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Introduction
• Silicon fabrication introduces latent reliability defects 

which cause early-life failure - infant mortality (IM).
• Without IM control, IM DPM may be too high.

– eg. Microprocessors need to have 0-30day IM DPM reduced 
from ~2000-5000 DPM to < 1000 DPM.

• Control the customer-perceived “bathtub curve” by
– Applying stress (V, T) as part of manufacturing process flows.

• Burn In to push weak units “over the edge” so that they can be 
screened in subsequent test.

– Design for defect tolerance in “use”.
• So that hard defects appearing after test will not affect performance.
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Bathtub Curve
Failure
Rate

Time

Infant Mortality without Infant Mortality Control

Wearout

Indicator: Cumulative Fallout (DPM) or
Fallout ÷ Interval (FITs) in interval.

5-15 years
~1 year

Typical Fallout w/o IMC:  2000 - 5000 DPM in 0-30d
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Customer-Perceived Bathtub Curve
Failure
Rate

Time at OEM

Infant Mortality with Infant Mortality Control

Indicator: Cumulative Fallout (DPM) or
Fallout ÷ Interval (FITs) in interval.

5-15 years
~1 year

Wearout

Typical Goals:  100 -1000 DPM 0-30d; 200 - 400 FITs 0-1y
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Approaches to Infant Mortality Control
• Manufacturing (Burn In)

– Burn In applies stress to activate latent reliability defects before 
final test. 

– Declining failure rate for latent reliability defects means that 
customer perceived IM is reduced.

– Burn In conditions (time, temperature, voltage) are adjusted to 
meet IM and Wearout reliability goals, remain functional, and 
avoid thermal runaway.

• Design
– Design devices, or parts of devices (cache), for tolerance to hard 

defects.
– Hard-defect-tolerant areas of devices don’t need burn in.

• Reduced effective area means less (or no) burn in.
• If hard-defect-tolerant areas can be electrically isolated in burn in, 

then burn in hardware power requirements are less.
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Traditional Manufacturing Flow

Wafer
Fabric’n Sort Assembly Burn In Post-Burn

In Test

Wafer Fabrication
• Source of Si 
Fabrication Defects

• Density = Dfab

Sort
• Initial screen.  Coarse 
electrical/thermal 
control, loose timings.

• Cold temperature to 
screen cold defects.

• Feedback to Fab.

Assembly
• Source of Package 
Assembly Defects

• Opens/Shorts/Leakage

Burn In
• Exercise DUTs at Vcc and 
Tj > “use”.

• Limited by DUT power, and 
intrinsic rel degradation.

• Induces additional Si 
defect density Dbi (“turns 
on” latent rel defects.)

Post-Burn-In Test
• Final screen.  Fine 
electrical/thermal 
control, tight timings.

• Hot temperature, low Vcc 
to guarantee spec.

• Infant mortality fallout 
is feedback to Fab and 
Assembly.

Use DPM From
• Test Holes 
• Additional latent 
reliability defects: Duse.

“Use”

“Use”-Like
Monitor

Improve Tests

Pre-Burn
In TestImprove Processes

Off-line Feedback Systems
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BI Mfg Trends: Power Management
• Burn in is done at high Tj and Vcc, but low frequency.

– Under these conditions, static power dominates.  (Idyn is small.)

• Power trends.
– Itotal = Isub + Igate + Idcap + Idyn
– Isub - subthreshold leakage current.

• V-sensitive: increases 15-20% for a 0.1V increase
• T-sensitive: increases 25-30% for a 10°C increase
• Large (10X) within-wafer, -lot variation (sensitive to Le variation)

– Oxide Leakage.  Gate oxide leakage due to transistors (Igate) 
and decoupling capacitors (Idcap).
• V-sensitive: increases 25-30% for a 0.1V increase
• T-insensitive: increases 30% for an increase from 0°C to 95°C
• tox-sensitive: increases 2.5x for a 1Å decrease
• Small statistical variation.
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Pdyn

Psub

Pgate

PDCAP

Increasing burn-in
power..

Improved thermal impedance gives shorter burn in times for the same Tj_max limit.

water

.. is managed by improved
burn-in hard ware.

Tj

air

Tj_max
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Wafer-Level Burn In
• Factors affecting feasibility:

– Die size/defect density:
• Small dies,  < 0.2 cm2, low defect density, low probe count/die.

– Available Stress
• Hardware limitations for high power and temperature.
• Maximum stress voltage.  Limited by wearout.

– Feasibility of parallel testing (especially wafer-level)
• Requires small number of probes per die.
• Available test time.  (A few seconds per die.)

• Benefit: Convenient where feasible, but..
• Con:  Limited envelope.
• Status:

– Used by mature technologies, small dies, low power, etc. 
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Adaptive Manufacturing Flows

Sort

Attributes correlated 
to low BI fallout.  

Attributes correlated 
to high BI fallout.  

Burn In Post-Burn
In TestHigh Power

Pre-Burn
In Test

Low Power Burn In Post-Burn
In Test

Pre-Burn
In Test

On-line Feed-forward Systems
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Adaptive Manufacturing Flows
• Manage Power by Sort Isb signal

– Isb distributions are broad, but Sort/BI Isb correlation is good.
– Benefit: Optimize utilization of burn in hardware.
– Con: Complex manufacturing flows.
– Status: Currently used in manufacturing.

Tj_mean_hi_slice
Tj_mean_lo_slice

Higher average Tj

Tj_max
Minimum of..
•Thermal runaway
•Functionality
•Wearout mechanismsTj_mean_whole

Tj
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Broad Isb
Distribution,

but...

..good Sort-
Class

Correlation

0.18μ technology.
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Adaptive Manufacturing Flows
• Use Lot-level and wafer-level statistics at Sort. 

– Routing or screen depends on post-processed lot-level and/or 
wafer-level statistics.
• Relies on quality of an established correlation between Sort “killer 

defect” density” and “latent reliability defect density”.
– Benefit: Optimal utilization of BI hardware.
– Cons:

• Correlation is usually not good enough to enable a screen.
– Screen must meet reliability goals without unacceptible overkill.

• Can be used to optimize utilization of BI hardware (variable BI time)
– But ROI depends on detailed defect distributions, and complex flows.

• Depends on post-Si characterization of defects–late for planning.
• Risk of reliability escapes for excursions.

– Status: Used for mature processes.
W. C. Riordan, R. Miller, J. M. Sherman, J. Hicks (Intel), “Microprocessor Reliability Performance as a 
Function of Die Location for a 0.25μ, Five Layer Metal CMOS Logic Process”, IRPS 1999. 
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Adaptive Manufacturing Flows
• Defect-based die-level tests at Sort.

– Kill or reroute dies at Sort by tests which detect defective dies.  
Combine..
• Sensitive parametric measurements (eg. Iddq).

– Possibly at several Vcc levels
• Stress (brief) to activate defects.

– Benefit:  Optimal utilization of burn in hardware.
– Cons:

• Hard to find a signal buried in intrinsic Isb.
• Tests/stress must be short.
• Usually cannot be used as a screen (overkill).

– Unless conditions for wafer-level burn in are satisfied.
• Depends on post-Si characterization of defects–late for planning.

– Status: Has not found wide application in high-volume 
manufacturing for logic.  Memories (flash) may use this.
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Outline
• Introduction
• Infant Mortality Control by Burn In (Manufacturing)
• Infant Mortality Control by Design
• Key Messages



SSCTC Feb 3, 2003 Page 18

Design for Infant Mortality Control
• Burn In reduces the number of latent reliability defects 

escaping final test.
• An alternative approach is to make dies tolerant to hard 

defects in “use”.
• We use a simple model which shows the infant mortality 

DPM benefit of “hard” fault tolerance.
• Manufacturing benefits derive from

– Reduced burn in time.
– Lower power requirements if areas of dies “immune” to hard 

defects don’t need to be powered in burn in.
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Redundancy Statistics
• Chip has repairable (usually cache) and non-repairable 

(usually random logic) areas.
– Define r = Arepairable/Atotal

• The repairable area of the chip is divided into a number 
“n” of repairable elements.
– The larger n is, the more “survivable” is the chip, and the greater 

is the design/area overhead.

• Each repairable element is characterized by the number 
of defects it can “survive”.
– Assumption here: Repairable elements can survive up to 1 

defect, and non-repairable cannot survive more than 0 defects.
– There are different circuit/logic ways to realize this.

Note: This description is an approximation 
intended only to show the major sensivities.



SSCTC Feb 3, 2003 Page 20

Redundancy Statistics, cont’d
• Some kinds of defects are fatal even to repairable 

elements, depending on the redundancy scheme used.
– f = fraction of all kinds of defects which can be repaired by 

repairable elements.

Anon-repairable

n = 4

Atotal

Two Limiting Special Cases
• No redundancy at all. (f x r = 0, irrespective of n).

Yield and Infant Mortality for Atotal.
• Ideal Redundancy.  (n = very large).

Yield and Infant Mortality for Anon-repairable
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Yield Example
• Test programs at first test screen (eg. Sort) detect faults 

and connect “spare” elements (eg. by fusing).
– Big yield gain for n = 1, diminishing return for n > 1.

0.0  0.2  0.4  0.6  0.8  1.0  20  

40  

100  

Area x Defect Density

Yield %

No Redundancy

“Ideal Redundancy”: 
80% of area and/or 
defects is/are 
repaired.

n = 1
n = 2

n = 4

Area and/or 
repairable defect 
fraction, f x r = 0.8
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Infant Mortality & Fault Tolerance
• Main opportunity is “in use” repair or tolerance of latent 

reliability defects escaping burn in - “Infant Mortality”.
– Very little gain in yield for repair after burn in.

• Requires on-chip logic to detect and replace failing 
elements with “spares”, or correct data in failing 
elements.

• What is fraction of dies failing in 0-30d which have 
survived Sort, burn-in, and post burn-in test?
– Account for repairs at Sort making redundant elements 

unavailable at burn in and in “use”.
– As function of f, r, n, and burn in time (tbi)

Note: The following examples are not 
representative of Intel processes.
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Infant Mortality Large Die Example
• 16-elements are needed to get most of available benefit.
• 10-20X burn in time reduction, depending on goal.

1E-3 .01  .1  1 10  100  1E3  
0

200  

400  

600  

800  

1000

1200

1400

1600

1800

2000

Burn In Time (h)

0-30d DPM

No Redundancy

“Ideal Redundancy”:
80% of die is repaired.

n = 1n = 2

n = 4

n = 8

n = 16

Area = 4 cm2

Area and/or 
repairable defect 
fraction, f x r = 0.8
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Infant Mortality Small Die Example
• 1 redundant element is sufficient for a large effect.
• Burn In stress time may be reduced enough to move the 

stress to a test socket.  (10-3 h = 3.6 sec).  

1E-3 .01  .1  1 10  100  1E3  0

200

400

600

800

1000

1200

1400

1600

1800

2000

Burn In Time (h)

0-30d DPM

No Redundancy

“Ideal Redundancy”:
80% of die is repaired.

n = 1n = 2

Area = 1 cm2

Area and/or 
repairable defect 
fraction, f x r = .8

“Burn In” 
stress in Test 
Socket?
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Fault-Tolerance Requirements
• Infant Mortality benefit requires “In Use” fault tolerance.

– Mostly cache-oriented on-chip schemes, transparent to OEMs.

• Fault-tolerance requires:
– Test to detect faults.
– Logic to replace failing elements with “spares”, or to correct data.

• Kinds of In-Use Fault Tolerance
– Test during POST, set up logic to avoid faults (redundancy).

• Doesn’t reliably cover all spec conditions.
– On-the-fly fault detection and repair/correction (ECC).

• Optimal implementation depends on
– Effectiveness. Kind of scheme vs kind of defect vs defect pareto.
– Cost: Area impact.
– Performance impact.



SSCTC Feb 3, 2003 Page 26

1 2 R 1 2 2

Block Repair

1 2 3 R

Column Repair

1 2 3 R

Un-repairedUn-repaired Repaired Repaired

A
ddress D

ecode

Row Repair

ECC LOGIC

One Row

One bit in a row defective

One Row

Defective bit, corrected by ECC

ECC Repair

Kinds of Repair Schemes

Source: Ben Eapen
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Failure Mode Pareto

• 4 Major failure modes in cache
– Random Single-Bit Fails predominate.
– Clustered (in Row/Column) Single Bit Fails
– Column Fails
– Row Fails
– Array Fails

DBH       OPENS
ROW       UNKNOW
ROW       SHORTS
M_B       OPENS
COL       NORMAL
COL       OPENS
DBV       OPENS
S_B       SHORTS
S_B       NORMAL
ROW       OPENS
COL       SHORTS
S_B       UNKNOW
S_B       OPENS
COL       UNKNOW

Colors: Various physical mechanisms

Source: Ben Eapen
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Repair Efficiency

Area Overhead Performance Overhead

 Block Column Row ECC 
Random SB a a a a 
Clustered SB a 0 0 0 
Column a a r 0 
Row a r a r 
Array a r r r 
 

Repair Scheme

Fa
il 

M
od

e

f is large (~1)
× f is small (~ 0)
- f depends in details of pareto & implementation

H
M M

L
ML

L H

H/M/L = High/Med/Low

Source: Ben Eapen
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Key Messages
• Traditional Burn In is running into limits.

– Envelope is shrinking.
• BI requirements limit end-use performance.

– High-T, low freq, functionality impacts end-use performance.
• Tradeoff between wearout and IM is problematic for large dies.

– Long burn in times.

– Hardware elect/thermal capability reqts are becoming expensive.
• Largest part of test costs.

– Adaptive manufacturing flows help, but are complex and have 
business risk.
• Require real-time data automation.
• Require elaborate simulation models to optimize.
• Rely on post-Si characterization of defects.
• Are more vulnerable to excursions.
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Key Messages, ct’d
• Hard-fault-tolerant cache designs reduce or eliminate 

burn in reqts.
– Optimal (performance, area) fault tolerance schemes depend on 

nature of defect pareto.
– Benefit:

• Shorten burn in time (less wearout, reduced capacity).
• Reduce power envelope if combined with power management.
• Enable burn in for large dies.

– Con:
• Potentially impacts design costs, chip costs, and performance.
• Only works for products which have appreciable memory.

• Next?
– Cost-effective hard fault tolerance for logic.
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Models of Defect Density
• Latent Reliability Defect Density vs Time & Stress

– Lognormal time cumulative fraction failing distribution is used.
– σ, μ, and AF are determined from test chip (SRAM)  post-burn in 

test fallout vs burn in time and Tj, Vcc variation experiments.
– Example values: σ = 25, μ = 70, AF = 200.

Wafer
Fabric’n Sort Assembly Burn In Post-Burn

In Test “Use”

Dfab from
Yield at Sort
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(Assumes that the BI defect density is defined at 1h of BI.)

Backup
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Redundancy Model for Yield
• Probability of a good die after Sort is given by

• Using Poisson expressions for probabilities in terms of 
defect density we get

 (Prob. of 0-defect redundant sub-element

or a 1-defect sub-element)Number of repairable sub-elements

and Probability of 0 defects in the non-repairable portion of the die.

That is,  Y Y Y Yr r
n

nr= +[ ]0 1

)exp(1 DA
n

DArfY tot

n
tot ×−×⎟

⎠
⎞

⎜
⎝
⎛ ×××

+=

Backup
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Redundancy Model for Infant Mortality
• The customer-observed fraction surviving burn in plus 

“use”, is:

where Poisson probability functions in terms of defect 
density were used.

• So Infant Mortality DPM after tuse (= 720 h/30 d) and after 
tbi of burn in is

[ ])(exp
)(1

)(1
biusetotal

n

bitotal

usetotal
DDA

DDA
n

rf

DDA
n

rf

U −×−×
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
×

+

+×+
=

Infant Mortality DPM = 106 x (1 - U)

Backup
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tbi = 0.01 h
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tbi = 2 h
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tbi = 4 h
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tbi = 8 h
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tbi = 16 h
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