CHAPTER 9a

Digital–Analog and Analog–Digital Converters
Figure 9.1-1 Digital–analog converter in signal-processing applications.
Figure 9.1-2 (a) Digital–analog converter in signal-processing applications. (b) Clocked digital–analog converter for synchronous operation.
Figure 9.1-3 Block diagram of a digital–analog converter.
Figure 9.1-4 Ideal input–output characteristics of a 3-bit DAC.
Figure 9.1-5 Quantization noise for the 3-bit DAC of Fig. 9.1-4.
Figure 9.1-6 (a) Illustration of offset error in a 3-bit DAC. (b) Illustration of gain error in a 3-bit DAC.
Figure 9.1-7 Illustration of INL, DNL, and nonmonotonicity in a 3-bit DAC.
Figure 9.1-8 The 4-bit DAC characteristics for Example 9.1-1.
Figure 9.1-9 Input–output test for a DAC.
Figure 9.1-10 Spectral output test for a DAC.
Figure 9.2-1 Classification of digital–analog converters.
Figure 9.2-2 General current scaling DAC.
Figure 9.2-3 Binary-weighted resistor DAC implementation.
Figure 9.2-4 \(R-2R \) ladder implementation of the binary-weighted resistor DAC.
Figure 9.2-5 Current scaling using matched MOSFETs.
Figure 9.2-6 General voltage scaling DAC.
Figure 9.2-7 (a) Implementation of a 3-bit voltage scaling DAC. (b) Input–output characteristics of (a).
Figure 9.2-8 Alternate realization of Fig. 9.2-7(a).
Figure 9.2-9 General charge scaling DAC.
Figure 9.2-10 Charge scaling DAC. All switches are connected to ground during ϕ_1. Switch S_i closes to V_{REF} if $b_i = 1$ or to ground if $b_i = 0$ during ϕ_2.
Figure 9.2-11 Equivalent circuit of Fig. 9.2-10.
Figure 9.2-12 Binary-weighted, charge amplifier DAC implementation.
Figure 9.3-1 Combining an M-bit and K-bit subDAC to form an $M + K$-bit DAC by dividing the output of the K-LSB DAC.
Figure 9.3-2 Combining an M-bit and K-bit subDAC to form an $M + K$-bit DAC by dividing the V_{REF} to the K-LSB DAC.
Figure 9.3-3 Combination of current scaling subDACs using a current divider.
Figure 9.3-4 Combination of two, 4-bit charge scaling subDACs to form an 8-bit charge scaling DAC.
Figure 9.3-5 Simplified equivalent circuit of Fig. 9.3-4.
Figure 9.3-6 Combination of two, 4-bit, binary-weighted, charge amplifier subDACs to form an 8-bit, binary-weighted, charge amplifier DAC.
Figure 9.3-7 $M + K$-bit DAC using an M-bit voltage scaling subDAC for the MSBs and a K-bit charge scaling subDAC for the LSBs.
Figure 9.3-8 (a) Equivalent circuit of Fig. 9.3-7 for the voltage scaling subDAC. (b) Equivalent circuit of the entire DAC of Fig. 9.3-7.
Figure 9.3-9 $M + K$-bit DAC using an M-bit charge scaling subDAC for the MSBs and a K-bit voltage scaling subDAC for the LSBs.
Figure 9.4-1 Simplified schematic of a serial charge-redistribution DAC.
Figure 9.4-2 Waveforms of Fig. 9.4-1 for the conversion of the digital word 1101. (a) Voltage across C_1. (b) Voltage across C_2.
Figure 9.4-3 Pipeline approach to implementing an algorithmic DAC.
Figure 9.4-4 Equivalent realization of Fig. 9.4-3 using iterative techniques.
Figure 9.4-5 Output waveform for Fig. 9.4-4 for the conditions of Example 9.4-2.