ClibPD

US007197670B2

az United States Patent

Boatright et al.

US 7,197,670 B2
Mar. 27, 2007

(10) Patent No.:
45) Date of Patent:

(54)

(735)

(73)

@
(22)

(65)

(1)

(52)
(58)

METHODS AND APPARATUSES FOR
REDUCING INFANT MORTALITY IN
SEMICONDUCTOR DEVICES UTILIZING
STATIC RANDOM ACCESS MEMORY
(SRAM)

Inventors: Bryan D. Boatright, Austin, TX (US);
Ben J. Eapen, Portland, OR (US); C.
Glenn Shirley, Portland, OR (US);
Carl Scafidi, Fort Collins, CO (US)

Assignee: Intel Corporation, Santa Clara, CA

(US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 546 days.

Appl. No.: 10/750,562
Filed: Dec. 31, 2003

Prior Publication Data

US 2005/0160326 Al Jul. 21, 2005

Int. CI.

GO6F 11/00 (2006.01)

US. CL o 714/42
Field of Classification Search 714/42;

711/144, 145
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
5,615,335 A * 3/1997 Onffroy et al. 714/30
5,943,693 A * 8/1999 711/220
6,006,311 A * 12/1999 Arimilli et al. 711/133
6,185,676 Bl 2/2001 Poplingher et al.
6,321,353 B2* 11/2001 Debenham 714/724
6,922,798 B2* 7/2005 Nemani et al. 714/710
2002/0199067 Al 12/2002 Patel et al.
2003/0145257 Al 7/2003 Fields, Jr. et al.
2003/0225961 Al* 12/2003 Chow et al. 711/103
2004/0019753 Al 1/2004 Boatright et al.
2005/0081114 Al* 4/2005 Ackaret et al. 714/42

* cited by examiner

Primary Examiner—Michael C. Maskulinski

(74) Attorney, Agent, or Firm—Schwabe, Williamson &
Wyatt, P.C.
(57) ABSTRACT

In accordance with various embodiments of the present
invention, a cache-equipped semi-conductor device is pro-
vided with enhanced error detection logic to detect a first
location-independent error within an area of the cache
memory and prevent further use of the area if the error is
determined to be the second consecutive error associated
with a common area.

17 Claims, 9 Drawing Sheets

DETECT FIRST ERROR WITHIN AN
AREA OF A CACHE MEMORY
102

FIRST ERROR AND
SECOND CONSECUTIVE
ERROR ASSOCIATED WITH
THE SAME CACHE AREA?

104

YES

NO
h 4
STORE DATA
IDENTIFYING THE CACHE
AREA ASSOCIATED WITH
THE ERROR
106

PREVENT FURTHER USE OF THE
AREA
108

www fastio.com

http://www.fastio.com/

U.S. Patent Mar. 27,2007 Sheet 1 of 9 US 7,197,670 B2

DETECT FIRST ERROR WITHIN AN
AREA OF A CACHE MEMORY
102

FIRST ERROR AND
SECOND CONSECUTIVE
ERROR ASSOCIATED WITH
THE SAME CACHE AREA?

NO l

104 STORE DATA
IDENTIFYING THE CACHE
AREA ASSOCIATED WITH
YES THE ERROR
106
PREVENT FURTHER USE OF THE
AREA
108
FIGURE 1

ClibPD www fastio.com

http://www.fastio.com/

US 7,197,670 B2

Sheet 2 of 9

Mar. 27, 2007

U.S. Patent

90¢
JdNLv3d 319vSIa
3NII3HOVO J1VAILOV

*

80C
Y3INNOD YOUY3 138

02
HAav LN3ddNd
HLIM H3L1SI1934 H0Hd3 avOo'l

4
4daavy
H3A1SI93d HOHY3

¢ 34N9OI4

v0c

ON_-70437 Wvno3 ¥3INNOD

01V '8aayv SS300V

HOYY3 S304

20¢
£dodd3

003 NY 30NAcyd
$8300V 3HOVO did

www fastio.com

ClibPD

http://www.fastio.com/

U.S. Patent Mar. 27,2007 Sheet 3 of 9 US 7,197,670 B2

DID CACHE ACCESS
PRODUCE AN ECC
ERROR?
302

DETERMINE CACHELINE THAT
CAUSED ERROR
303

l

ACCESS THE SAME CACHELINE
AGAIN
304

DID CACHE ACCESS
PRODUCE AN ECC
ERROR?
306

NO

ACTIVATE CACHELINE DISABLE
FEATURE
308

FIGURE 3

ClibPD www fastio.com

http://www.fastio.com/

US 7,197,670 B2

Sheet 4 of 9

Mar. 27, 2007

U.S. Patent

v 34NOId

AdIAON ISTIN <€—

AJIQON NHT «+—

8Ly
X00714d
318vSIa 3HOVO

H

oy L
M0018 «— Vv
(1]%% NOILDO3L13a M2079
Y019 HOYYI QYvH 203
NOILD313Q "HOo¥y3 y y
207
00 JHOVD
HOSS3ID0Nd

www fastio.com

ClibPD

http://www.fastio.com/

US 7,197,670 B2

Sheet 5 of 9

Mar. 27, 2007

U.S. Patent

S F4NSI4
91% 0019 19313d
HO¥Y3 QYVH
gLy 0LSG
319vsIa A m
JHOVD 208 vy «—— F4014 DA
oL INIHOVIN 31VY1S 203 JHOVD
805"\ ¥0S ss3daav
219071 NOSI¥VdNOD NOILYY3dO INIgdND
90S
¥ y31SI93Y HONWNT

oy

www . fastio.com

ClibPD

http://www.fastio.com/

US 7,197,670 B2

Sheet 6 of 9

Mar. 27, 2007

U.S. Patent

9 F4NSOIH
(Isan/ny)
8ly A4IQ0ON
319vSIa IHOVD 1WOW FHOVD

A

4%
(1-N) 109|9S Aepp AII@?
o

209
“ (N 01)
300233
0 J09|8S Aepp
2190019 Pl
19313S AVM

31901 10313d
SSIW/LIH 3HDOVO
WOYH4d 11NS3Y

91¥ 103130
—— HOdHd
AyvH NOJ4

Stlo.com

wavw fa

ClibPD

http://www.fastio.com/

US 7,197,670 B2

Sheet 7 of 9

Mar. 27, 2007

U.S. Patent

903 NO¥4
TYNOIS 103HHOD
HONHT HO4 LIVM Q31034400 0z L Fd4NSI4
HOMMS 378vsIa
$S3YAAY AVMWIIS
LINIHNND == 934 YOYN3
$S34aaV AYW.L3S
INIHYND= O34 YOYY3
'SS3”AAY AYWLIS

INIHHND £ O HOHYT

90.
LIVM

SS34AAv AVW13S
INFHEINI="938 HOHH3

d3Lo3yuyo9 ‘Ho¥Y3 NOdN

JOoHd3

003 NOY4
TVYNODIS LO3HH0D
HOHYT HO4 1IVM

www fastio.com

ClibPD

http://www.fastio.com/

US 7,197,670 B2

Sheet 8 of 9

Mar. 27, 2007

U.S. Patent

8 FdN9id

AdJIAON ISIN +—

AdIAON NYT «—

C15%

©00148 318vSId IHOVYO

% A
oIy L
M0o01g ——— 2% 4
[I%% NOILD313a M0018
Y2019 HOYY3 ayvH 203
NOILD313Q YOHH3 A
<> 207
008 c08 IHOVD
1si1gd
H0SS3aD0¥d

www fastio.com

ClibPD

http://www.fastio.com/

ClibPD

U.S. Patent

www fastio.com

Mar. 27,2007 Sheet 9 of 9 US 7,197,670 B2
PROCESSOR
910
TEMPORARY
CACHE ERROR DETECT MEMORY
402 410 920
HIGH SPEED BUS 905
BUS BRIDGE
930
| /0 BUS 915
PERMANENT /O DEVICES
MEMORY 950
940
FIGURE 9
MACHINE
READABLE
MEDIUM
1020 MACHINE
EXECUTABLE
INSTRUCTIONS
1010
FIGURE 10

http://www.fastio.com/

ClibPD

US 7,197,670 B2

1
METHODS AND APPARATUSES FOR
REDUCING INFANT MORTALITY IN
SEMICONDUCTOR DEVICES UTILIZING
STATIC RANDOM ACCESS MEMORY
(SRAM)

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to electronic cir-
cuits, and more particularly to methods and apparatuses for
reducing burn in.

2. Background Information

Infant mortality is a term used to describe device failures
that occur within the first year of usage. Infant mortality is
most often caused by latent manufacturing defects (herein-
after referred to as “hard defects”) that escape detection
during factory tests and become permanently active during
use of the device typically rendering the device as non-
functional.

Currently, infant mortality in devices is controlled
through a pre-shipment process of burn in. During the
burn-in process, devices are operated at artificially elevated
voltages and temperatures for a period of time so as to
activate hard defects prior to device shipment that would
otherwise affect customers early in the life of the device.

As transistor dimensions and threshold voltages are scaled
down for performance, burn in power and consequently burn
in hardware costs increase. This remains an issue as manu-
facturers struggle to meet market expectations of infant
mortality rates while maintaining reasonable manufacturing
costs.

BRIEF DESCRIPTION OF DRAWINGS

The present invention will be described by way of exem-
plary embodiments, but not limitations, illustrated in the
accompanying drawings in which like references denote
similar elements, and in which:

FIG. 1 is a flow diagram illustrating an overview of the
present invention in accordance with one embodiment;

FIG. 2 is a flow diagram illustrating a process for detect-
ing hard errors through recurrent ECC events in accordance
with one embodiment of the present invention;

FIG. 3 is a flow diagram illustrating a process for detect-
ing hard errors through forced ECC events in accordance
with another embodiment of the present invention;

FIG. 4 is a block diagram illustrating a processor
equipped with error correction logic in accordance with one
embodiment of the present invention;

FIG. 5 is a block diagram illustrating one embodiment of
the hard error detection logic of FIG. 4;

FIG. 6 is a block diagram illustrating one embodiment of
the cache disable logic of FIG. 4;

FIG. 7 illustrates an example state diagram that may be
implemented via state machine 502 of FIG. 5, in accordance
with one embodiment of the present invention;

FIG. 8 is a block diagram illustrating a processor
equipped with error correction logic in accordance with an
alternative embodiment of the present invention;

FIG. 9 illustrates one embodiment of a generic hardware
system for use with various embodiments of the present
invention; and

FIG. 10 illustrates one embodiment of a machine readable
storage medium.

www fastio.com

20

25

30

35

40

45

55

60

65

2

DETAILED DESCRIPTION OF EMBODIMENTS
OF THE INVENTION

In accordance with various embodiments of the present
invention, a cache-equipped semi-conductor device is pro-
vided with enhanced error detection logic to facilitate infant
mortality control yielding reduced device burn in time (and
cost) accompanied by only a negligible increase in die area.
This may be contrasted to prior art cache fault tolerance
methods that attempt to detect multiple errors over the full
scope of the entire cache (e.g. on a per set basis). Such
methods require large amounts of redundant memory cells
and circuits, resulting in large increases in die area.

In the following detailed description, numerous specific
details are set forth in order to provide a thorough under-
standing of the present invention. However, those skilled in
the art will understand that the present invention may be
practiced without these specific details, that the present
invention is not limited to the depicted embodiments, and
that the present invention may be practiced in a variety of
alternative embodiments. In other instances, well known
methods, procedures, components, and circuits have not
been described in detail.

Various operations will be described as multiple discrete
steps performed in turn in a manner that is helpful for
understanding the present invention. However, the order of
description should not be construed as to imply that these
operations are necessarily performed in the order they are
presented, or are even order dependent. Furthermore,
repeated usage of the phrase “in one embodiment™ does not
necessarily refer to the same embodiment, although it may.
Lastly, the terms “comprising”, “including”, “having”, and
the like, as used in the present application, are intended to be
Synonymous.

FIG. 1 is a flow diagram illustrating an overview of the
present invention in accordance with one embodiment. In
the illustrated embodiment, a cache error is detected within
an area of a cache memory at block 102. In one embodiment,
detection of the cache error is location-independent in that
only a single error need be detected anywhere within the
cache memory. In one embodiment, the error may be
detected at run-time via error checking and correcting (ECC)
logic. A determination is then made at block 104 as to
whether the detected error represents a second consecutive
error associated with the same area of the cache memory. If
not, data identifying the cache area (such as, but not limited
to a cacheline) affected by the error is stored at block 106 for
use in detection of a subsequent error. However, if the
detected error represents a second consecutive error associ-
ated with the same area of the cache memory, further use of
the identified area is prevented at block 108.

In one embodiment, once a cache error has been identi-
fied, a cacheline affected by the error may be disabled by a
cache management system. For example, a LRU score or
MESI state associated with the affected cacheline may be
dynamically modified to inhibit further access of the dis-
abled cacheline by e.g. a processor. In one embodiment, a
value stored in an LRU register may be modified such that
the affected cacheline is less likely to be further accessed by
a processor than at least one other cacheline within the cache
memory. In one embodiment, a value may be stored in an
LRU register associated with the affected cacheline to
indicate that the cacheline was most recently used thereby
decreasing the probability that the affected cacheline will be
accessed further. In another embodiment, a MESI protocol
associated with the cache memory may be expanded to
include a “disable” state that is assignable to the cacheline.

http://www.fastio.com/

ClibPD

US 7,197,670 B2

3

Using such an expanded disable state may eliminate the
probability that a processor will further access the affected
cacheline.

In an alternative embodiment, rather than cache errors
being detected at run-time, errors may be detected at startup
via programmable built-in self test (PBIST) logic. In such an
embodiment, further use of the affected area may be pre-
vented without determining whether the error is a second
consecutive error associated with the same area of the cache.

FIG. 2 is a flow diagram illustrating a process for detect-
ing hard errors through recurrent ECC events in accordance
with one embodiment of the present invention. In the
illustrated embodiment, the process begins at block 202 with
a cache access (e.g. by a processor) resulting in an ECC
error. Once an error has been detected, an attempt is made
to determine whether the error is a hard error (e.g. due to a
latent manufacturing defect) or a soft error such as a single
event upset (e.g. due to an alpha particle). In FIG. 2, a
determination is made at block 204 as to whether an error
counter is equal to zero. In one embodiment, the error
counter is implemented as a state machine. If the error
counter is equal to zero, an error register may be loaded with
the current operation address at block 207, and the error
counter may be incremented or otherwise set to indicate an
ECC error at block 208. Thereafter, the process returns to
block 202 where it may wait for additional cache accesses to
produce a subsequent ECC error. Upon the occurrence of a
subsequent cache error, a determination may again be made
at block 204 as to whether the error counter is equal to zero.
If the error counter is not equal to zero, thus indicating a
previous detection of an ECC error, a further determination
may be made at block 205 as to whether the current
operation address associated with the cache access matches
an address stored in the error register. If not, the error
register may be loaded with the current operation address
and block 207. However, if the current operation address
associated with the cache access matches an address stored
in the error register, a cacheline disable function may instead
be activated at block 206.

FIG. 3 is a flow diagram illustrating a process for detect-
ing hard errors through forced ECC events in accordance
with another embodiment of the present invention. In the
illustrated embodiment, the process begins at block 302,
where a determination may be made as to whether a cache
access produced an ECC error. Upon a cache access pro-
ducing an ECC error, the cacheline that caused the error may
be determined at block 303. At block 304, the same cach-
eline that caused the error may be accessed a second
consecutive time to proactively determine whether the error
was a hard error or a soft error. A determination as to
whether the second consecutive cache access also produced
an ECC error may further be made at block 306. If the
second consecutive cache access did not produce an ECC
error, the process may return to block 302 where the process
waits until another cache access produces an ECC error.
However, if the second consecutive cache access did also
produce an ECC error at block 306, the cacheline affected by
the error may be disabled at block 308. In one embodiment,
a cache management system such as a LRU algorithm or
MESI protocol associated with the cache may be modified
so as to decrease or eliminate the chance of the affected
cacheline being accessed again.

Although the process depicted in FIG. 3 may decrease the
amount of time it takes to detect a hard error as compared to
the process depicted in FIG. 2, a system equipped to
implement the process of FIG. 3 may require additional

www fastio.com

10

15

25

30

35

40

45

50

55

65

4

logic/circuitry and corresponding die area beyond that
required by the process of FIG. 2.

FIG. 4 is a block diagram illustrating a processor
equipped with error correction logic in accordance with one
embodiment of the present invention. As shown, processor
400 includes cache memory 402 and error detection block
410. In one embodiment, cache memory 402 may represent
an n-way set associative static random access memory
(SRAM) array. Error detection block 410 may include ECC
block 414, hard error detect block 416, and cache disable
block 418. ECC block 414 may represent error checking and
correcting circuitry well-known in the art to facilitate detec-
tion of soft errors occurring in cache memory (such as cache
memory 402). Since the operation and configuration of ECC
block 414 is well known, it will not be discussed further
except with respect to hard error detect block 416 and cache
disable block 418.

Hard error detect block 416 represents logic/circuitry
designed to detect and isolate hard errors caused by latent
manufacturing defects within cache memory 402. In one
embodiment, hard error detect block 416 may include digital
logic and/or analog circuitry to determine if two consecutive
soft errors occur within the same area of cache memory 402.
In one embodiment, an error register is used to store data
identifying a set/way area of cache memory 402 affected by
an error as reported e.g. by ECC block 414.

Cache disable block 418 represents logic/circuitry
designed to prevent an area of cache memory 402 affected
by an error from being accessed any further by processor
400. In one embodiment, cache disable block 418 may
disable or otherwise inhibit further access to a cacheline
associated with an ECC error. In one embodiment, access to
the affected cacheline may be inhibited via modification of
a LRU score associated with the affected cacheline. Further-
more, access to the affected cacheline may be disabled via
the assignment of an “invalid” state of a modified MESI
protocol to the affected cacheline.

FIG. 5 is a block diagram illustrating one embodiment of
hard error detection logic 416 of FIG. 4. As shown, hard
error detection logic 416 includes error register 506 to store
data identifying a particular area of cache memory 402
affected by an error (e.g. as reported by ECC block 414),
comparison logic 504 to determine whether the data stored
in error register 506 matches a current operation address,
and state machine 502 to determine whether a detected error
represents a second consecutive error associated with a
common memory location such as a memory address.

During run-time, a current operation address may be
provided by processor 400 to cache 402 and comparison
logic 504. If an error is detected in an area of cache memory
402 where the current operation address is stored, ECC
block 414 provides an error signal to state machine 502
reporting such error. At substantially the same time, the
current operation address is compared via comparison logic
504 to an address stored in error register 506 and corre-
sponding to a previous error. If the current operation address
does not match the address stored in error register 506, write
enable signal 508 may be asserted to store the current
operation address in error register 506. However, if the
current operation address does match the address stored in
error register 506, a cache disable signal 510 coupled to
cache disable block 418 may be asserted.

FIG. 6 is a block diagram illustrating one embodiment of
the cache disable logic of FIG. 4. As shown, cache disable
logic 418 includes M-to-N decode logic 602 and way select
logic 612. In one embodiment, M-to-N decode logic 602
generates a way disable vector based upon received cache

http://www.fastio.com/

ClibPD

US 7,197,670 B2

S

disable signal 510. The way disable vector may be used to
select any of (N-1) ways (e.g. via way select lines) as well
as modifying a cache management system, such as a LRU
score or MESI state assignment associated with the selected
way. In one embodiment, the state of each way select line is
determined based upon the outcome of a corresponding
logical AND operation (e.g. via AND gate 614) performed
between an inverted input signal and a non-inverted input
signal for each way select line. In one embodiment, the
non-inverted input signal corresponds to the result of a
comparison between a cache tag array and the current
operation address (e.g. via cache hit/miss detect logic—not
shown), while the inverted input signal is derived from a
corresponding out put signal from decode block 602.

In the embodiment of FIG. 6, AND gates 614 are each
illustrated as having an inverted input signal as output
signals from decode logic 602 is assumed to be active low.
However, other circuit arrangements may be implemented
without departing from the spirit and scope of the present
invention as e.g. described with respect to the various
illustrated embodiments. For example, if the output of
decode logic is active high, AND gates 614 may not have an
inverted input. In one embodiment, decode block 602 rep-
resents a 3-to-8 decoder to facilitate selection and subse-
quent disabling of any cacheline of an 8-way set associative
cache memory.

FIG. 7 illustrates an example state diagram that may be
implemented via state machine 502 of FIG. 5, in accordance
with one embodiment of the present invention. As shown,
the state machine 502 remains idle at state 702 until a first
ECC error is detected via a signal from ECC block 414.
Upon such time, state machine 502 progresses to state 704
while error register 506 is assigned the value of the current
operation address such as e.g. the current set/way address. At
state 704, state machine 502 may pause to allow ECC block
414 enough time to recover (as part of routine ECC opera-
tion) any modified data that may be stored in the affected
area of the cache. In one embodiment state machine 502 may
wait to receive an error correct signal from ECC block 414
indicating that the data has been successfully recovered and
the error corrected. Upon the error being corrected, state
machine 502 may proceed to state 706 where again it waits
for another error to be detected. Upon receiving a second
error, a determination may be made as to whether the
set/way address stored in error register 506 is equal to the
current address of the error. If not, the error register is
assigned the value of the current set/way address and state
machine 502 proceeds back to state 704. However, if the
set/way address stored in error register 506 is equal to the
current address of the error, state machine 502 proceeds to
state 708 where state machine 502 again may wait for an
error correct signal from ECC block 414. Once the error has
been corrected and any modified data recovered by ECC
block 414, state machine 502 proceeds to state 710 where
the affected area of the cache as e.g. indicated by the stored
set/way address is disabled.

FIG. 8 is a block diagram illustrating a processor
equipped with error correction logic in accordance with an
alternative embodiment of the present invention. Processor
800 is similar to processor 400 of FIG. 4 with the exception
of PBIST block 802. PBIST block 802 represents program-
mable built-in self test logic/circuitry used to detect errors
processor 800, and more specifically in cache 402, as
processor 800 proceeds through a startup phase. Upon
detecting an error in cache 402, PBIST block 802 may assert
a signal causing cache disable block 418 to disable an
affected cacheline. Since errors detected by PBIST block

www fastio.com

20

25

40

45

60

65

6

802 are likely hard errors, cache disable block 418 may
proceed to disable the affected cacheline and correspond-
ingly modify a cache management system without deter-
mining if the error is a second consecutive error associated
with a common memory area/address.

FIG. 9 illustrates one embodiment of a generic hardware
system intended to represent a broad category of computer
systems such as personal computers, workstations, and/or
embedded systems. In the illustrated embodiment, the hard-
ware system includes processor 910 including cache 402 and
error detect logic in accordance with embodiments of the
invention. Processor 910 is coupled to high speed bus 905,
which is coupled to input/output (I/O) bus 915 through bus
bridge 930. Temporary memory 920 is coupled to bus 905.
In various embodiments, temporary memory 920 may com-
prise dynamic ramdom access memory (DRAM). Permanent
memory 940 is coupled to bus 915. /O device(s) 950 is also
coupled to bus 915. 1/0 device(s) 950 may include a display
device, a keyboard, one or more external network interfaces,
etc.

Certain embodiments may include additional compo-
nents, may not require all of the above components, or may
combine one or more components. For instance, cache 402
and/or error detect block 410 may be located off-chip with
respect to processor 910. Alternately, permanent memory
940 may be eliminated and temporary memory 920 may be
replaced with an electrically erasable programmable read
only memory (EEPROM), wherein software routines are
executed in place from the EEPROM. Some implementa-
tions may employ a single bus, to which all of the compo-
nents are coupled, or one or more additional buses and bus
bridges to which various additional components can be
coupled. Similarly, a variety of alternate internal networks
could be used including, for instance, an internal network
based on a high speed system bus with a memory controller
hub and an /O controller hub. Additional components may
include additional processors, a CD ROM drive, additional
memories, and other peripheral components known in the
art.

In one embodiment, the present invention, as described
above, could be implemented using one or more hardware
systems such as the hardware system of FIG. 9. Where more
than one computer is used, the systems can be coupled to
communicate over an external network, such as a local area
network (LAN), an internet protocol (IP) network, etc. In
one embodiment, the present invention as described above
may be implemented as software routines executed by one
or more execution units within the computer(s). For a given
computer, the software routines can be stored on a storage
device, such as permanent memory 940.

Alternately, as shown in FIG. 10, the software routines
can be machine executable instructions 1010 stored using
any machine readable storage medium 1020, such as a
diskette, CD-ROM, magnetic tape, digital video or versatile
disk (DVD), laser disk, ROM, Flash memory, etc. The series
of instructions need not be stored locally, and could be
received from a remote storage device, such as a server on
a network, a CD ROM device, a floppy disk, etc., through,
for instance, /O device(s) 950 of FIG. 9.

From whatever source, the instructions may be copied
from the storage device into temporary memory 920 and
then accessed and executed by processor 910. In one imple-
mentation, these software routines may be implemented in
micro-control code. It is to be appreciated, however, that
these routines may be implemented in any of a wide variety
of programming languages.

http://www.fastio.com/

ClibPD

US 7,197,670 B2

7

In alternate embodiments, the present invention as
described above may be implemented in discrete hardware
or firmware. For example, one or more application specific
integrated circuits (ASICs) could be programmed with one
or more of the above described functions of the present
invention. In another example, one or more functions of the
present invention could be implemented in one or more
ASICs on additional circuit boards and the circuit boards
could be inserted into the computer(s) described above. In
another example, field programmable gate arrays (FPGAs)
or static programmable gate arrays (SPGA) could be used to
implement one or more functions of the present invention. In
yet another example, a combination of hardware and soft-
ware could be used to implement one or more functions of
the present invention.

EPILOG

While the present invention has been described in terms
of the above-illustrated embodiments, those skilled in the art
will recognize that the invention is not limited to the
embodiments described. The present invention can be prac-
ticed with modification and alteration within the spirit and
scope of the appended claims. Thus, the description is to be
regarded as illustrative instead of restrictive on the present
invention.

What is claimed is:

1. A method comprising:

detecting an error within a cache line of a cache memory;

determining whether the error is a second consecutive

error associated with the cache line; and

preventing further use of the cache line if the error is

determined to be the second consecutive error associ-
ated, with the cache line by modifying a cache man-
agement system to at least inhibit subsequent access to
the cache line, said modifying including at least a
selected one of modifying by the cache management
system a value corresponding to a particular set such
that the cache line is less likely to be accessed than at
least one other cache line, and assigning by the cache
management system a disable state to the cache line as
part of a MESI state assignment.

2. The method of claim 1, wherein the cache memory
comprises an n-way set associative static random access
memory.

3. The method of claim 2, wherein the error comprises an
error checking and correcting (ECC) based error.

4. The method of claim 1, further comprising:

comparing a current operation address corresponding to

the error with a stored address corresponding to a
previous error; and

identifying the error as the second consecutive error if the

current operation address matches the stored address.

5. The method of claim 4, further comprising:

storing the current operation address corresponding to the

error in place of the stored address corresponding to the
previous error if the current operation address does not
match the stored address.

6. The method of claim 5, further comprising:

accessing the current operation address corresponding to

the error a second time to determine whether the second
consecutive error occurs.

7. The method of claim 1, further comprising:

determining whether data stored in the cache line of the

cache memory has been modified as compared to data
stored in a corresponding area of main memory;

www fastio.com

5

10

20

25

30

50

60

65

8

facilitating recovery of the modified data stored in the

area of the cache memory; and

preventing further use of the cache line of the cache

memory after the modified data stored in the cache line
of cache memory has been recovered.

8. The method of claim 1, wherein the error is detected via
programmable built-in self test (PBIST) logic.

9. A processor comprising:

a cache memory;

error detection logic coupled to the cache memory, the

error detection logic equipped to:

detect an error within a cache line of the cache memory;

determine whether the error is a second consecutive
error associated with the cache line; and

prevent further use of the cache line if the error is
determined to be the second consecutive error asso-
ciated with the cache line by modifying a cache
management system to at least inhibit subsequent
access to the cache line, said modifying including at
least a selected one of modifying by the cache
management system a value corresponding to a
particular set such that the cache line is less likely to
be accessed than at least one other cache line, and
assigning a disable state to the cache line as part of
a MESI state assignment.

10. The processor of claim 9, wherein the cache memory
comprises an n-way set associative static random access
memory (SRAM).

11. The processor of claim 9, wherein the error detection
logic comprises:

error checking and correcting logic to detect an error

within the cache memory;

hard error detection logic to determine whether the

detected error is a hard error; and

cacheline disable logic to disable a cache line affected by

the error if it is determined that the detected error is a
hard error.

12. The processor of claim 11, wherein the hard error
detection logic further comprises:

an error register to store address information indicating at

least the cache line affected by the error;

comparison logic to compare stored address information

with a current operating address; and

state logic to determine whether the error is a second

consecutive error based upon output from the compari-
son logic.

13. The processor of claim 12, wherein the cacheline
disable logic further comprises:

a decoder to generate a way-disable vector prevent further

use of the cache line; and

way-select logic to select the cache line to be disabled

based upon the way-disable vector;

wherein the way-disable vector operates to modify a

cache management system including at least one of a
least recently used (LRU) algorithm and a MESI pro-
tocol.

14. The processor of claim 9, further comprising pro-
grammable built-in self test (PBIST) logic coupled to the
error detection logic to facilitate detection of the error during
a startup routine of the processor.

15. A system comprising:

a dynamic random access memory and;

an integrated circuit coupled to the dynamic random

access memory, the integrated circuit including a cache
memory and error detection logic, wherein the error
detection logic is equipped to:

http://www.fastio.com/

US 7,197,670 B2

9 10
detect an error within a cache line of the cache memory, likely to be accessed than at least one other cache
determine whether the error is a second consecutive line, and assigning a disable state to the cache line as
error associated with the cache line, and part of a MESI state assignment.
prevent further use of the cache line if the error is 16. The system of claim 15, wherein the integrated circuit
determined to be the second consecutive error asso- 5 further includes a central processing unit and at least one
ciated with the cache line by modifying a cache input/output module coupled to the central processor unit.
management system to at least inhibit subsequent 17. The system of claim 15, wherein the integrated circuit
access to the cache line, said modifying including at is a microprocessor.
least a selected one of modifying a value correspond-
ing to a particular set such that the cache line is less L

ClibPD www fastio.com

http://www.fastio.com/

	d:\p2mp\img\0000841998\07197670\300_0001.tif
	d:\p2mp\img\0000841998\07197670\300_0002.tif
	d:\p2mp\img\0000841998\07197670\300_0003.tif
	d:\p2mp\img\0000841998\07197670\300_0004.tif
	d:\p2mp\img\0000841998\07197670\300_0005.tif
	d:\p2mp\img\0000841998\07197670\300_0006.tif
	d:\p2mp\img\0000841998\07197670\300_0007.tif
	d:\p2mp\img\0000841998\07197670\300_0008.tif
	d:\p2mp\img\0000841998\07197670\300_0009.tif
	d:\p2mp\img\0000841998\07197670\300_0010.tif
	d:\p2mp\img\0000841998\07197670\300_0011.tif
	d:\p2mp\img\0000841998\07197670\300_0012.tif
	d:\p2mp\img\0000841998\07197670\300_0013.tif
	d:\p2mp\img\0000841998\07197670\300_0014.tif
	d:\p2mp\img\0000841998\07197670\300_0015.tif

