A 1.9GHz Single-Chip CMOS PHS Cellphone

IEEE JSSC, Vol. 41, No.12, December 2006

William Si, Srenik Mehta, Hirad Samavati, Manolis Terrovitis, Michael Mack, Keith Onodera, Steve Jen, Susan Luschas, Justin Hwang, Suni Mendis, David Su, Bruce Wooley

Reviewed by Warren Woo
11/18/2010
Outline

• Introduction
• Architecture
• Circuit Implementation
• RF Loop Back and Digital Calibration
• Measurement Results
• Conclusion
Introduction - PHS

• Personal Handy-phone System (PHS)
 – First commercially launched in Japan in 1995
 – In 2008, China had 75 million subscribers where it can be used as a cellphone or cordless phone.

• PHS System
 – TDMA/TDD – Time Domain Multiple Access/Duplexing
 – $\pi/4$ QPSK modulation with 192kHz channel bandwidth
 – Signal transmission rate of 384kb/s with symbol rate of 192kb/s
 – RF receiver operates in a frequency band from 1880.15 to 1929.65MHz with channel spacing of 300kHz
 – Supports seamless handover = Fast channel switching
Introduction - SoC

- First radio system-on-chip (SoC) that incorporates all functions of PHS cellphone
- Implements all handset functions
- Fewer external components and smaller package pin count
- Low-cost
- Smaller form factor
- 0.18um CMOS process
- DSP and calibration to compensate for analog impairment easing analog and RF circuit requirements
Architecture – Block Diagram

- 1.9GHz direct conversion RF transceiver
- $\pi/4$ shift DQPSK PHS MODEM, ARM9 CPU and memory controller
- PHS TDMA controller
- Voice-band data converter
- Audio amplifiers for microphone, headphone and speaker
- Voice subsystem
- Low dropout voltage regulator and temperature sensing circuits
Architecture – Transceiver

- Direct conversion architecture to avoid issues with low IF architecture including image rejection and unwanted mixing products
- LO signals are generated from a sigma-delta fractional-N-synthesizer

Fig. 2. Block diagram of RF transceiver.
Frequency Synthesizer

- LO are generated from a sigma-delta fractional-N synthesizer
- Key challenge in the synthesizer design is to support seamless handover between cell base stations which require fast settling time.
- Wide bandwidth is preferred for fast settling. Bandwidth vs. phase noise tradeoff.
- Traditionally, two synthesizers interleaved -> area and power cost
- LO = 3.8GHz = 2x RF frequency. LO divided by 2 locally in receiver and transmitter to generate quadrature 1.9GHz LO. Local divide-by-2 suffers less I/Q mismatch and 3.8GHz inductor has higher Q and smaller size.

Fig. 3. Sigma-delta fractional-N synthesizer.
Voltage-Controlled Oscillator

- VCO based on NMOS and PMOS cross-coupled pair with LC tank circuit.
- To ensure tuning range covers PHS band, 7-bit switchable metal-metal cap array added in parallel to tank circuit.

Fig. 4. Simplified schematic of voltage-controlled oscillator.
Receiver

- Direct conversion = No image channels and no need for image reject filter
- RF amplified with on-chip LNA, two RF variable gain stages
- LNA has a cascaded diff pair with inductive degeneration and inductive load. LNA has attenuation mode to accommodate RF input signals as large as +5dBm.
- RF var gain has discrete gain and controlled by AGC.

Fig. 6. Direct conversion receiver.
Receiver

Passive IQ mixers convert RF to quadrature baseband signals
Baseband filtered by a 2nd order Butterworth low pass filter
Quantized by sigma-delta ADCs
AGC uses ADC outputs and envelope detectors to set receiver gain.
DC offset compensated at output of mixer by a pair of offset-cancellation DACs.

Fig. 6. Direct conversion receiver.
Passive I/Q mixers use NMOS native devices to down convert RF to baseband. Common mode voltage and amplitude of the LO IQ strongly influence gain of mixer.
• Digital baseband converted to I and Q baseband currents by two 9-bit current steering DACs. High sampling freq compared to signal BW -> no LP filter needed to remove DAC spectral images.
• Active mixers convert baseband currents directly to 1.9GHz.
• RF variable gain and programmable gain power amp compensate for gain variations.
• PA output power of 4dBm is sufficient to drive an external power amp.
• Local divide-by-2 LO buffer used to generate quadrature LO signals.
• Loopback path to calibrate analog imperfections.
Power Amplifier

Fig. 9. Segmentated power amplifier output stage.
RF Loop Back and Digital Calibration

- Single chip allows digital cal techniques to overcome analog impairments and ease requirement of analog and RF circuits which improves yield and reduces power and area.
- RF loop back allow for cal of receiver baseband filter variation, receiver DC offset, I/Q mismatch for both receiver and transmitter and transmitter carrier leak.
- To calibrate receiver DC offset, loop back path and receiver input are shutoff. DC offset quantized by ADC.
- Transmitter carrier leakage is caused by DC offset in transmitter baseband. To calibrate, preset digital sequence is transmitted and looped back into the receiver. Processor computes transmit offset.
- To calibrate receiver filter BW, in-band and out-of-band single tones are applied to the transmitter DACs. Baseband transmit signals are mixed to RF, looped back to receiver, down-converted to baseband and quantized by the ADCs. Filter response is then adjusted.

Fig. 10. RF loop back and digital calibration.
Measurement Results: Frequency Synthesizer

- 23MHz channel switching transient
- Important for seamless handover to a different channel without interruption of phone quality
Measurement Results: Frequency Synthesizer

- Critical phase noise at 600kHz offset (limits receiver blocker performance) is dominated by sigma-delta quantization noise and is sensitive to loop bandwidth.
- Phase noise is measured to be −118dBc/Hz meets PHS spec.
Measurement Results: Receiver

![Graph Showing Receiver Measurements]

Fig. 13. Measured receiver noise figure and sensitivity.
Measurement Results: Transmitter

![Graph showing transmit spectrum and occupied bandwidth]

PHS standard requires OBW < 288kHz
OBW = Occupied BW containing 99% signal power
Measured OBW < 250kHz for all channels

Fig. 16. Transmit spectrum and occupied bandwidth.
Performance Summary

<table>
<thead>
<tr>
<th>Power Dissipation</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RF Transmitter</td>
<td>29mA</td>
</tr>
<tr>
<td>RF Receiver</td>
<td>32mA</td>
</tr>
<tr>
<td>RF Synthesizer</td>
<td>25mA</td>
</tr>
<tr>
<td>Talk Mode (1/8 duty cycle Tx & Rx)</td>
<td>81mA (including audio and digital)</td>
</tr>
<tr>
<td>Standby Mode</td>
<td>1mA (including audio and digital)</td>
</tr>
<tr>
<td>Phase Noise @ 1.9GHz</td>
<td>-118dBc/Hz @ 600kHz offset</td>
</tr>
<tr>
<td>Settling time to +/- 1kHz</td>
<td>15μs</td>
</tr>
<tr>
<td>Receive Sensitivity</td>
<td>-106dBm</td>
</tr>
<tr>
<td>Receiver Noise Figure</td>
<td>3.5dB</td>
</tr>
<tr>
<td>Transmit Power (EVM compliant)</td>
<td>+4 dBm</td>
</tr>
<tr>
<td>Transmit EVM @ +1dBm</td>
<td>4% rms</td>
</tr>
<tr>
<td>Technology</td>
<td>Standard 0.18μm CMOS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Die Size:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>35 mm²</td>
</tr>
<tr>
<td>Radio and Analog</td>
<td>12 mm²</td>
</tr>
</tbody>
</table>

| Package | 276-pin BGA |

Figure 26.8.7: Summary of measured performance.
Die Micrograph

Figure 26.6: Chip micrograph of the single-chip PHS cellphone.
Conclusion

• Fully integrated single-chip PHS cellphone SoC implemented in 0.18um CMOS process
• Single chip integration allows for RF loop back and extensive digital calibration to ease requirements of the analog circuits.
• SoC performance meets or exceeds all PHS specs.
• This work demonstrated feasibility of a single chip radio SoCs with fully integrated RF, analog and digital.
Questions