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ABSTRACT 

The same defects that degrade device yield also affect device reliability.  The complete theory is complicated and 
depends on factors such as die size, defect density, defect size distribution, circuit layout density, and environmental 
stress.  We analyze the simplifying assumptions necessary for a practical model.  Then we show how to use the 
practical model to extract process-specific reliability models, and thereby estimate failure rates of complex products, 
without reliance on full product-specific reliability data. 

1.  INTRODUCTION 

Reliability characterization is an integral part of a wafer fabrication process development methodology.  Specially 
designed test vehicles, such as static random-access memories (SRAMs) optimized for testability and failure 
analysis, are used to characterize the process.  In the course of process development, a large amount of SRAM-
specific reliability data and yield data is acquired.  The reliability data include information about major failure modes, 
and their accelerations as a function of temperature and bias.  The yield data include information about the major 
kinds of defects in the wafer fabrication process.  The yield and reliability data acquired during the course of process 
development are called "baseline" reliability and yield data.  Once the wafer fabrication process has reached certain 
yield and reliability goals (that is, is "certified"), the process is transferred to high-volume production. 

Once in high-volume production, continuous improvement to improve yield is a ongoing activity.  Also, at this stage 
of the life of a wafer fabrication process many new products which are to be produced using the process are 
introduced.  Burn-in and life test is also performed on selected products, and this data is also added to the baseline 
data set. 

The complexity of circuitry in typical microprocessor products make it prohibitively expensive and time-consuming to 
characterize directly the reliability of every new product introduced.  This paper describes a method for making 
reliability estimates for new products produced on certified wafer fabrication processes without the necessity of 
gathering extensive reliability data for every new product introduced. 

The model described in this paper is based on the premise that important failure mechanisms are defect-related, not 
intrinsic.  The model exploits the relationship between yield and reliability, and uses the fact that the same defects 
which cause devices to fail at sort and raw class test, before any stress, are the same kind of defects which will 
eventually cause failure in subsequent stress.  This relationship allows us to use yield data to make reliability 
predictions.  There are a number of assumptions which are necessary in order to derive a practical model, and these 
are described in Section 3, after a brief review of basic reliability statistics in Section 2.  In Section 4 we explain the 
formalism of acceleration models, and how to take into account burn-in. 

By the end of Section 4, we have derived a complete defect reliability formalism.  The model may be used in two ways: 
(1) To consolidate baseline data from disparate sources into a "reference" data set to which a single reference 
reliability model characteristic of the process may be fitted.  This is described in Section 5.  (2) To use reference 
reliability model to make predictions about "unknown" products.  This is described in Section 6.  

                                                                 

* Contains minor corrections from version published as IRPS tutorial. 
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2.  RELIABILITY STATISTICS 

This section introduces the terms and concepts needed to provide the mathematical framework for a statistical model 
for product reliability.  The treatment follows standard reliability texts such as Tobias and Trindade1. 

Consider a population of units starting life at t = 0.  As time progresses, members of the initial population will fail.  
There are several mathematical functions which are used to describe and analyze this process. 

The cumulative distribution function, CDF, F(t), is the probability that a unit drawn randomly from the initial 
population fails by time t.  F(t) has the properties: F(t = 0) = 0,  F(t = ∞) = 1.  F(t) is undefined for t < 0, and increases 
monotonically as t increases.  F(t) is a probability, and can be manipulated using the mathematical rules of probability 
analysis.  F(t) is also called the "unreliability function" or "failure probability". 

The survival function, , is defined by 

 S t F t( ) ( )= −1    ............................................................................................................................(1) 

S(t) is also called the "reliability function" or "survival probability".  S(t) is the probability that a member of the initial 
population will survive to time t.  S(t) is a monotonically decreasing probability with properties: S(t = 0) = 1,  S(t = ∞) = 
0.  The main objective of the reliability model described below is to relate S(t) for a new "unknown" product to S(t) for 
the "known" baseline data. 

The probability density function, PDF, f(t), is frequently used in theoretical discussions, but is rarely used directly in 
analysis of data or reliability predictions.  f(t) is defined as the rate of change of the fraction of the initial population 
which has failed: 

 
f t

dt
dt

( ) =
Number of failures in

Initial Population
1

 

or 

 
f t

dF t
dt

dS t
dt

( )
( ) ( )

= = −
,   ........................................................................................................(2a) 

or 

 F t f t dt
t

( ) ( )= ′ ′∫0
.   ......................................................................................................................(2b) 

A more fundamental function is the instantaneous failure rate, h(t), defined as the rate of change of the fraction of the 
population which has survived to time t .  h(t) is defined as 

 h t
dt

dt t
( ) =

Number of failures in
Population at time

1
 

or 

 
h t

f t
S t S t

dS t
dt

d S t
dt

( )
( )
( ) ( )

( ) ln ( )
= = − = −

1

.   ......................................................................(3) 

h(t) is also known as the "instantaneous hazard".  h(t) can increase or decrease and can have any positive value, that 
is, h(t) has the property h(t) > 0.  Notice that, if the cumulative fraction failed is small (F(t) << 1), then 
h (t ) = f(t )/S (t ) = f(t )/[1-F(t )] ≈ f(t ). 

                                                                 

1 P. A. Tobias and D. C. Trindade, "Applied Reliability," Van Nostrand Reinhold (1986). 
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At early times, h(t) is usually a decreasing function of time as weak parts are weeded out.  At long times, h(t) is an 
increasing function of time as the materials of the device degrade and the part wears out.  This is the classical 
"bathtub" curve of reliability. 

Reliability data for input to a reliability model is frequently not in a form which permits direct extraction of the survival 
function; hence the need for the cumulative hazard defined as 

 H t h t dt
t

( ) ( )= ∫0
   ..........................................................................................................................(4) 

or, after substituting Eq. (3), 

 S t H t( ) exp[ ( )]= − .   ...................................................................................................................(5) 

The cumulative hazard is useful because it is derivable directly from "censored" data (see Section 5 below), which is 
commonly encountered in practice.  Equation (5) provides a relationship between the experimentally-determined 
cumulative hazard, and the survival probability which is of practical interest. 

The functions F(t), S(t), f(t), h(t), and H(t) are interrelated and given one, the others can be derived.  The relationships 
in this section do not depend on the functional form of the probability distribution. 

The average failure rate over various periods of product life is a commonly used indicator of reliability.  The average 
failure rate between times t1  and t2 is defined as: 

 AFR( , )
( )

t t
h t dt

t t
t

t

1 2
2 1

1

2

=
−

∫
 

or, from Eq. (5) 

 
AFR( , )

ln ( ) ln ( )
t t

S t S t
t t1 2
1 2

2 1

=
−
− .   .........................................................................................(6) 

Thus, if S(t) is known for a particular product, then the average failure rate between any two times can easily be 
calculated. 

We extend the discussion by taking into account that integrated circuits will fail in service by any of several 
mechanisms.  These mechanisms can be classified as either intrinsic or defect-related failure mechanisms.  The 
intrinsic failure mechanisms are related to the materials and design rules of the manufacturing process.  These 
mechanisms are due to wear-out, and cause rapidly increasing failure rates late in the lifetime of a device.  
Additionally, defects may be introduced during the manufacturing process.  If these defects are not immediately fatal 
to the device, they may cause it to fail at early times.  Defect-related failure mechanisms often cause rapidly 
decreasing failure rates early in the life of a device. 

If a device can fail by any of several mechanisms, and if the earliest occurrence of any mechanism is fatal to the 
device, then the device is logically a chain. 

Defect
Mechanism

1

Defect
Mechanism

2

Defect
Mechanism

3

Intrinsic
Mechanism

1

Intrinsic
Mechanism

2

Intrinsic
Mechanism

3

Etc.

 

Fig. 1 Representation of reliability of device as reliability of a chain.  Device will fail if any link fails.  Some links 
represent intrinsic properties of materials, while others represent mechanisms caused by defects. 
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The survival probability of a chain is the product of survival probabilities of the links: 

 S t S t S tj
j

i
i

( ) $ ( ) ( )= ∏ ∏ .   ..........................................................................................................(7) 

where $ ( )S ti
 is the survival probability if intrinsic mechanism i were the only failure mechanism, and Si(t) is the 

survival probability if defect mechanism i were the only failure mechanism.  From Eqs. (4) and (5), Eq. (7) is equivalent 
to: 

 h t h t h tj
j

i
i

( ) $ ( ) ( )= +∑ ∑ .   ........................................................................................................(8). 

In Eqs. (7) and (8) "hatted" functions refer to intrinsic mechanisms, whereas unmarked functions refer to defect-
related mechanisms.  Equation (8) shows that the failure rate of the component is the sum of the failure rates of the 
individual mechanisms.  In the rest of this paper we shall ignore the intrinsic failure mechanisms since they are 
negligible over the service life of a well-designed process. 

3.  RELATIONSHIP BETWEEN YIELD AND RELIABILITY 

Wafer fabrication is a batch-oriented manufacturing process.  It is known that low-yielding lots usually have lower 
reliability, as evidenced by higher burn-in fallout.  A source of "yield defects" fatal to the chip at sort (wafer-level) or 
raw class (packaged die before stress) is often also the source of "latent reliability defects" which are fatal early in the 
life of the chip.  This section will quantify this relationship and show how to predict the reliability of an unknown 
product if the reliability of a "reference product" is known.  In this section we shall confine our attention to prediction 
of reliability of an unknown product at the same environmental condition as the known "reference product".  This 
restriction will be removed in Section 4. 

A specific example of the relationship between yield and reliability will illustrate theoretical principles, and, more 
importantly, highlight the implicit assumptions made when invoking the relationship between yield and reliability.  
We use the specific example of line shorting by conductive particles.  Consider an infinite pattern of metal lines of 
width w and spacing s, as shown in Fig. 2.  Conductive defects, shown as circles, are distributed randomly across the 
pattern of metal lines.  The centers of the circles will be distributed randomly with density Dave.  That is, on the 
average, there are Dave circle-centers per unit area of the pattern.  The circles have a distribution of sizes D(x); that 
is, the number of circles (or circle-centers) per unit area with diameters between x and x+dx is D(x)dx.  Stapper2 has 
suggested that a defect size distribution of the following form describes what is observed in the wafer fabrication 
plant: 

 

D x D x x x x

D x x x x

( ) ( / )

( / )

= ≤

= >
ave

ave

   for   

   for  
0
2

0

0
2 3

0 .   ......................................................................................(9) 

Stapper's distribution is shown schematically as the top graph in Fig. 3.  x0 is a characteristic length much less than 
the resolving power of the defect detection equipment.  Since x0 is much less than the characteristic dimensions of 
the pattern (w and s), we will see that the only part of the distribution of importance is the part for x > x0.  The exact 
shape of the distribution is not important to the discussion, and x0 can be thought of as merely a normalizing 
constant.  If a defect is sufficiently small it can never short metal lines.  Also, if a defect is sufficiently large it will 
always short metal lines.  Intermediate-sized defects can sometimes come within a very short distance δ of a metal line 
while simultaneously being in contact with an adjacent line - such defects are termed "latent reliability defects".  Not 
all defects that are of a size to be possibly a latent reliability defect actually are reliability defects.  δ is defined so that 
a defect contacting one line and lying within δ of an adjacent line will eventually fail within the service life of the 
component.  This is illustrated in Fig. 2. 

                                                                 

2 C. H. Stapper, "Modelling of Integrated Circuit Sensitivities,"  IBM J. Res. Develop.  Vol. 27, No. 6, pp 549-557  
(November, 1983).  The defect size distributions in Intel's factories do not necessarily have the form described by 
Stapper.  We use Stapper's form for illustrative purposes only. 
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Assuming random distribution of defects, the proportion of defects of diameter x which short metal lines can easily 
be shown to be 

 

P x x s

x s
s w

s x s w

x s w

yield          for 

,   for 

,           for 

( ) ,= <

=
−
+

≤ < +

= ≥ +

0

2

1 2 .   ..............................................................................(10) 

Never a yield or reliability defect

Sometimes a latent reliability defect

Sometimes a yield defect, sometimes
a latent reliability defect, sometimes OK.

Always a yield defect

s s swww w

δδδ δ

 

Fig. 2 Four lines of an infinite array of metal lines of width w and spacing s.  Conductive defects of various sizes 
are superimposed on the array.  If a defect shorts one or more lines it affects yield.  If a defect lies on one 
line and comes within a small distance δ of an adjacent line (light shading), it is a "latent reliability defect".  
The value of δ is such that a latent defect will short lines within the service life of the unit. 

1

1

 

Fig. 3 Top:  Defect size distribution.  Middle:  (1) Proportion of yield defects (immediately fatal), and (2) Proportion 
of yield and latent reliability defects combined.  Bottom:  Proportion of only latent reliability defects.  All as 
functions of defect size. 
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By making the replacements,  s → s - 2δ and w → w + 2δ in Eq. (10), we find the proportion of defects which are either 
yield or latent reliability defects: 

 

P x x s

x s
s w

s x s w

x s w

yield & latent rel.                  for 

,  for 

,                  for 

( ) ,= < −

=
− +

+
− ≤ < + −

= ≥ + −

0 2

2
2 2 2

1 2 2

δ

δ
δ δ

δ    ..................................(11) 

The proportions given by Eq. (10) and (11) are plotted in the middle graph in Fig. 3.  The difference between these 
proportions, shown shaded and plotted at the bottom of Fig. 3, is the proportion of defects which are latent reliability 
defects, Prel(x). 

The total density of "yield" defects (defects per unit area of the pattern) is  

 D D x P x dxyield yield=
∞

∫ ( ) ( )
0

.   .....................................................................................................(12) 

After some algebra, we find for the specific example: 

 D
D x

s w s
D D

D x
s w syield

ave
yield rel

ave;   =
+

+ =
− + −

0
2

0
2

2 2 2 2 2 2( ) ( )( )δ δ
 

where the defect density of yield and reliability defects combined is obtained by substituting 
s → s - 2δ and w → w + 2δ in the expression for Dyield.  So, taking the difference between the combined density and 
Dyield, we find 

 D
D x

s w s s w srel
ave

2
= ×

− + −
−

+








0
2 1

2 2 2
1

2( )( ) ( )δ δ
 

so that 

 κ
δ δ

δ δ≡ =
+

− + −
− ≈ ×

+
+

+
D
D

s w s
s w s

w s
s w s

rel

yield

 higher order terms in 
( )

( )( )
( )
( )

2
2 2 2

1
2 3

2
. 

Therefore, for this example, the density of latent reliability defects is proportional to the density of yield defects (that 
is, κ is constant) for 

1. A fixed shape of the defect size distribution.  (And fixed shape of the defects themselves.) 

2. A fixed pattern  on which the defects fall (w and s). 

3. A fixed definition of "latent reliability defect" (value of δ) 

4. Randomly distributed, non-interacting defects. 

In principle, the value of κ may be calculated theoretically for any defect (shorting or open-type defects) and pattern.  
For complex defect shapes and size distributions the calculation may be complicated; it is usually intractable in 
closed mathematical form.  Monte-Carlo methods may be necessary to evaluate the constant.  However, we shall 
show that for the reliability theory in this paper, an exact value of κ is not needed.  We shall only invoke the fact that 
κ is a constant, if the above four conditions are satisfied.  Constancy of κ is not a law of nature:  If for example a 
process excursion occurs which changes the shape of the defect distribution, κ may vary.  Finally, there is a value of 
κ for each failure mechanism, so in general we have a value κi for each mechanism i.3   So, in general, if the above 
four conditions are satisfied, we may write for each mechanism i 

                                                                 

3 Formally, the specification of a mechanism depends not only on the type of mechanis m (eg. metal slivers 
shorting metal 1), but also on the pattern on which it falls.  Thus, metal slivers shorting a coarse pattern, and the 
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 D Di i irel yield( ) ( )= ×κ    ...................................................................................................................(13) 

To demonstrate that κ exists for each mechanism of importance we compare the yield and reliability defect Paretos 
observed for SRAMs.  It is apparent that the defects which are discovered most frequently at sort (low-yield-
analysis, LYA, defects), are also seen most frequently after life test (RE defects), suggesting that RE defects are 
"escapee" LYA defects as modeled above. 

0
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%
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RE

12345678

1. Metal Defects and Particles
2. W Defects and Particles
3. NVD
4. Plug Defects
5. Other Defects
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7. Poly Defects and Particles
8. Diffusion Defects 

Proportion

of Defects

 

Fig. 4 Comparison of incidence of yield (low-yield analysis, LYA) and reliability (RE) defects observed for SRAMs.  
(NVD = no visible defect). 

Strictly, κ is not constant from product to product, because the pattern layout varies from product to product, 
violating assumption number 2 above.  However, actual yield and reliability fallout is concentrated in a few 
mechanisms (see Fig. 4) and pattern variation does not appear to be an overriding factor for the patterns and defects 
that actually occur in products.  This can be seen in Fig. 5 which shows that the total reliability defect density is 
proportional to the total yield defect density, even when different products are used to make the plot. 

Each individual latent reliability defect has a survival probability, which is a function of time.  We will denote this 
single-defect reliability probability by si(t), for mechanism i.  The survival probability of an "unknown" product p 
failing by mechanism i with ni

p latent reliability defects of type i is  

 S t s t s ti
p

i
n

i
D Ai

p
i

p
i
p

( ) [ ( )] [ ( )] ( )= = ×rel      .........................................................................................(14) 

where we have assumed that the latent reliability defects are independent, and so have invoked the "chain" rule 
illustrated in Fig. 1 and Eq. (7).  We have used the fact that the number of reliability defects of type i on the product p 
is given by the product of the latent reliability defect density for defect i, and the sub-area of the die which has the 
appropriate pattern for mechanism i: 

 n D Ai
p

i
p

i
p= ×rel( )    ...........................................................................................................................(15) 

                                                                                                                                                                                                                 
same metal slivers shorting a fine pattern would be taken account of in the model formalism by two distinct 
indexes, i. 
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Drel

Dyield

(Arbitrary Scale)

(Arbitrary Scale)

Slope = 0.01

 

Fig. 5 Drel vs Dyield for various designs produced on the same process as data in Fig. 4.  Drel is proportional to 
Dyield for all mechanisms combined.  Defect densities are in arbitrary units.  The reliability defect density is 
calculated from Drel = -ln{cum. fail at 6 hours of burn-in}÷Area.  Notice that reliability defect densities are 
1/100 of the yield defect densities. 

Let's assume that we know the survival probability Si
r(t) for a "reference" product r at the same environmental 

conditions as the unknown product p.  Si
r(t)  may be expressed in terms of si(t) in exactly the same way as in Eqs. 

(14) and (15), except that p will be replaced by r.  Elimination of the single defect survival function, si(t)  between the 
expressions for Si

r(t) and Si
p(t) gives the following: 

 S t S ti
p

i
r R p ri( ) [ ( )] ( | )=    ....................................................................................................................(16) 

where, the "scaling ratio" is defined as 

 R p r
D A
D Ai

i
p

i
p

i
r

i
r( | ) ( )

( )

=
×
×

rel

rel

.   ..............................................................................................................(17) 

Using the chain rule (Fig. 1, Eq. (7)) for survival functions from multiple mechanisms, we can write the total survivor 
function for all defect mechanisms for an unknown product, p, as 

 S t S t S tp
i
p

i
i
r

i

R p ri( ) ( ) ( )
( | )

= =∏ ∏ .   ...................................................................................(18) 

If the four conditions discussed above hold, then we may invoke Eq. (13) above, and obtain 

 R p r
D A
D Ai

i
p

i
p

i
r

i
r( | ) ( )

)

≅
×
×

yield

yield(

.   ...........................................................................................................(19) 

The relationship Eq. (19) is a central concept because yield defect densities are measured and tracked in the wafer 
fabrication plants, whereas densities of latent reliability defects are much smaller and  not as easily available. 

Next we show how to express Eq. (19) in terms of commonly acquired yield indicators.  One of the indicators is the 
mechanism Pareto ("LYA" in Fig. 4 is an example), that is, the proportion of all failures failing by each mechanism.  To 
a good approximation (for small % yield fallout) the mechanism Pareto is defined as: 

 P
D A

D Ai
p i

p
i
p

j
p

j
p

j

=
×

×∑
yield

yield

( )

( )

,   ............................................................................................................(20) 

which is the proportion of sort and raw class units (of product p) failing due to mechanism i.  Using Eq. (20), we may 
write 



9 

 D A P D A P D Ai
p

i
p

i
p

j
p

j
p

j i
p p p

yield yield yield( ) ( )( )× = × × = × ×∑   ....................................(21) 

where Ap  and D
p

yield are given by 

 A Ap
j
p

j

≡ ∑    (total die area)  .......................................................................................................(22) 

and 

 D
D A

A
p

j
p

j
p

j
pyield

yield

≡
×∑ ( )

.  ........................................................................................................(23) 

D
p

yield is an average (weighted by sub area) defect density for all yield mechanisms.  From Eqs. (19) and (21) we may 
write 

 R p r
P D A
P D Ai

i
p p p

i
r r r( | ) =

× ×
× ×

yield

yield

.   ..................................................................................................(24) 

Assuming Poisson statistics (random, non-interacting defects), the defect-related yield for a die with various 
identifiable sub-areas each with "stand-alone" defect-related yield Yp

j may be written 

 
Y Y D A D A

D A

p
j
p

j
j

p
j
p

j
p

j
p

jj

p p

= = − × = − ×










= − ×

∏ ∑∏exp( ) exp

exp( )

( )yield( ) yield

yield

  ....................(25) 

where Dp
yield and Ap are given by Eqs. (23) and (22).  From Eqs. (24) and (25) we may write 

 R p r
P Y
P Yi

i
p p

i
r r( | )

ln( )
ln( )

=
×
×

  ............................................................................................................(26) 

So we may write Eq. (18) as 

 S t S tp
j
r

P

P

j

Y
Yj

p

j
r

p

r

( ) ( )

ln( )
ln( )

=












∏ .  .....................................................................................................(27) 

If we add the following condition to the above 4 conditions, 

5. The yield Pareto for "unknown" product p is the same as for the reference product, r. 

then P
p

i = P
r
i and 

 R p r
D A
D A

Y
Yi

p p

r r

p

r( | )
ln( )
ln( )

=
×
×

=yield

yield

,   .........................................................................................(28) 

making the scaling ratio independent of mechanism i, so 

 [ ]S t S tp r
D A

D A

p p

r r( ) ( )=
×

×
yield

yield    .............................................................................................................(29a) 

 [ ]S t S tp r
Y
Y

p

r( ) ( )
ln( )
ln( )=    ..................................................................................................................(29b) 
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Eq. (29a) is a simple equation which allows scaling of the survival function by area and defect density.  The 
mathematical relationship between defect density and yield has been studied extensively4.  The simplest and most 
pessimistic formula is the simple exponential formula assuming Poisson statistics.  For simplicity, we have assumed 
Poisson statistics, but other more realistic (or proprietary) formulae could be used to extract the defect density from 
yield statistics.  The defect density so extracted might not be the area-weighted defect density identifiable in Eq. (23), 
but it could still be used in Eq. (29a).  Eq. (29b), however, is specific to Poisson statistics. 

Depending on the level of approximation and information, expressions in Eq. (19), (24) or (28) may be used to estimate 
Ri(p|r).  The approximation we have used in a defect reliability prediction model is Eq. (29a), and its validity depends 
on the 5 conditions given in this section.  In the usual application of Eq. (29a), we assume that yield and fully 
analyzed reliability data (that is Si

r(t) ) are available for a "known" or "reference" product, and a reliability prediction 
about an unknown product is desired.  The yield for the factory or lot which produced the "unknown" product is also 
assumed to be known. 

In this section we have assumed that the reference product survival function is known at the same environmental 
conditions as the unknown product.  This condition is removed in the next section. 

4.   ACCELERATED STRESSING AND BURN IN 

Baseline product reliability data is usually acquired at accelerated conditions of high temperature and high voltage, 
whereas reliability estimates for products are typically needed at the milder environmental conditions encountered in 
service.  Also, products are often subjected to a preliminary period of accelerated "burn-in" stress to weed out weak 
units that are likely to fail early.  In this section we shall extend the model given in Eq. (18) to allow prediction of 
product reliability at stress conditions different from the reference product data, and after burn-in. 

To begin, we define the acceleration factor.  If a certain proportion of a population stressed at a standard 
environmental stress with temperature T1 and operating voltage V1 fails by mechanism i in a time interval dt1 and the 
same proportion fails by mechanism i in a time interval dt2 at an accelerated, AF > 1 (or decelerated, AF < 1), stress 
condition with temperature T2 and voltage V2 , then the time-varying acceleration factor is defined by dt1/dt2=AFi(2|1), 
or for constant acceleration: 

 t ti1 22 1= AF ( | )    .............................................................................................................................(30) 

where AFi(2|1) is the acceleration of environmental condition 2 relative to environmental condition 1 for mechanism 
i.5  For example, if environmental condition 2 is more accelerated than condition 1, then, AFi(2|1) > 1 and t2 < t1. 

If we know the CDF, PDF, instantaneous failure rate, and cumulative hazard at the standard environmental condition 
1, then corresponding functions at the accelerated or decelerated condition 2 are given by: 

 f t f ti i i i( | ) ( | ) { | ( | ) }2 2 1 1 2 1= ×AF AF    .................................................................................(31a) 

 h t h ti i i i( | ) ( | ) { | ( | ) }2 2 1 1 2 1= ×AF AF    ..................................................................................(31b) 

 F t F ti i i( | ) { | ( | ) }2 1 2 1= AF    .......................................................................................................(31c) 

 S t S ti i i( | ) { | ( | ) }2 1 2 1= AF    .......................................................................................................(31d) 

where we have introduced the notation that, for example, Si(2|t) is the survival function at environmental condition 2 
as a function of t for mechanism i. 

We choose to use the following acceleration factor function: 

                                                                 

4 C. H. Stapper, "Integrated Circuit Yield Statistics,"  Proc. IEEE, Vol. 71 (1983), pp 453-470. 
5 Acceleration factor functions have the general properties: 

 AF AF AFi i iz x z y y x( | ) ( | ) ( | )= ×  

 AF AFi iy x x y( | ) ( | )= 1  

 AFi ( | )x x = 1 
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   .................................................................(32) 

where k  = 8.61×10-5 eV/°K.  The thermal activation energy and voltage acceleration constant for mechanism i are Qi 
(eV) and Ci (volts -1), respectively. 

Thus, the survival probability of an unknown product p at temperature T2 and V2 (which might be the environmental 
condition in a service application) may be calculated from the survival probability of a reference product r at 
accelerated conditions T1 and V1 by taking into account the contribution from all mechanisms: 

 S t S tp
i
r

i
R p r

i

i( | ) [ { | ) }] ( | )2 1 2 1= ∏ |AF (    .................................................................................(33) 

where we have used Eqs. (18), (30), and (31d).  The time argument on the right-hand side of Eq. (33), AFi(2|1)t, may be 
interpreted as the time at conditions T1 and V1 which is equivalent to time t at conditions T2  and V2.  Equation (33) 
permits calculation of the survival probability for any product at any environmental condition from baseline 
accelerated reliability and yield data, provided yield data is known for the unknown product. 

Burn-in is often used to remove reliability defects.  The proportion of the original population which survives burn in 
for a time tB at TB and VB is  

 S B t S B tp
B i

r
i B

R p r

i

i( | ) [ { | ) }] ( | )= ∏ 1 1|AF (    ..........................................................................(34) 

and after an additional time t at T2 and V2 the proportion surviving is  

 

% ( | ) { |AF ( | ) AF ( | ) }
( | )

S t S t B tp
i
r

i i B
i

R p ri2 1 2 1 1= +∏
 

so that the probability that a unit will survive the additional stress for time t at T2 and V2, given that a unit has 
survived burn-in, is ′ =S t S t S B tp p p

B( | ) %( | ) ( | )2 2  so 

 ′ =
+







∏S t

S t B t
S B t

p i
r

i i B

i
r

i Bi

R p ri

( | )
{ |AF ( | ) AF ( | ) }

{ |AF ( | ) }

( | )

2
1 21 1

1 1
.   ...................................................(35) 

When dealing with life-test data, the cumulative percentage of failures is typically less than 1%.  If Eq. (1) is 
substituted into Eq. (35) and only leading terms in the CDF are retained, we find 

 
′ ≅ + −

+

∑F t R p r F t B t F B t

F

p
i i

r
i i B i

r
i B

i

( | ) ( | ) { |AF ( | ) AF ( | ) } { |AF ( | ) }

( )

2 1 2 1 1 1 1

2O
.    (36) 

In this limit, it is apparent that the scaling ratio is a multiplicative factor for the net post burn-in fallout for each 
mechanism, and the acceleration factors compress the time axis, while burn-in gives a time-axis offset and vertical axis 
offset.  The proportional error in Eq. (36) is of the order of the value of the CDF.  That is, for example, if the CDF is 
1%, then the error in the CDF is 1% of 1%, or ±0.01%. 

Equation (35) is a complete model which gives the survival function of an unknown product in terms of a known 
baseline reliability model.  It models the following effects by various expressions for the scaling ratio Ri(p|r): 

• Lot-to-lot or factory-to-factory yield variations via Yp in Eq. (28). 

• Product-to-product sensitivities to failure mechanisms via die areas Ap in Eq. (28). 

• Acceleration factors between accelerated test conditions and use conditions via the acceleration factor given in 
Eq. (32). 

• Burn-in time and conditions via Eq. (35) 

5.  ANALYSIS OF RELIABILITY DATA AND MODEL EXTRACTION 
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In the course of process development a large amount of reliability data is acquired using SRAMs design-optimized 
for reliability evaluation.  Once a process is transferred to production, failures are analyzed and production burn-in 
data are acquired for a variety of products.  Additionally, samples of various products are subjected to extended life-
test at accelerated conditions of temperature and bias.  This accumulated body of data is termed "baseline" reliability 
data.  This data is acquired at a variety of times and temperatures, for different products (with various die sizes), and 
from factories and lots with varying yields.  An example of one of the many data sets comprising the baseline lot data 
for a process is given in Table I6.  In Table I the yield defect density is given in arbitrary units and is taken to be 
unity (Dyield = 1). 

Table I.  Example SRAM life test data at Dyield = 1 (arbitrary units). 
Die area = 160×226 = 36160 mils 2. 

 Hours at V = 5.5V and Tj = 131°C 
 6 12 24 48 168 500 1000 2000 

Pass. Defect (PD) No data No data 1 0 0 0 0 1 
Fab Defect (FD) No data No data 3 0 0 2 0 0 
Bake Recov. (BR) No Data No Data 0 0 0 0 0 0 
Junct. Spike (JS) No Data No Data 0 0 0 0 0 0 
Sample Size (SS) No Data No Data 2748 2744 2743 2293 2290 2290 

Table II.  Acceleration model parameters for mechanisms indicated in Table I. 

Mechanism Qi (eV) Ci (1/volts) 
PD 0.3 1.8 
FD 0.5 2.0 
BR 1.0 0.0 
JS 1.0 0.6 

The method of deriving a "reference" reliability model from all of the baseline data sets is summarized in Fig. 6.  We 
show in Fig. 6 that many data sets comprising the baseline data (one of which is shown in Table I) are consolidated 
into a "reference" data set by scaling the data using the "scaling ratio" defined in Eq. (28) and the acceleration factor, 
Eq. (32), using acceleration parameters (assumed known from fundamental studies) in Table II. 

The result of consolidation of many baseline data sets such as that in Table I, is the "Reference Lot" data in Table III.  
This may be thought of as a re-tabulation at one arbitrarily-chosen "reference" condition of temperature, bias, yield 
defect density, and die area, of data taken at many conditions of temperature, etc 

Data in which the sample size changes from readout to readout is called "multi-censored" data.  Normally, sample 
sizes will only decrease as stress time accumulates (because of failures and removals).  However, in the case of Table 
III, sometimes sample sizes are seen to increase.  This is a result of the way in which data which has incommensurate 
readout intervals must be combined.   Multi-censored data may be analyzed by using hazard plotting, but this has the 
disadvantage of not providing confidence intervals.  An equivalent method which provides upper and lower 
confidence intervals to the cumulative distribution function has been described by Nelson7.  This method is the 
Kaplan-Meier method of calculating the survivor function, extended by Greenwood to provide estimates of the 
variance (the "KMG" algorithm).  Data in Table III is plotted in Fig. 7 using the KMG algorithm. 

Once the data in Table III has been plotted using the KMG algorithm, distribution functions may be fitted to the 
plotted data.  We have chosen to use lognormal distributions, although other distribution functions such as Weibull 
or piece-wise exponential could be used.  To fit a lognormal distribution through a set of cumulative proportion 
failing (Fi) versus time (ti) data, we transform the data into (x,y) points according to 

 x t y Fi i i i= = −ln( ) ( );    Φ 1 .   ................................................................................................(37) 

                                                                 

6 The data and models in this report are examples only, and do not represent the reliability of any Intel product. 

7 W. Nelson, "Accelerated Testing,",  John Wiley & Sons  (1989),  pp145-151 
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Lot 1
Area1, DD1, Tj1, V1

Lot 2

Area2, DD2, Tj2, V2

Lot N

AreaN, DDN, TjN, VN. . . . . . . .

SCALE TO ONE REFERENCE AREA, DD, Tj, and V

BASELINE LOT DATA

REFERENCE LOT DATA

Plot using Kaplan-Meier-Greenwood Algorithm

Fit Lognormal Distributions to BE, x% UCL KMG data points.

x = 60%, 90%, 95%, 99%  (Eg. Fig. 7)

at reference values of
Area, DD, Tj, V

REFERENCE MODEL DISTRIBUTIONS
Model Parameters for Each Mechanism

at reference values of
Area, DD, Tj, V

(Eg. Table I)

(Eg. Table III)

(Eg. Fig. 7)

(Eg.  Table IV)

(DD = Yield Defect Density)

 

Fig. 6 Summary of the procedure for deriving a process reference model from baseline reliability data sets. 
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Table  III.  Data derived from a variety of products all produced on the same process as the SRAM data of Table I.  
Data has been scaled and consolidated to a virtual reference condition of V = 7 volts, Tj=160°C, Area = 268686 mils 2, 
and Dyield = 0.21 (arbitrary units).  This is an example of "Reference Lot Data" in Fig. 6.  These data are examples only, 

and are not representative of Intel products. 

 Hours 
 6 12 24 48 168 500 1k 2k 
PD 0 0 1.6 0 0 0 3.2 6.2 
SS for PD 22642 1609 38305 51551 45212 5480 11808 5297 
FD 105.7 0 18.6 54.0 53.9 19.1 24.8 20.4 
SS for FD 21056 1407 34973 48604 42288 4304 10409 4207 
BR 0 0 7.3 4.6 0 0 7.7 0 
SS for BR 18281 1059 29629 47932 39302 3798 9383 3632 
JS 0 0 2.9 0 27.7 7.5 0 9.6 
SS for JS 18281 1059 29155 45472 37964 3015 8616 2958 

where Φ-1 is the inverse normal probability function.  Next we determine σ and µ from the slope of a line fitted 
through the (x,y) points from 

 σ µ σ= = − ×1 / slope;    intercept .   .............................................................................(38) 

σ and µ are determined for the best estimate by a least-squares fit of straight lines through KMG ordinates on a 
lognormal plot (symbols in Fig. 7) for each mechanism.  Only readouts with non-zero failures are used in the fit.  If 
there is only one non-zero readout, a default value of σ based on experience with similar mechanisms is chosen.  (This 
scenario occurs infrequently.)  Distributions for 60%, 90%, 95%, and 99% one-sided upper confidence limits are 
derived by a slope-constrained least-squares fit of straight line distributions through the corresponding upper 
confidence KMG ordinates, using the best-estimate value of σ.  This procedure gives a set of parameters, such as 
shown in Table IV, defining the "Reference Model Distributions" in Fig. 6. 
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Fig. 7 Lognormal probability plot of cumulative distribution functions for data from Table III plotted using KMG 
algorithm.  Error bars are 90% two-sided (95% one-sided) confidence limits.  Superimposed on the plots are 
"Best Estimate" fitted distributions (sloped straight lines) using least-squares fitting through readouts with 
non-zero failures.  The reference conditions for this plot are the same as in Table III:  V = 7 volts, Tj = 160°C, 
A = 268686 mils

2
, Dyield = 0.21 (arbitrary units). 
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Table IV.  Reference Model Distributions for data of Table III at reference conditions of V = 7 volts, Tj = 160°C, A = 
268686 mils

2
, Dyield = 0.21 (arbitrary units).  From fits to KMG ordinates plotted in Fig. 7.  These models are examples 

only, and are not representative of Intel products. 

Mechanism σ µ 
Best Est. 

µ 
60% UCL 

µ 
90% UCL 

µ 
95% UCL 

µ 
99% UCL 

PD  5.24  23.94  23.76  23.20  23.05  22.79 
FD  11.20  31.33  31.24  30.90  30.78  30.57 
BR  8.51  32.81  32.63  32.00  31.81  31.49 
JS  3.47  16.00  15.92  15.65  15.58  15.44 

The reference model survival function for mechanism i at the reference conditions of bias, temperature, defect 
density, and die area are given by 

 S t
t

i
r i

i

( )
ln( )

= −
−






1 Φ

µ
σ

.   .....................................................................................................(39) 

where the appropriate values of σ and µ are selected from Table IV for the particular example used here. 

The set of functions (one per mechanism) in Eq. (39) can be used in Eq. (35) to make model predictions for other 
products at other environmental conditions, and after various amounts of burn-in. 

6.  RELIABILITY PREDICTIONS 

We demonstrate applications of the model by discussion of several specific examples.  The reference model derived 
in Section 5, and summarized in Table IV and Table II, will be used in the examples. 

Effect of Burn-In on SRAM Reliability. 

We wish to calculate the survivor function at 85°C and 5 volts for an SRAM, with die area 36160 mils 2, with a lot 
defect density Dyield = 1 (arbitrary units), and with and without 10 hours of 125°C 5.5 volt burn in.  The first step is to 
calculate Ri(p|r) from Eq. (28): 

 Ri( )
.

.SRAM|reference =
×

×
=

1 36160
0 214 268686

0 628. 

for each mechanism.  This scaling ratio, and the reference model survivor function, Eq. (39), using the parameters in 
Table IV, is substituted into Eq. (35).  The acceleration factors in Eq. (35), between the reference model and the 
SRAM, are calculated from Eq. (32) using acceleration parameters from Table II.  The results of the calculation are 
shown in Fig. 8. 
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Fig. 8 Lognormal plots of cumulative distribution functions of SRAM (Area = 36160 mils 2, Dyield = 1, arbitrary 

units ) failures at 85°C and 5 volts.  Distributions for each mechanism, and the total, is shown.  Notice that 
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the total is dominated by "fab defects" (FD).  Left: No Burn-in.  Right:  After 10 hours of 125°C 5.5 volt burn 
in. 

Fit of Model to Baseline Data 

It is useful to compare the predictions from the reference model based on the entire baseline lot data set with one or 
two individual data sets selected from the baseline data set.  In Fig. 9 we compare a large die microprocessor at low 
defectivity and high stress and a small die (SRAM) at higher defectivity and low stress with the model predictions. 

The effect of area, yield defect density (given in arbitrary units), and stress on total cumulative failures (all 
mechanisms) are illustrated in Fig. 9 by changing the values from those for the microprocessor to those for the 
SRAM in the sequence: 

1. Area = 268686 mils2, Dyield = 0.21, Tj = 160°C, V = 7 volts.  (Conditions of microprocessor lot data.) 

2. Area = 36160 mils2, Dyield = 0.21, Tj = 160°C, V = 7 volts. 

3. Area = 36160 mils2, Dyield = 1, Tj = 160°C, V = 7 volts. 

4. Area = 36160 mils2, Dyield = 1, Tj = 125°C, V = 6 volts.  (Conditions of SRAM lot data.) 

The fit of the SRAM data set to the model is very good, and the fit of the microprocessor data is quite good 
considering the magnitude of the area, yield defect density, and stress effects.  Moreover, the model prediction is 
conservative for the microprocessor. 
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Reduce Stress

Microprocessor Model: Dyield = 0.21, 160C/7V

SRAM Model: Dyield = 1, 125C/6V

#1

#2

#3

#4

Microprocessor Lot Data: Dyield = 0.21, 160C/7V

SRAM Lot Data: Dyield = 1, 125C/6V

 
Fig. 9 Log-normal probability plot of best estimate model fits of total failures (all mechanisms) to two baseline data 

sets.  One is a large die (414 x 649 mils) microprocessor at lower defectivity (Dyield = 0.21, arbitrary units) 
and high stress (160°C/7V); the other is a small die (160x226 mils) SRAM at higher defectivity (Dyield = 1, 
arbitrary units) and low stress (125°C/6V).  Model predictions for the microprocessor (#1) and SRAM (#4) 
are shown with intermediate model curves showing the effect of reducing area (#2), increasing yield 
defectivity(#3), and finally, reducing stress (#4).  Neither baseline data sets, nor model predictions have 
burn in.  The data and models are examples only and are not representative of actual Intel products. 

Calculation of Reliability Indicators 

All reliability indicators can be calculated from the survival function, Eq. (35).  In the following we indicate "post-
burn-in" by the prime on the S (i.e. S').  Of course, the non-burned-in case can be derived by setting the burn-in time 
tB in Eq. (35) to zero.  All times in the following are "post-burn-in" times. 

Intel's reliability indicators are defined at die conditions of 85°C and 5 volts8 as follows: 

                                                                 

8 In newer technologies, a lower nominal voltage such as 3.3 volts is used. 
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• Infant Mortality9:  0 - 100 hours cumulative defects per million (DPM) at 85°C and 5 volts8 

 10 1 1006 × − ′ ={ ( )}S t  hours  

• Early Life Average Failure Rate (AFR):  0 - 1 year average failure rate in FITs at 85°C and 5 volts8, using Eq. (6), 

 − × ′ =10 8760 87609 ln[ ( )]S t  hours  

• Long Term Average Failure Rate:  1 - 10 years average failure rate in FITs at 85°C and 5 volts8, using Eq. (6), 

 10 8760 87600 788409 × ′ = − ′ ={ln[ ( )] ln[ ( )]}S t S t hours  hours  

These indicators may be calculated as best estimates, or upper confidence limits at various percentage of 
significance, depending on the model parameters selected from Table IV.  Typically, 60% one-sided UCL values are 
quoted. 

Table V.  Example of microprocessor 60% UCL reliability indicators calculated from reference model example used in 
this paper.  Indicators have been calculated with and without burn-in, showing the effect of burn-in.  These 

calculated indicators are examples only and are not representative of Intel products. 

  
Mech 

0-100 hr 
DPM @ 

85/5 

0-1yr 
DPM @ 

85/5 

0-1 yr 
AFR (FIT) 

@ 85/5 

1-10 yr 
AFR (FIT) 

@ 85/5 
 PD 2 69 8 4 
 FD 1406 4827 552 48 
No Burn In BR 39 305 35 6 
 JS 0 42 5 6 
 Total 1447 5241 600 65 
Burn In =  PD 0.4 35 4 3 
168 hours FD 1.6 133 15 13 
@ 160°C  BR 0.5 45 5 4 
and 7 volts JS 0.6 52 6 6 
 Total 3.1 266 30 25 

7.  SUMMARY 

This paper shows how to use SRAM and product reliability data acquired during process development and early 
production to establish a baseline data set.  The baseline data set is used to derive a reference model characteristic of 
each process.  The reference model exploits the relationship between yield defects and latent reliability defects.  This 
relationship makes it possible to predict the reliability of a product knowing only the sort yield data, die size, and, 
optionally, the yield defect Pareto.  The reference model may therefore be used to predict the reliability characteristics 
of complex random logic VLSI products without the necessity of extensive (and expensive) reliability testing, 
including failure analysis, of each product. 

It is necessary to make certain assumptions in the derivation of the model, and this paper enumerates them.  
However, the validity of the model really depends more on how well the single reference model actually fits the large 
number of data sets from many different products and conditions which comprise the baseline data set.  In this paper 
we made a small demonstration of the fit using very different products; a microprocessor and an SRAM.  Much more 
extensive comparisons of this type have been performed, giving us good confidence in the model. 

The technique described in this paper provides methods to: 

• Estimate any product's reliability characteristics, including the contributions of various mechanisms. 

• Estimate failure rates of complex products without full reliance on failure analysis or complete data. 

                                                                 

9 Intel now uses 0 - 50 hours as the defining period for infant mortality (6/16/95). 
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• Estimate the effect of die size, array area, etc. on the reliability characteristics of any proposed or new product 
using no or minimal data. 

• Quantify the reliability benefits of process continuous improvement through defect density reduction. 

• Calculate the effect of burn-in for any product. 

• Calculate reliability indicators useful to customers at any desired level of confidence. 
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