /    /    \    
id(x)      Exp *  Exp    id(y)
/ \                      /
Exp                      
```

Top Down Parse (cont.)

```
Exp
  /   \
Exp + Exp
  |    |
|    |   |
id(x) Exp * Exp
  |    |
|    |
id(y) id(z)
```
Predictive Parsers

• Using a stack to avoid recursion. Encoding the diagrams in a table

• The Nullable, First, and Follow functions

 – Nullable: Can a symbol derive the empty string. False for every terminal symbol.

 – First: all the terminals that a non-terminal could possibly derive as its first symbol.
 • term or nonterm -> set(term)
 • sequence(term + nonterm) -> set(term)

 – Follow: all the terminals that could immediately follow the string derived from a non-terminal.
 • non-term -> set(term)
Example First and Follow Sets

E -> T E' $
E' -> + T E'
E' -> ε
T -> F T'
T' -> * F T'
T' -> ε
F -> (E)
F -> id

First E = { "(" , "id"} Follow E = {")", "$"}
First F = { "(" , "id"} Follow F = {"+" , "*" , ")" , ")", "$"}
First T = { "(" , "id"} Follow T = {"+", "(" , "$"}
First E' = { "+", ε} Follow E' = {")", "$"}
First T' = { "*", ε} Follow T' = {"+","(" , "$"}

• First of a terminal is itself.
• First can be extended to sequence of symbols.
Nullable

- If \(E \rightarrow \varepsilon \) then \(E \) is nullable
- If \(E \rightarrow A \ B \ C \), and all of \(A, B, C \) are nullable then \(E \) is nullable.

- Nullable \((E') = true\)
- Nullable \((T') = true\)
- Nullable for all other symbols is false

- This is a fixpoint computation
In Haskell

- We’ll represent nullable, first and follow sets as tables.

```haskell
data Table elem = Tab [(String,elem)] deriving Show

instance Eq elem => Eq (Table elem) where
    (Tab xs) == (Tab ys) = sameRhs xs ys
    where sameRhs [] [] = True
    sameRhs ((x,rhs1):xs) ((y,rhs2):ys)
        = rhs1==rhs2 && sameRhs xs ys
    sameRhs _ _ = False
```
Operations on Tables

get :: String -> Table elem -> elem
get s (Tab xs) = find s xs

set :: Table elem -> String -> elem -> Table elem
set (Tab xs) s y = Tab(update xs)
 where update [] = []
 update ((t,_) : ys) | t==s = (t,y) : ys
 update (y:ys) = y : (update ys)

add :: String -> String -> Table [String] -> Table [String]
add symbol element (Tab xs) = Tab(insert xs)
 where insert [] = []
 insert ((s,xs) : ys)
 | s==symbol = (s,norm(element:xs)) : ys
 insert (y:ys) = y : (insert ys)
nullable :: Table Bool -> String -> Bool
nullable tab s = get s tab

nullStep (gram@(Gr term nonterm ps start)) table = newtable
 where nulls (Prod lhs rhs) = all (nullable table) rhs
 nullps = filter nulls ps
 newtable = foldl acc table nullps
 acc tab (Prod lhs rhs) = set tab lhs True

null (gram@(Gr term nonterm ps start)) =
 fixpoint (nullStep gram) simple
 where simple = Tab (map f (term++nonterm))
 f x = (x,False)
Main> null g1
Tab [("","False),("1",False),("2",False),("[",False),("]",False)
 ,("elem",False), ("list1",False),("list2",True)
 ,("list3",True)]

Main> null g2
Tab [("Tom ",False),("a ",False),("ate ",False)
 ,("cat ",False),("man",False),("pretty",False)
 ,("red",False),("stole ",False),("the",False),("Sent",False)
 ,("adjective",False),("article",False),("noun",False)
 ,("nounPhrase",False),("object",False),("properNoun",False)
 ,("verb",False),("verbPhrase",False)]

Main> null g3
Tab [("$",False),("("False),(""",False),("*",False),("+",False)
 ,("x",False),("E",False),("E'",True),("F",False)
 ,("Id",False),("T",False),("T'",True)]
Computing First

- Use the following rules until no more terminals can be added to any FIRST set.
 1) if X is a term. FIRST(X) = {X}
 2) if X \rightarrow ε is a production then add ε to FIRST(X), (Or set nullable of X to true).
 3) if X is a non-term and
 - X \rightarrow Y_1 Y_2 ... Y_k
 - add a to FIRST(X)
 - if a in FIRST(Y_i) and
 - for all j<i ε in FIRST(Y_j)

- E.g.. if Y_1 can derive ε then if a is in FIRST(Y_2) it is surely in FIRST(X) as well.
Example First Computation

- **Terminals**
 - First($) = {$}
 - First(*) = {*} – First(+) = {+} ...

- **Empty Productions**
 - add ϵ to First(E'), add ϵ to First(T')

- **Other NonTerminals**
 - Computing from the lowest layer (F) up
 - First(F) = {id, (}
 - First(T') = { ϵ, * }
 - First(T) = First(F) = {id, (}
 - First(E') = { ϵ, + }
 - First(E) = First(T) = {id, (}
Computing Follow

- Use the following rules until nothing can be added to any follow set.

1) Place $ (the end of input marker) in FOLLOW(S) where S is the start symbol.

2) If $ A \rightarrow aBb$ then everything in FIRST(b) except ε is in FOLLOW(B)

3) If there is a production $ A \rightarrow aB$ or $A \rightarrow aBb$ where FIRST(b) contains ε (i.e. b can derive the empty string) then everything in FOLLOW(A) is in FOLLOW(B)
Ex. Follow Computation

- **Rule 1, Start symbol**
 - Add $ to Follow(E)

- **Rule 2, Productions with embedded nonterms**
 - Add First() = {) } to follow(E)
 - Add First($) = { $ } to Follow(E')
 - Add First(E') = {+,ε} to Follow(T)
 - Add First(T') = {* ,ε} to Follow(F)

- **Rule 3, Nonterm in last position**
 - Add follow(E') to follow(E') (doesn’t do much)
 - Add follow (T) to follow(T')
 - Add follow(T) to follow(F) since T' --> ε
 - Add follow(T') to follow(F) since T' --> ε

```
E  -->  T E' $ 
E'  -->  + T E' 
E'  -->  ε 
T  -->  F T' 
T'  -->  * F T' 
T'  -->  ε 
F  -->  ( E ) 
F  -->  id 
```
Table from First and Follow

1. For each production A -> alpha do 2 & 3
2. For each a in First alpha do add A -> alpha to M[A,a]
3. if ε is in First alpha, add A -> alpha to M[A,ε] for each terminal b in Follow A. If ε is in First alpha and $ is in Follow A add A -> alpha to M[A,$].

<table>
<thead>
<tr>
<th>First</th>
<th>Follow</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>{"(""id")}</td>
</tr>
<tr>
<td>F</td>
<td>{"(","id")}</td>
</tr>
<tr>
<td>T</td>
<td>{"(""id")}</td>
</tr>
<tr>
<td>E'</td>
<td>{"+",ε}</td>
</tr>
<tr>
<td>T'</td>
<td>{"**",ε}</td>
</tr>
</tbody>
</table>

M[A,t] terminals

<table>
<thead>
<tr>
<th></th>
<th>+</th>
<th>*</th>
<th>(</th>
<th>id</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>(</td>
<td>E</td>
<td>)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td>id</td>
<td></td>
</tr>
</tbody>
</table>
Predictive Parsing Table

<table>
<thead>
<tr>
<th></th>
<th>id</th>
<th></th>
<th></th>
<th>(</th>
<th></th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>T E'</td>
<td></td>
<td></td>
<td>T E'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E'</td>
<td></td>
<td>+ T E'</td>
<td></td>
<td></td>
<td>ε</td>
<td>ε</td>
</tr>
<tr>
<td>T</td>
<td>F T'</td>
<td></td>
<td></td>
<td>F T'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T'</td>
<td></td>
<td></td>
<td>* F T'</td>
<td></td>
<td>ε</td>
<td>ε</td>
</tr>
<tr>
<td>F</td>
<td>id</td>
<td></td>
<td></td>
<td>(E)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Driven Algorithm

push start symbol
Repeat
 begin
 let X top of stack, A next input
 if terminal(X)
 then if X=A
 then pop X; remove A
 else error()
 else (* nonterminal(X) *)
 begin
 if M[X,A] = Y1 Y2 ... Yk
 then pop X;
 push Yk YK-1 ... Y1
 else error()
 end
 end
until stack is empty, input = $