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Introduction 
This paper derives analytical expressions for Sort yield and use-condition reliability 
fallout as a function of test chip baseline reliability characteristics, yield defect density, 
die area, and number and area of redundant elements.  The expressions take into account 
the fact that a redundant element used at Sort is not available for redundancy repair in 
"use".  Poisson statistics are assumed for the yield functions, but much of the analysis 
does not depend on this. 

Model of Redundant Chip 
We describe a redundant chip by non-repairable and repairable elements.  Non-repairable 
elements will fail if one or more defects fall on them.  The model we will consider has a 
variable number of repairable elements, n, each of which can survive 0 or 1 defects. 
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Fig. 1  Conceptual model of redundant chip.  Each of the 4 repairable elements can 

survive one defect. 

We could have considered models in which the number of defects which a repairable 
element can survive is more than 1, and which more precisely reflect circuit 
architectures.  However, the simple description we have chosen uses a minimum number 
of parameters, and yet describes the main effects of defect reliability when circuit 
redundancy is available.  The variable "n" may be regarded as an indicator of the quality 
of circuit redundancy because, to first order (in the limit of small defect densities), the 
effect of n repairable elements each of which can survive up to one defect is the same as 
one repairable element which can survive up to n defects. 

Probability Models 

Poisson Models 
Using expressions from Poisson statistics derived in the Appendix, we can write down 
expressions for probabilities defined in Table I. 
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Table I  Definitions of symbols used in analysis. 

Symbol Definition Model 
D  Defect density at sort (cm-2) N/A 

biD  Density of latent reliability defects 
made visible to test by burn in. 

N/A 

useD  Density of latent reliability defects 
made visible to test by burn in and 
“use”. 

N/A 

K  Ratio of “reliability” defect density to 
sort defect density. 

Typical value ~ 1% 

totalA  Total die area. N/A 
 r Fraction of die area which is 

repairable. 
N/A 

totalr rAA =  Area (cm2) of repairable part of die. 
Has n redundant elements. 

N/A 

totalnr ArA )1( −=
 

Area (cm2) of non-repairable part of 
die. 

N/A 

n  Number of repairable subelements of 
area Ar. 

N/A 

Ynr
0  Probability of 0 defects in non-

repairable part of die at sort. 
Y Anr nr

0 = −exp( )D  

Yr
0  Probability of 0 defects in a repairable 

element at sort. 
Y Ar r

0 = −exp( )D  

Yr
1  Probability of exactly 1 defect in a 

repairable element at sort. 
Y A D A Dr r r

1 = −exp( )  

Wnr
0  Prob. of 0 defects in non-repairable 

part of die activated by burn-in. 
)exp(0

binrnr DAW −=  

Wr
0  Probability of 0 defects in a repairable 

element activated by burn in. 
)exp(0

birr DAW −=  

Wr
1  Prob. of exactly 1 defect in repairable 

element activated by burn in. 
)exp(1

birbirr DADAW −=  

0
nrU  Probability of 0 defects in non-

repairable part of die activated by 
burn-in and “use”. 

)exp(0
usenrnr DAU −=  

0
rU  Prob. of 0 defects in repairable 

element activated by burn in & “use”. 
)exp(0

userr DAU −=  

1
rU  Probability of exactly 1 defect in a 

repairable element activated by burn 
in and “use”. 

)exp(1
useruserr DADAU −=  
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Defect Densities 
A technology can be characterized by a defect reliability model.  Cumulative fraction 
failing of a chip without redundancy repair under stress conditions can be modeled as a 
lognormal distribution: 
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where AF is t burn in 
defect density det  to yield defect density D.  (Notice that when tbi = tbi_K,    
Dbi = K D.)  The parameters in Table II would be determined from an experiment using 
non-redundant SRAMs. 

ble II.  Example values for latent reliabili aseline. 

Parameter Example Values nits 

he acceleration between burn in and use, where K is the ratio of 
ermined at tbi_K

Ta ty defect b

U

AF 100 – 300 None 

σ 25 ln hours 

μ 71 ln hours 
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Yield Analysis 

Sort Yield 
The redundant yield formula is obtained by recognizing that the probability of a good die 
is given by 

Probability of a good die = 

(Prob. of 0-defect redundant sub-element 

or a 1-defect sub-element)Number of repairable sub-elements 

and Probability of 0 defects in the non-repairable portion of the die. 

That is, 

  (4) Y Y Y Yr r
n

nr= +[ ]0 1

If the Poisson expressions for the probabilities are substituted into this equation, we 
obtain the special case of Poisson statistics: 

  (5) 
Y A D A D A D A

A D A nA D
A D A D

r r r
n

nr

r
n

nr r

r
n

total

= − + − −

= + − +

= + −

[exp( ) exp( )] exp( )
( ) exp[ ( ) )]
( ) exp( )
1
1

D

Burn-In Yield 
Study the case of a die surviving sort with repair, and burn-in with repair.  Other cases 
(eg. no repair at sort followed by repair at burn in) can be derived from this.  We 
recognize that 

Probability of a good die after burn in = 

(Prob. of 0 defects in repairable element after sort 

and 0 defects in repairable element after burn-in 

or Prob. of 0 defects in repairable element after sort 

and 1 defect in repairable element after burn-in 

or Prob. of 1 defect in repairable element after sort 

and 0 defects in repairable element after 
burn-in)Number of repairable elements 

and Prob. of 0 defects in non-repairable portion of the die at sort 

and Prob. of 0 defects in non-repairable portion of the die after burn in. 
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Or, symbolically 

  (6) W Y W Y W Y W Y Wr r r r r r
n

nr nr= + +[ 0 0 0 1 1 0 ]

Eq. (6) is the burn-in yield referred to the pre-sort population.  To obtain the yield due to 
the burn in step by itself, we normalize (6) by (4).  That is we calculate the conditional 
probability (indicated by the prime) of surviving burn in on the condition that the unit has 
survived sort: 
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Substitution into Eq. (7) of the Poisson probability expressions in the above table gives, 
after some rearrangement: 
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Eq. (8) is the expression for burn-in yield of a die given that repair has ocurred at sort.  
The formula for burn-in yield assuming no repair at sort is obtained by taking the 
limit  KD D→ →Finite, 0

      (No repair at sort.) (9) ( )′ = + −W KA D KAr
n
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DPM In Use 
By exactly the same arguments, the probability of surviving Sort with repair, and burn in 
plus “use” with repair is: 
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The DPM in “use” is therefore 

  (12) UFuse ′−=1

When Poisson expressions for survival probabilities are substituted into (11) we find 

 [ )(exp)(1

)(1
biusetotal

n

bitotal

usetotal

DDA

n
DDrA

n
DDrA

U −×−×
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
+

+
+

=′ ]  (13) 

where Duse and Dbi are given by Eqs. (2) and (3).  When n = 0 (no redundancy) Eq. (13) 
becomes 
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  (14) [ )(exp biusetotal DDAU −×−=′ ]
which corresponds to the survival probability in "use" when the entire area of the chip is 
a source of latent reliability defects. 

If we take the n → ∞ limit of Eq. (13), which corresponds to perfect redundancy, and use 
the result 
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which corresponds to the survival probability in "use" when only the non-repairable part 
of the die is a source of latent reliability defects. 

Appendix: Poisson Statistics 
Failure rate is given by 

 λ = AD  (A1) 

Probability of n defects on a die of area A and defect density D is 
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The non redundant failure probability is the probability that 1 or more defects occur on 
the die: 
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So the non-redundant survival probability (the non-redundant yield) is 

 Y Fnon redundant non redundant− −= − = − = −1 exp( ) exp( )λ . (A4) 

For the case of a die of area A that can be repaired if there is 1 defect, the redundant 
failure probability is the probability that 2 or more defects occur on the die: 
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So the redundant survival probability (the redundant yield) is 
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AD Y F ADredundant redundant= − = + × − = + × −1 1 1( ) exp( ) ( ) exp( )λ λ  (A6) 

The redundant yield is the probability that a die has 0 or 1 defects on it.  The probability 
that the die has 0 defects is 

  (A7) Y 0 = − = −exp( ) exp( )λ AD

AD

And the probability that the die has exactly one defect is 

 . (A8) Y AD1 = − = −λ λexp( ) exp( )

The expressions in Eqs. (A7) and (A8) will be used in the body of the document. 

In general, the probability that a die has exactly n defects is 
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Introduction


This paper derives analytical expressions for Sort yield and use-condition reliability fallout as a function of test chip baseline reliability characteristics, yield defect density, die area, and number and area of redundant elements.  The expressions take into account the fact that a redundant element used at Sort is not available for redundancy repair in "use".  Poisson statistics are assumed for the yield functions, but much of the analysis does not depend on this.


Model of Redundant Chip


We describe a redundant chip by non-repairable and repairable elements.  Non-repairable elements will fail if one or more defects fall on them.  The model we will consider has a variable number of repairable elements, n, each of which can survive 0 or 1 defects.
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Fig. 1  Conceptual model of redundant chip.  Each of the 4 repairable elements can survive one defect.


We could have considered models in which the number of defects which a repairable element can survive is more than 1, and which more precisely reflect circuit architectures.  However, the simple description we have chosen uses a minimum number of parameters, and yet describes the main effects of defect reliability when circuit redundancy is available.  The variable "n" may be regarded as an indicator of the quality of circuit redundancy because, to first order (in the limit of small defect densities), the effect of n repairable elements each of which can survive up to one defect is the same as one repairable element which can survive up to n defects.


Probability Models


Poisson Models


Using expressions from Poisson statistics derived in the Appendix, we can write down expressions for probabilities defined in Table I.


Table I  Definitions of symbols used in analysis.


		Symbol

		Definition

		Model



		




		Defect density at sort (cm-2)

		N/A
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		Density of latent reliability defects made visible to test by burn in.
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		Density of latent reliability defects made visible to test by burn in and “use”.

		N/A



		




		Ratio of “reliability” defect density to sort defect density.

		Typical value ~ 1%
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		Total die area.

		N/A
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		Fraction of die area which is repairable.

		N/A
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		Area (cm2) of repairable part of die. Has n redundant elements.

		N/A
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		Area (cm2) of non-repairable part of die.

		N/A



		




		Number of repairable subelements of area Ar.

		N/A



		




		Probability of 0 defects in non-repairable part of die at sort.

		






		




		Probability of 0 defects in a repairable element at sort.

		






		




		Probability of exactly 1 defect in a repairable element at sort.

		






		




		Prob. of 0 defects in non-repairable part of die activated by burn-in.
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		Probability of 0 defects in a repairable element activated by burn in.
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		Prob. of exactly 1 defect in repairable element activated by burn in.
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		Probability of 0 defects in non-repairable part of die activated by burn-in and “use”.
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		Prob. of 0 defects in repairable element activated by burn in & “use”.
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		Probability of exactly 1 defect in a repairable element activated by burn in and “use”.
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Defect Densities


A technology can be characterized by a defect reliability model.  Cumulative fraction failing of a chip without redundancy repair under stress conditions can be modeled as a lognormal distribution:
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Assuming Poisson statistics of latent reliability defects, the density of latent reliability defects activated by burn in and made detectable by test after tbi hours of burn in is
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while after tbi hours of use and tuse hours of use the density of activated latent reliability defects is:
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where AF is the acceleration between burn in and use, where K is the ratio of burn in defect density determined at tbi_K to yield defect density D.  (Notice that when tbi = tbi_K,    Dbi = K D.)  The parameters in Table II would be determined from an experiment using non-redundant SRAMs.


Table II.  Example values for latent reliability defect baseline.


		Parameter

		Example Values

		Units



		AF

		100 – 300

		None



		

		25

		ln hours



		

		71

		ln hours





Yield Analysis


Sort Yield


The redundant yield formula is obtained by recognizing that the probability of a good die is given by


Probability of a good die =


(Prob. of 0-defect redundant sub-element


or a 1-defect sub-element)Number of repairable sub-elements

and Probability of 0 defects in the non-repairable portion of the die.


That is,







(4)


If the Poisson expressions for the probabilities are substituted into this equation, we obtain the special case of Poisson statistics:







(5)


Burn-In Yield


Study the case of a die surviving sort with repair, and burn-in with repair.  Other cases (eg. no repair at sort followed by repair at burn in) can be derived from this.  We recognize that


Probability of a good die after burn in =


(Prob. of 0 defects in repairable element after sort


and 0 defects in repairable element after burn-in


or Prob. of 0 defects in repairable element after sort


and 1 defect in repairable element after burn-in


or Prob. of 1 defect in repairable element after sort


and 0 defects in repairable element after burn-in)Number of repairable elements

and Prob. of 0 defects in non-repairable portion of the die at sort


and Prob. of 0 defects in non-repairable portion of the die after burn in.


Or, symbolically







(6)


Eq. (6) is the burn-in yield referred to the pre-sort population.  To obtain the yield due to the burn in step by itself, we normalize (6) by (4).  That is we calculate the conditional probability (indicated by the prime) of surviving burn in on the condition that the unit has survived sort:
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Substitution into Eq. (7) of the Poisson probability expressions in the above table gives, after some rearrangement:
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     (Repair at sort.)
(8)


Eq. (8) is the expression for burn-in yield of a die given that repair has ocurred at sort.  The formula for burn-in yield assuming no repair at sort is obtained by taking the limit








     (No repair at sort.)
(9)


DPM In Use


By exactly the same arguments, the probability of surviving Sort with repair, and burn in plus “use” with repair is:
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The probability that the die survives burn in plus “use”, given that it has survived burn in is





[image: image22.wmf]nr


nr


n


r


r


r


r


r


r


r


r


r


r


r


r


W


U


W


Y


W


Y


W


Y


U


Y


U


Y


U


Y


W


U


U


´


÷


÷


ø


ö


ç


ç


è


æ


+


+


+


+


=


=


¢


0


1


1


0


0


0


0


1


1


0


0


0


/



(11)


The DPM in “use” is therefore
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When Poisson expressions for survival probabilities are substituted into (11) we find
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where Duse and Dbi are given by Eqs. (2) and (3).  When n = 0 (no redundancy) Eq. (13) becomes
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which corresponds to the survival probability in "use" when the entire area of the chip is a source of latent reliability defects.


If we take the n ( ( limit of Eq. (13), which corresponds to perfect redundancy, and use the result
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we find
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which corresponds to the survival probability in "use" when only the non-repairable part of the die is a source of latent reliability defects.


Appendix: Poisson Statistics


Failure rate is given by







(A1)


Probability of n defects on a die of area A and defect density D is







(A2)


The non redundant failure probability is the probability that 1 or more defects occur on the die:







(A3)


So the non-redundant survival probability (the non-redundant yield) is






.
(A4)


For the case of a die of area A that can be repaired if there is 1 defect, the redundant failure probability is the probability that 2 or more defects occur on the die:







(A5)


So the redundant survival probability (the redundant yield) is







(A6)


The redundant yield is the probability that a die has 0 or 1 defects on it.  The probability that the die has 0 defects is







(A7)


And the probability that the die has exactly one defect is






.
(A8)


The expressions in Eqs. (A7) and (A8) will be used in the body of the document.


In general, the probability that a die has exactly n defects is
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