Infant Mortality Control by Burn In and by Design

C. Glenn Shirley Intel Corporation

With contributions from Ben Eapen.

Outline

- Introduction
 - Infant Mortality Control by Burn In (Manufacturing)
 - Infant Mortality Control by Design
 - Key Messages

Introduction

- Silicon fabrication introduces latent reliability defects which cause early-life failure infant mortality (IM).
- Without IM control, IM DPM may be too high.
 - eg. Microprocessors need to have 0-30day IM DPM reduced from ~2000-5000 DPM to < 1000 DPM.
- Control the customer-perceived "bathtub curve" by
 - Applying stress (V, T) as part of manufacturing process flows.
 - Burn In to push weak units "over the edge" so that they can be screened in subsequent test.
 - Design for defect tolerance in "use".
 - So that hard defects appearing after test will not affect performance.

Bathtub Curve

Customer-Perceived Bathtub Curve

Approaches to Infant Mortality Control

- Manufacturing (Burn In)
 - Burn In applies stress to activate latent reliability defects before final test.
 - Declining failure rate for latent reliability defects means that customer perceived IM is reduced.
 - Burn In conditions (time, temperature, voltage) are adjusted to meet IM and Wearout reliability goals, remain functional, and avoid thermal runaway.
- Design
 - Design devices, or parts of devices (cache), for tolerance to hard defects.
 - Hard-defect-tolerant areas of devices don't need burn in.
 - Reduced effective area means less (or no) burn in.
 - If hard-defect-tolerant areas can be electrically isolated in burn in, then burn in hardware power requirements are less.

Outline

- Introduction
- Infant Mortality Control by Burn In (Manufacturing)
 - Infant Mortality Control by Design
 - Key Messages

Traditional Manufacturing Flow

BI Mfg Trends: Power Management

- Burn in is done at high Tj and Vcc, but low frequency.
 - Under these conditions, static power dominates. (Idyn is small.)
- Power trends.
 - Itotal = Isub + Igate + Idcap + Idyn
 - Isub subthreshold leakage current.
 - V-sensitive: increases 15-20% for a 0.1V increase
 - T-sensitive: increases 25-30% for a 10°C increase
 - Large (10X) within-wafer, -lot variation (sensitive to Le variation)
 - Oxide Leakage. Gate oxide leakage due to transistors (Igate) and decoupling capacitors (Idcap).
 - V-sensitive: increases 25-30% for a 0.1V increase
 - T-*in*sensitive: increases 30% for an increase from 0°C to 95°C
 - tox-sensitive: increases 2.5x for a 1Å decrease
 - Small statistical variation.

Improved thermal impedance gives shorter burn in times for the same Tj_max limit.

Wafer-Level Burn In

- Factors affecting feasibility:
 - Die size/defect density:
 - Small dies, < 0.2 cm², low defect density, low probe count/die.
 - Available Stress
 - Hardware limitations for high power and temperature.
 - Maximum stress voltage. Limited by wearout.
 - Feasibility of parallel testing (especially wafer-level)
 - Requires small number of probes per die.
 - Available test time. (A few seconds per die.)
- Benefit: Convenient where feasible, but..
- Con: Limited envelope.
- Status:
 - Used by mature technologies, small dies, low power, etc.

Adaptive Manufacturing Flows

Adaptive Manufacturing Flows

- Manage Power by Sort Isb signal
 - Isb distributions are broad, but Sort/BI Isb correlation is good.
 - Benefit: Optimize utilization of burn in hardware.
 - Con: Complex manufacturing flows.
 - Status: Currently used in manufacturing.

SSCTC Feb 3, 2003

Page 14

Adaptive Manufacturing Flows

- Use Lot-level and wafer-level statistics at Sort.
 - Routing or screen depends on post-processed lot-level and/or wafer-level statistics.
 - Relies on quality of an established correlation between Sort "killer defect" density" and "latent reliability defect density".
 - Benefit: Optimal utilization of BI hardware.
 - Cons:
 - Correlation is usually not good enough to enable a screen.
 - Screen must meet reliability goals without unacceptible overkill.
 - Can be used to optimize utilization of BI hardware (variable BI time)
 - But ROI depends on detailed defect distributions, and complex flows.
 - Depends on post-Si characterization of defects-late for planning.
 - Risk of reliability escapes for excursions.
 - Status: Used for mature processes.

W. C. Riordan, R. Miller, J. M. Sherman, J. Hicks (Intel), "Microprocessor Reliability Performance as a Function of Die Location for a 0.25μ , Five Layer Metal CMOS Logic Process", IRPS 1999.

Adaptive Manufacturing Flows

- Defect-based die-level tests at Sort.
 - Kill or reroute dies at Sort by tests which detect defective dies.
 Combine..
 - Sensitive parametric measurements (eg. lddq).
 - Possibly at several Vcc levels
 - Stress (brief) to activate defects.
 - Benefit: Optimal utilization of burn in hardware.
 - Cons:
 - Hard to find a signal buried in intrinsic lsb.
 - Tests/stress must be short.
 - Usually cannot be used as a screen (overkill).
 - Unless conditions for wafer-level burn in are satisfied.
 - Depends on post-Si characterization of defects-late for planning.
 - Status: Has not found wide application in high-volume manufacturing for logic. Memories (flash) may use this.

Outline

- Introduction
- Infant Mortality Control by Burn In (Manufacturing)
- → Infant Mortality Control by Design
 - Key Messages

Design for Infant Mortality Control

- Burn In reduces the number of latent reliability defects escaping final test.
- An alternative approach is to make dies tolerant to hard defects in "use".
- We use a simple model which shows the infant mortality DPM benefit of "hard" fault tolerance.
- Manufacturing benefits derive from
 - Reduced burn in time.
 - Lower power requirements if areas of dies "immune" to hard defects don't need to be powered in burn in.

Redundancy Statistics

- Chip has repairable (usually cache) and non-repairable (usually random logic) areas.
 - Define $r = A_{repairable}/A_{total}$
- The repairable area of the chip is divided into a number "n" of repairable elements.
 - The larger n is, the more "survivable" is the chip, and the greater is the design/area overhead.
- Each repairable element is characterized by the number of defects it can "survive".
 - Assumption here: Repairable elements can survive up to 1 defect, and non-repairable cannot survive more than 0 defects.
 - There are different circuit/logic ways to realize this.

Note: This description is an approximation intended only to show the major sensivities.

Redundancy Statistics, cont'd

- Some *kinds* of defects are fatal even to repairable elements, depending on the redundancy scheme used.
 - f = fraction of all kinds of defects which can be repaired by repairable elements.

Yield Example

• Test programs at first test screen (eg. Sort) detect faults and connect "spare" elements (eg. by fusing).

- Big yield gain for n = 1, diminishing return for n > 1.

Infant Mortality & Fault Tolerance

• Main opportunity is "in use" repair or tolerance of latent reliability defects escaping burn in - "Infant Mortality".

- Very little gain in *yield* for repair after burn in.

- Requires on-chip logic to detect and replace failing elements with "spares", or correct data in failing elements.
- What is fraction of dies failing in 0-30d which have survived Sort, burn-in, and post burn-in test?
 - Account for repairs at Sort making redundant elements unavailable at burn in and in "use".
 - As function of f, r, n, and burn in time (t_{bi})

Note: The following examples are not representative of Intel processes.

Infant Mortality Large Die Example

- 16-elements are needed to get most of available benefit.
- 10-20X burn in time reduction, depending on goal.

Infant Mortality Small Die Example

- 1 redundant element is sufficient for a large effect.
- Burn In stress time may be reduced enough to move the stress to a test socket. (10⁻³ h = 3.6 sec).

Fault-Tolerance Requirements

- Infant Mortality benefit requires "In Use" fault tolerance.
 - Mostly cache-oriented on-chip schemes, transparent to OEMs.
- Fault-tolerance requires:
 - Test to detect faults.
 - Logic to replace failing elements with "spares", or to correct data.
- Kinds of In-Use Fault Tolerance
 - Test during POST, set up logic to avoid faults (redundancy).
 - Doesn't reliably cover all spec conditions.
 - On-the-fly fault detection and repair/correction (ECC).
- Optimal implementation depends on
 - Effectiveness. Kind of scheme vs kind of defect vs defect pareto.
 - Cost: Area impact.
 - Performance impact.

Kinds of Repair Schemes

Failure Mode Pareto

- 4 Major failure modes in cache
 - Random Single-Bit Fails predominate.
 - Clustered (in Row/Column) Single Bit Fails
 - Column Fails
 - Row Fails
 - Array Fails

Source: Ben Eapen

Page 27

Repair Efficiency

			Repair Sc	urce: Ben Eapen	
		Block	Column	Row	ECC
Fail Mode	Random SB	✓	~	~	~
	Clustered SB	v	-	-	-
	Column	`	✓	×	-
	Row	v	×	✓	×
	Array	~	×	×	×
H/M/L = High/Med/Low H Area Overhead Area Overhead H					head
	 ✓ f is large (~1) × f is small (~ 0) - f depends in details of pareto & implementation 				
SSO	CTC Feb 3, 2003	Page 28			intal

Outline

- Introduction
- Infant Mortality Control by Burn In (Manufacturing)
- Infant Mortality Control by Design
- → Key Messages

Key Messages

- Traditional Burn In is running into limits.
 - Envelope is shrinking.
 - BI requirements limit end-use performance.
 - High-T, low freq, functionality impacts end-use performance.
 - Tradeoff between wearout and IM is problematic for large dies.
 - Long burn in times.
 - Hardware elect/thermal capability reqts are becoming expensive.
 - Largest part of test costs.
 - Adaptive manufacturing flows help, but are complex and have business risk.
 - Require real-time data automation.
 - Require elaborate simulation models to optimize.
 - Rely on post-Si characterization of defects.
 - Are more vulnerable to excursions.

Key Messages, ct'd

- Hard-fault-tolerant cache designs reduce or eliminate burn in reqts.
 - Optimal (performance, area) fault tolerance schemes depend on nature of defect pareto.
 - Benefit:
 - Shorten burn in time (less wearout, reduced capacity).
 - Reduce power envelope if combined with power management.
 - Enable burn in for large dies.
 - Con:
 - Potentially impacts design costs, chip costs, and performance.
 - Only works for products which have appreciable memory.
- Next?
 - Cost-effective hard fault tolerance for logic.

Backup

Models of Defect Density

- Latent Reliability Defect Density vs Time & Stress
 - Lognormal time cumulative fraction failing distribution is used.
 - σ , μ , and AF are determined from test chip (SRAM) post-burn in test fallout vs burn in time and Tj, Vcc variation experiments.
 - Example values: σ = 25, μ = 70, AF = 200.

(Assumes that the BI defect density is defined at 1h of BI.)

Redundancy Model for Yield Backup

• Probability of a good die after Sort is given by

(Prob. of 0-defect redundant sub-element or a 1-defect sub-element)^{Number of repairable sub-elements} and Probability of 0 defects in the non-repairable portion of the die. That is, $Y = [Y_r^0 + Y_r^1]^n Y_{nr}$

 Using Poisson expressions for probabilities in terms of defect density we get

$$Y = \left(1 + \frac{f \times r \times A_{tot} \times D}{n}\right)^n \times \exp(-A_{tot} \times D)$$

Backup Redundancy Model for Infant Mortality

• The customer-observed fraction surviving burn in plus "use", is:

$$U = \left[\frac{1 + \frac{f \times r}{n}A_{total}(D + D_{use})}{1 + \frac{f \times r}{n}A_{total}(D + D_{bi})}\right]^{n} \times \exp\left[-A_{total} \times (D_{use} - D_{bi})\right]$$

where Poisson probability functions in terms of defect density were used.

- So Infant Mortality DPM after t_{use} (= 720 h/30 d) and after t_{bi} of burn in is

Infant Mortality
$$DPM = 10^6 x (1 - U)$$

tbi = 0.01 h

SSCTC Feb 3, 2003

tbi = 2 h

tbi = 4 h

tbi = 8 h

SSCTC Feb 3, 2003

tbi = 16 h

