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1
COPULA-BASED SYSTEM AND METHOD
FOR MANAGEMENT OF MANUFACTURING
TEST AND PRODUCT SPECIFICATION
THROUGHOUT THE PRODUCT LIFECYCLE
FOR ELECTRONIC SYSTEMS OR
INTEGRATED CIRCUITS

FIELD OF THE INVENTION

The present invention relates generally to the design and
manufacturing test of electronic systems or integrated cir-
cuits. More particularly, the invention relates to a system and
method that supports decision-making in the design and
manufacture of electronic systems or integrated circuit com-
ponents throughout the product lifecycle.

BACKGROUND OF THE INVENTION

Design and manufacturing test of electronic systems
require consideration of the effect of variation of individual
components on the variability of the system. Similarly, design
and manufacturing test of integrated circuit components
require consideration of the effect of variation of individual
circuit modules on the variation of the integrated circuit itself.
Characterizing and modeling this variation support decision-
making in the design and manufacturing test of both elec-
tronic systems and integrated circuit components.

Test in the manufacture of electronic systems or integrated
circuit components requires specification of test conditions
such as temperatures, voltages, frequencies and parametric
test limits, as well as end-use specifications. End-use speci-
fications are given in a datasheet specification document used
by designers of systems employing the electronic (sub-) sys-
tem or integrated circuit component being manufactured. Test
specifications and datasheet specifications are set to optimize
yield, yet meet quality and reliability requirements, and so
have an important revenue and brand image impact. Each unit
tested is characterized by many parametric attributes such as
power and delay for electronic systems, or I ,, F, ., bit
refresh time, reliability lifetimes, etc., for integrated circuit
components, all as functions of environmental conditions
such as temperature, voltage and frequency. These parametric
attributes are dependent (correlated) to various degrees in the
population of manufactured units. A traditional method of
optimizing the test manufacturing flow is to characterize a
sufficiently large sample of units of a specific product by
measuring, but not screening, the multiple parametric
attributes over a range of temperatures, voltages, and frequen-
cies corresponding to possible Test and Use conditions of a
future product. Test set points and limits are then found by
filtering the data and computing figures of merit (FOMs) such
as yield loss, overkill, and end-use fail fraction so that manu-
facturing cost, and quality and reliability targets are met.
What is needed is a way to do this earlier in the product
lifecycle by building a statistical model of a product from test
vehicle data and then using the model to scale the model to the
specific die area, bit count, fault tolerance scheme, etc. of a
future product. The same statistical model may also be used
later in the product lifecycle to decide on end-use specifica-
tions to be published to system designers using the compo-
nent, and even later in the product lifecycle to optimize the
test specification in manufacturing test. A test vehicle is an
electronic subsystem or integrated circuit device specifically
designed to facilitate data acquisition needed to build the
statistical model. The statistical model must handle multi-
variate dependency, and be scalable from the conditions of the
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test vehicle to the hypothetical design and manufacturing
specifications of a future product.

SUMMARY OF THE INVENTION

To address the needs in the art, a method implemented by
an appropriately programmed computer for determining
specifications that meet electronic system or integrated cir-
cuit product requirements is provided. The method includes
acquiring data from a test vehicle, fitting the data to a copula-
based statistical model using an appropriately programmed
computer, and using the copula-based statistical model to
compute figures of merit of a future electronic system or
integrated circuit product, different from the test vehicle,
using the appropriately programmed computer. Test vehicles
and products have multiple dependent (correlated) attributes,
which are comprehended by the copula-based statistical
model used to fit the test vehicle data. The computed figures
of' merit of the product are compared with target values of the
figures of merit to determine design and manufacturing speci-
fications of the product.

According to one embodiment of the invention, the test
vehicle data includes values of attributes for each member of
a population of the test vehicles manufactured by an inte-
grated circuit manufacturing process measured as a function
of environmental conditions. In one aspect, the environmen-
tal conditions can include temperature, voltage, or frequency.

In another embodiment of the invention, the copula-based
statistical model describes a dependency structure of the data.

According to a further embodiment of the invention, the
copula-based statistical model includes a copula and mar-
ginal distribution functions that describe a statistical distribu-
tion of each attribute of the data, where the copula and the
marginal distribution functions embody a dependency on
environmental conditions. In one aspect, the environmental
conditions can include temperature, voltage, or frequency. In
a further aspect, if the environmental dependencies are such
that the copula does not depend on environmental conditions,
and the marginal distribution functions depend on all envi-
ronmental conditions through a single characteristic param-
eter, then useful flexibility in establishing set points in test
specifications and datasheet specifications obtains. In another
aspect, the copula is a geometrical copula that enables non-
reject Monte-Carlo synthesis of synthetic data used to com-
pute the figures of merit. According to another aspect, the
copula of the statistical model has a tail dependency structure
characteristic to the physics of both the test vehicle and the
product. In yet another aspect, the copula is used to generate
synthetic Monte-Carlo samples of instances of units with
multiple attribute values, where the instances of units corre-
spond to a censored sample of a population of the product,
and where attribute values are compared to the test specifica-
tions and the datasheet specifications to determine a pass or
fail status of each instance, and where the figures of merit are
determined by counting instances of the pass and fail status.

According to another embodiment of the invention, the
specifications include design, test and datasheet specifica-
tions.

According to another embodiment, the invention further
includes determining figures of merit and their statistical
confidence limits by efficient non-reject Monte-Carlo synthe-
sis of censored synthetic product data for any experimental
design, not only the experimental design which produced the
test vehicle data, using the appropriately programmed com-
puter. The efficient non-reject Monte-Carlo synthesis is
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enabled by choosing a geometrical copula to represent the
dependency structure of the test vehicle data in the statistical
model.

According to another embodiment, the invention includes
determining figures of merit and their statistical confidence
limits for the experimental design which produced the test
vehicle data, by using resampling methods, of which one
embodiment is the Bootstrap method.

In a further embodiment of the invention, the fitting
includes fitting individual marginal attribute distribution
models and the copula for a reference test coverage model,
where the fitting of the individual marginal attribute distribu-
tion models and the copula may be done in any order. A test
coverage model specifies the degree of imperfection in the
manufacturing test screen for the attribute it is directly mea-
suring.

According to yet another embodiment of the invention, the
acquisition of the data using the test vehicle includes measur-
ing attributes separately on sub-elements, called “modules”,
of' the test vehicle, which are also modules of the product, or
are similar to modules of the product.

In one embodiment of the invention, the acquisition of the
data using the test vehicle includes a test program that dis-
ables all fault tolerance mechanisms in the test program and
the test vehicle.

In a further embodiment of the invention, the acquisition of
the data using the test vehicle includes an experimental design
having conditions spanning possible datasheet specifications
and test specifications of a product.

According to another embodiment, the invention further
includes determining whether the figures of merit of a new
product satisfy quality, reliability, and cost requirements,
where the new product has design specifications, test speci-
fications and datasheet specifications that are different from
design specifications and test specifications of the test
vehicle. In one aspect, the different design specifications and
different test specifications include a different test coverage
model from a reference test coverage model assumed in deter-
mining the statistical model from test vehicle data. According
to another aspect, the different design specifications of the
product include a number of circuit sub-elements (modules)
that is different from the number of circuit sub-elements
(modules) in the test vehicle. In a further aspect, the different
design specifications include fault tolerance mechanisms that
are not enabled or not present in the test vehicle but are
enabled in the product. In yet a further aspect, the way in
which test specifications of the test vehicle and product differ
include a test program for the test vehicle specifically
designed to acquire data to build the statistical model.

According to another embodiment of the invention, an
analytical form of the statistical model is used by an appro-
priately programmed computer to enable deterministic cal-
culation of figures of merit. In one aspect, the deterministic
calculation of figures of merit enables efficient calculation of
variation of figures of merit as part of characterization of the
design of experiment used to obtain test vehicle data, and
extract model parameters of the statistical model there from.
In another aspect, the deterministic calculation of figures of
merit makes the statistical model useful as a component of
larger models, which impose constraints beyond the targets
for figures of merit described in this invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows 60 retention times measured in 5 groups of 12
for each bit, according to one embodiment of the invention.
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FIG. 2 shows how i,,,, and 1,, ., were extracted for a single
bit from the retention time pass/fail record spanning 5 loops
of'12 retention time measurements, according to one embodi-
ment of the invention.

FIG. 3 shows data for several bit failures (rows) copied
from an Excel workbook recording 32843 bit failures,
according to one embodiment of the invention.

FIGS. 4a-4¢ show Venn diagrams of the categories used in
Table 3, according to one embodiment of the invention.

FIG. 5 shows counts of bits in SRT and VRT categories as
a function of environmental conditions for the nominal skew
for retention times less than 604 au (arbitrary units of time).
Each bar is sampled from 48750000 bits, according to one
embodiment of the invention.

FIG. 6 shows retention times for the nominal skew at the
highest environmental condition binned according to each
bit’s failing retention time in Test and in Use, and empirical
marginal Test and Use distributions computed there from,
according to one embodiment of the invention.

FIG. 7 shows a Weibull distribution fitted to the (equal)
margins of the nominal skew data in FIG. 6, according to one
embodiment of the invention.

FIG. 8 shows the quality of fit of characteristic retention
time to an exponential voltage, Arrhenius temperature, and
model in Eq. (2) at 18 environmental conditions for the nomi-
nal skew, according to one embodiment of the invention.

FIG. 9 shows Kendall’s tau and sample fraction values for
the measured sample of retention time data plotted as a func-
tion of environmental condition measured by characteristic
retention time for the nominal skew, according to one
embodiment of the invention.

FIG. 10 shows a geometrical interpretation of the two-
dimensional cumulative distribution function corresponding
to perfect correlation, according to one embodiment of the
invention.

FIG. 11 shows how the probability mass in any sub-domain
of'a copula is computed from the copula function, according
to one embodiment of the invention.

FIG. 12 shows the relation of the copula and corresponding
survival copula, according to one embodiment of the inven-
tion.

FIG. 13 shows a diagonal stripe drawn across the unit
square forming a pseudo-copula in the first step of construct-
ing the stripe geometrical copula, according to one embodi-
ment of the invention.

FIGS. 14a-14f show examples of synthesized probability
density maps of the stripe copula for various values of the
parameter d, and various degrees of censoring, according to
one embodiment of the invention.

FIG. 15 shows a pseudo-copula A(u, v) having a shaded
wedge-shaped region symmetrical about the (0, 0)/(1, 1)
diagonal as the first step in constructing the wedge geometri-
cal copula, according to one embodiment of the invention.

FIGS. 16a-16f show examples of synthesized probability
density maps of the wedge copula for various values of the
parameter ¢ and various degrees of censoring, according to
one embodiment of the invention.

FIGS. 17a-17¢ show plots of the single parameter of the
wedge, Gaussian, and stripe copulas, which minimized the
sum-of-squares of Eq. (55), and for the wedge and stripe
copulas the sub-population sample tau computed using Eq.
(4), as a function of environmental condition measured by
characteristic retention time, according to one embodiment of
the invention.

FIG. 18 shows that, because most points lie above the
diagonal, the wedge copula is the best fit of each of the three
types of copula, which are embodiments of the invention.
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FIGS. 194-195 show that, considering the shape of the data
in FIG. 6, the best-fit wedge copula (FIG. 19q) is a better
representation of the tail dependence of the data than the
best-fit stripe copula (FIG. 195), comparing two embodi-
ments of the invention.

FIG. 20 shows a schematic drawing of integrated circuit
manufacturing process (Fab/Assembly) producing units of a
product which are tested (Test) per Test Conditions and then
go on to be used (Use) per Datasheet Specifications. The
definition of key figures of merit (FOMs) is illustrated,
according to one embodiment of the invention.

FIG. 21 shows a schematic drawing of how the Test and
Use conditions divide the population of manufactured units
into categories, according to one embodiment of the inven-
tion.

FIG. 22 shows a schematic representation of how the Test
and Use conditions superimposed on the DRAM bit pseudo-
copula’s pdf (shaded) divides the bit population into four
Use/Test pass/fail categories, according to one embodiment
of the invention.

FIGS. 23a-23c¢ show how three probability functions used
to compute FOMs correspond to shapes in bit category index
space enclosing tolerated counts of to memory array bits in
various categories for the No Repair at Test case, according to
one embodiment of the invention.

FIGS. 24a-24b show the bit category index space volumes
enclosing tolerated bit counts in various categories corre-
sponding to Overkill (Mfg) and EUFF for the No Repair at
Test case of a memory array, according to one embodiment of
the invention.

FIGS. 25a-25¢ show the Passes Test (FIG. 25a) and Good
in Use (FIG. 25b) categories represented as volumes in bit
category index space, and the intersection of these categories
(FIG. 25¢), for a memory array in the Repair at Test case,
according to one embodiment of the invention.

FIG. 26 shows an example user interface of an Excel cal-
culator, which implements the models in this invention.

FIGS. 27-28 show graphs of figures of merit vs. test reten-
tion time setting, with (FIG. 27), and without (FIG. 28), fault
tolerance according to one embodiment of the invention.

FIGS. 29a-29¢ show, for the case of no fault tolerance,
graphs of figures of merit for test coverage models different
from the conservative test coverage model (FIGS. 294 and
295b), and for the case of perfect correlation between test and
use (FIG. 29¢), according to one embodiment of the inven-
tion.

FIGS. 30a-305 compare a case for which Test tolerates, but
does not repair, up to two failing bits with a case for which
Test tolerates and repairs up to two failing bits, according to
one embodiment of the invention.

FIG. 31 is a graph showing that if Test tolerates and repairs
up to two failing bits, and arrays in Use can tolerate one
failing bit, compared to FIG. 305, in which Use tolerates no
failing bits, the EUFF is improved (reduced), and Overkill
becomes the main component of Yield Loss, according to one
embodiment of the invention.

FIG. 32a shows a flow diagram of the Model Extraction
part of the statistical methodology in which Monte-Carlo
synthesis generates Data Replicates, according to one
embodiment of the invention.

FIG. 325 shows a flow diagram of the Model Extraction
part of the statistical methodology in which resampling of the
data using the Bootstrap method generates Data Replicates,
according to one embodiment of the invention.

FIG. 33 shows a flow diagram of the Inference part of the
statistical methodology, according to one embodiment of the
invention.

10

15

20

25

30

35

40

45

50

55

60

65

6

FIG. 34 shows a schematic graph of the method for setting
guard bands to account for sampling variation due to the
Experimental Design and Parameter Extraction parts of the
Model Extraction method, according to one embodiment of
the invention.

FIGS. 35a-35b show geometrical constructions on the
stripe pseudo-copula to derive a Monte-Carlo sampling algo-
rithm for a censored sub-population of the stripe copula,
according to one embodiment of the invention.

FIG. 36 shows basis vectors for sampling the area of uni-
form probability in the wedge pseudo-copula, A(u, v),
according to one embodiment of the invention.

FIG. 37 shows the integration limits for an integral used to
derive an expression for the subpopulation Kendall’s tau of
the wedge geometrical copula, according to one embodiment
of the invention.

DETAILED DESCRIPTION

A method of determining design, manufacturing test, and
end-use (datasheet) specifications for an electronic system or
integrated circuit product is provided. Since the method
applies to both electronic systems and to integrated circuits it
will be convenient to describe the method in terms of appli-
cation to only one of these, namely, an integrated circuit. In
the following, the term “test chip” for the integrated circuit
(IC) case would be replaced by “prototype system” (or simi-
lar) for the system case; “module” (or “bit” for the DRAM
example) for the IC case would be replaced by “component”
for the system case, and so on.

The method includes acquisition of data from a test
vehicle, where the test vehicle can be a test chip or product
different from the product for which specifications are being
determined. Differences between the product and the test
vehicle may include different test specifications, datasheet
specifications, and different design specifications. Examples
of design specifications include the number (e.g. array size)
of modules (e.g. bits) and the degree and type of fault toler-
ance required. The method further includes fitting the test
vehicle data to a statistical model using an appropriately
programmed computer, and using the statistical model to
compute figures of merit using the appropriately programmed
computer. Since the data acquired using a test vehicle
includes measurements of dependent (e.g. correlated)
attributes, it is necessary for the statistical model to describe
this dependency. The method uses a copula-based statistical
model to comprehend the dependency. The copula-based
model is used to compute figures of merit and compare them
with target values to determine specifications that meet
requirements of the integrated circuit product. Because of
properties unique to copulas, such as the decoupling of mar-
ginal distributions from the core dependency structure, the
copula-based statistical model gives significant advantages in
model fitting and in making inferences.

The following algorithms and equations of the current
invention are implemented in a software tool using a com-
puter, which allows the user to specify attributes of the prod-
uct such as number of modules (e.g. array size), fault toler-
ance characteristics, manufacturing test set points and limits,
and datasheet specifications of the product. The tool outputs
values of figures of merit such as yield loss, overkill, and
end-use fail fraction. The algorithms can also be implemented
as plug-in software modules in larger software programs such
as optimization engines.

The copula can be characterized independently of marginal
distributions. For example, empirical rank statistics such as
Kendall’s tau provide a view into the underlying dependency
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structure (the copula), without interference by details of mar-
ginal distributions. Further, it is likely that a population
copula that is independent of environmental conditions may
be found since it contains only rank statistical information,
which is relatively undisturbed by environmentally-induced
changing marginal distributions. If an environmentally inde-
pendent copula can be found, a great simplification of the
model obtains, and advantages such as “equivalent set
points”, explained below may be realized. Additionally,
copula models have an advantage over the prior art because
different copula models may be tried without changing any
other part of the analysis, whereas for multi-normal models
the marginal and dependency structures are entangled.

Copula-based methods have a much greater flexibility than
the multi-normal-based methods usually employed to repre-
sent the dependency structure of parametric attributes. Multi-
normal statistics are a special case of the Gaussian copula
described in this invention, and share the shortcomings of the
Gaussian copula. A key shortcoming of the Gaussian copula,
and therefore of the usual multi-normal model, is that these
models cannot properly represent correlation that extends
deep into the tail of multi-variate distributions, whereas,
according to the current invention, many copulas can do this.
The DRAM example below requires a deep-tail-dependence
copula, which will be shown not to be satisfactorily modeled
using the Gaussian copula.

An example case study using DRAM retention time corre-
lation between Test and Use is provided to demonstrate the
current invention of a copula-based statistical modeling
method which is not limited to integrated circuit memory
arrays, but is also applicable to more complex integrated
circuits. Further, the method described here can be applied to
other dependent attributes measured in the same test socket,
different test sockets, and being manifested in end-use
(“Use”). Examples include exploiting in a manufacturing
environment the correlation of measured attributes like I, to
difficult- or expensive-to-measure attributes like F,, ., power,
or reliability lifetime. The invention enables quantitative
characterization, in terms of well-defined figures of merit, of
methods in which measured attributes are used to used to
screen hard-to-measure correlated attributes.

Aspects unique to the application of copula methods to
manufacturing test and product specification application
include: Fitting and efficient synthesis of highly censored
data across environmental conditions; Construction of a new
kind of “geometrical” copula; Precise definition of figures of
merit such as yield loss, overkill and customer-perceived fail
fraction; Scaling by product size; Fault tolerance. Both model
fitting and inference aspects of the copula-based statistical
modeling method are covered by the invention.

Turning to the example, each memory bit of a dynamic
random access memory (DRAM) retains its information as
stored charge on a capacitor. After the bit has been written to,
the charge leaks away so that valid data has a characteristic
retention time. To retain the information, the bit must be read
and refreshed. DRAM memory cells can have a defect, which
causes a few bits to have a variable retention time (VRT),
while most bits have stable retention times (SRT). The VRT
behavior is caused by a silicon lattice vacancy-oxygen com-
plex defect when the defect is embedded in the near surface
drain-gate boundary of a DRAM cell. The defect can transi-
tion reversibly between two states. One of the states is asso-
ciated with a leaky capacitor and short retention times. The
VRT mechanism causes a soft-error reliability issue in
DRAM arrays since a VRT bit may be tested and pass a brief
retention time screen while in the low leakage state, but in
extended use, a high leakage state will almost certainly occur
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possibly with retention time less than the system-specified
refresh time. This miscorrelation of retention time between
test and use is perceived as a soft-error reliability issue, which
requires error correction methods to make the DRAM toler-
ant of single bit errors. This example of the invention shows
how to measure and model this miscorrelation in a DRAM
case study to establish test specifications such as set points
(temperature, voltage) and limits (retention time), establish
datasheet specifications (temperature, voltage, refresh time),
and determine sufficient levels of fault tolerance to meet
quality and reliability requirements.

Test chips with four identical DRAM arrays on each chip
were fabricated in five skews of a 65 nm process as shown in
Table 1. Each of the four arrays on a chip has 1218750 bits.
The test chips were packaged in ball grid array packages and
10 randomly selected test chips from each of the process
skews were selected for this example.

TABLE 1

Five process skews were produced for this experiment.
Slower skews have longer retention times.

Name Description

Nominal Nominal process.

Slow NMOS Slow, PMOS Slow
Fast/Slow NMOS Fast, PMOS Slow
Slow/Fast NMOS Slow, PMOS Fast
Very Slow NMOS Slow, PMOS Slow,

20% larger than nominal capacitors.

The arrays were tested on a Credence Quartet tester with
145 1/0s and seven power supplies and the temperature was
controlled by a Silicon Thermal Powercool L.B300-i control-
ler. Retention time for each bit was measured at 18 environ-
mental conditions:

three temperatures: 105° C., 115° C., 125° C. Temperature
was measured by a calibrated sensor on the silicon die.

three V’s: 0.8, 1.0, 1.2 volts. V; is the supply voltage.
two V,’s: 0.4, 0.45 volts. V,, is the substrate bias.

60 retention times in five groups of 12 were measured for
each bit, shown in FIG. 1, and as follows:

12 retention times (r) were tested, increasing from 60 au to
604 au in steps of 49.5 au: r=10+ix49.5 au, i=1 to 12,
with “pass” or “fail” determined at each retention time.
To obscure proprietary aspects of the data, and the fitted
model, retention times are given in arbitrary units (au),
which are related to the true retention times by a numeri-
cal ratio.

This was repeated five times, with each repetition called a
“loop”. The repeated loops were separated by variable
durations, typically many hours.

At each environmental condition the pattern (FIG. 1) of
retention time failures observed for each bit was used to
classify a bit as not failing (r>604 au), or as failing by either
variable retention time (VRT) or by stable retention time
(SRT). If a bit failed on the first reading on any loop, it was
also classified as a zero retention time ZRT bit. At each
environmental condition any given failing bit may be classi-
fied as SRT or VRT and ZRT or not-ZRT. The classification of
a given bit may be different in a different environmental
condition.
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EXAMPLES

SRT: rindex varies by =1 within loop, or loop-to-loop (two

examples).

000000011111 000000011111 000000011111
000000011111 000000011111 000000001111
000000001111 000000011111 000000001111
000000011111

VRT: rindex varies by =2 within loop, or loop-to-loop (two

examples).

000000000111 000011111111 000000001111
000000001111 000000000111 000110111111
000001111111 000111101111 000001111111
000111111111

(This pattern is used in an example below).

SRT/ZRT: r index=0 in any loop. r index varies by =1
within loop, or loop-to-loop (two examples).

111111111111 111111111111 1111111111111
111111111111 111111111111 111111111111
111111111111 111111111111 011111111111
011111111111

VRT/ZRT: r index=0 in any loop, and r index varies by =2
within loop, or loop-to-loop (one example).

111111111111 111111111111

111111111111 011111111111

For each bit and each environmental condition, the pass/
fail patterns were processed to extract the index of the small-
est passing retention time, i,,,,, and the index of the longest
passing retention time, i,,,,., 1,,,, Wwas found by “AND-ing” all
loops for a bit and finding the index of the first “0” counting
from the right. i,,, was found for the same loop data by
“OR-ing” all loops and finding the last “0” counting from the
left. The method is shown in FIG. 2 for the second VRT
example above. If the first measurement of retention time in
any loop is a failure (“1”), then i,,,,=0.

Bits for which i,,,,=0 in any loop were classified as zero
retention time (ZRT) bits. Bits for which i,,,,~1,,,<1 were
classified as stable retention time (SRT) bits. The margin of 1
allows for the possibility of tester variation in case the bit
retention time falls on a retention time bin boundary. Bits for
which i,,,.-1,,,22 were classified as variable retention time
(VRT) bits. The reason for repeating the retention time mea-
surement sequence five times is to give bits plenty of oppor-
tunity to show variable retention time behavior.

Provided is a description of the data, where a total 0£32843
bit retention time failures were recorded from 48750000 bits
in each skew across 18 environmental conditions (tempera-
ture and voltage). The data were censored because only bits
failing with retention times less than 604 au were recorded.
The same bit could be recorded as a failure multiple times
because, within a skew, the same bit may fail in multiple
environmental conditions. FIG. 3 shows data for a few fail-
ures (rows) copied from the Excel workbook containing all
the data. The field names (columns) are defined in Table 2.

001111111111

TABLE 2

Definitions of data fields used in DRAM data records.

Group Field Description
Identity skew Process skew code. Values =4, 8§, 9, 10,
12.
chip Which of 10 chips sampled contains the
macro. Values = 1-10.
macro Macro which contains PX, PY bit.
Values=0, 1, 2, 3.
PX, PY X, y coordinates of bit.
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TABLE 2-continued

Definitions of data fields used in DRAM data records.

Group Field Description
Environmental Vp Value of Vp. Values = 0.4, 0.45
vd Value of Vd. Values = 0.85,1.0, 1.2
temp Temperature (° C.) Values = 105, 115,
125.
Results of Test IRetMin Minimum retention time index derived per
FIG. 2.
If IRetMin = 0, the bit is a ZRT bit.
IRetMax Maximum retention time index derived per
FIG. 2.
IRetDelta IRetDelta = IRetMax-IRetMin
If IRetMin > 0 and IRetDelta < 1, the bit
is a SRT bit.
If IRetMin > 0 and IRetDelta > 1, the bit
is a VRT bit
Loop Groups Pass/Fail record of bit at specified

environmental condition.

Provided below is a classification of bits into categories to
give an overview of the nature and significance of the mis-
correlation phenomenon to be analyzed by the method of this
patent. The data in FIG. 3 were used to classify the observed
failing bits as either SRT or VRT, and each of these as ZRT or
not-ZRT for each environmental condition. Any given to bit
could be classified differently in any of the 18 environmental
conditions. A summary of the statistics when each category is
OR-ed across all environmental conditions is given in Table 3.
This gives a measure of the fraction of defective bits of
various kinds in each skew. For example, in the nominal skew,
1610 of 48750000 bits remained as SRT bits across all envi-
ronmental conditions; although the retention times varied
from bit to bit they were always stable through time. Also, for
this skew, 288 of 48750000 bits were observed as either SRT
or VRT depending on the environmental condition. And 64 of
48750000 bits were observed only as VRT bits in all 18
environmental conditions. Also, 10 of 288+64=352 bits
which exhibited VRT behavior were also seen as ZRT bits at
some environmental condition, and four of 1610 bits which
exhibited only SRT behavior were seen as ZRT bits in some
environmental condition.

An important observation from Table 3 is that for the
Nominal skew 18%=(B+C)/(A+B+C) ofthe 40 DPPM of bits
observed to fail within the environmental and retention time
span of the experiment exhibited VRT behavior. Since the
environmental and retention time settings span realistic Test
and Use conditions, the number of SRT/VRT failures implies
that bit repair or fault tolerance schemes will be necessary in
the design of any practical DRAM array with thousands or
millions of bits. It also shows that the VRT failure mode is a
significant contributor to the soft error failure rates, along
with contributions from other sources such as cosmic rays.
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TABLE 3

Bit-count and defective parts-per-million (DPPM) statistics of bit failure modes
OR-ed across all environmental conditions. The keys are explained by the Venn
diagrams in FIGS. 4a-4c.

Skew

Description Key Nominal Slow Fast/Slow Slow/Fast Very Slow
SRT, but not VRT A 1610 833 2092 1042 501
VRT and SRT B 288 124 787 280 83
VRT, but not SRT C 64 24 141 73 10
ZRT and VRT D 10 4 10 6 0
ZRT and SRT, but not VRT E 4 2 2 0
Total Bits N 48750000 48750000 48750000 48750000 48750000
SRT (incl. ZRT) DPPM AN 33.0 17.1 42.9 214 10.3
VRT (incl. ZRT) DPPM (B +CyN 7.2 3.0 19.0 7.2 1.9
ZRT DPPM (D+EYN 0.29 0.12 0.29 0.16 0.00

The environmental dependence of the SRT and VRT cat-
egories is shown in FIG. 5. Within each environmental con-

example of an empirical probability density function for a
single skew at the highest environmental condition derived by

20
dition, these categories are mutually exclusive. The strong assuming a symmetrical test coverage model is shown in FIG.
temperature and voltage dependence is apparent. It will be 6.
shown that these data are accurately fitted with exponential The next step, shown in the dashed-line areas of FIG. 6, is
voltage dependence, and Arrhenius temperature dependence. to extract empirical marginal distributions for Test and Use by
The method of this patent requires extraction of'a statistical 25 summing fail counts in rows, and in columns, and then com-
model for the actual retention times for each bit, rather than of puting the cumulative fail count and cumulative fraction fail
the coarse categories (SRT, etc.) into which bits may fall  for each. This was done for each of the 5 skews at each of the
according to their retention time behavior. In the example 18 environmental conditions. The marginal distributions of
experiment, for a given skew and environmental condition, Test and Use for the DRAM are the same, apart from some
every falhng bit W%H he}ve minimum retention time ofr,,, and 30 ampling noise, because of the symmetrical way in which
amaximum retention time ofr,,, .. observed in the course of 60 r, . andr, . wereassignedtor,  andr,,,,. Notice from the
repeated measurements (12 measurements in five loops). On f that onlv a tinv part of the entire sample space near the
the other hand, in Test and Use conditions, the retention time guret Yy atmy par mple sp
. . . . origin is of practical significance—a fraction of only about 34
of a bit at Test, r,,,, is measured just once, and the retention L
time in Use, r,,, is sampled an indefinitely large number of 35 parts per mllllon ,(PPM) of the sa}mple space was observed.
times as the memory is used. This is typl.cal of 1ntegrateq circuit tes.t correlatlgn data.
It is necessary to associater,_andr,,, withr,,_ andr,_, in . Also typlcal of pe.lrametrl.c test .dtata in general. is the strong
a way that does not underestimate the failure rate of bits in ~ iicrease in cumulative fraction failing as a function of the test
use. This association is an example of a “test coverage condition, which suggests fitting of the empirical marginal
model”. The most conservative association from the customer 4o distributions in FIG. 6 to a Weibull model distribution. The
standpoint, predicting the highest escape rate, is r,,.,~T,, .0 Weibull distribution is a natural choice because, with a shape
andr,=r,. . This association is called the “conservative test ~ parameter $>1, it can fit data for which the proportional
coverage model”. It is clear that r,, ., should be associated with increase in fraction failing per unit increase in retention time
r,,, since r,,,,,, is the result of many repeated measurements, is a strongly increasing function, as observed here. FI1G. 7 is
mimicking Use. In reality, the probability thatr,,,. will occur 45 a plot of In(-In(1-F)), known as the “Weibit”, versus In(r).
in Test depends on the fraction of time a bit is in the maximum Slope and intercept of lines fitted to these data give estimates
retention time state. Since this fraction cannot be determined of the shape, B, and scale, o, parameters of the Weibull dis-
from the results of the experiment because the intervals tribution of retention time, r, in
between measurements are not precisely known, it is conser-
vative to assume that Test always measures r,,,,.. Measure- 50
ment of the fraction of time a bit spends in high and low _ FAB )
retention time states would provide information allowing this Firy=1=exp [_(3) ] o
conservative assumption to be relaxed. Weibit = In(=1n(1 — F)) = Bln(r) — Bln(a)
Although the model that is ultimately used assumes
Cyositmae and t,=T,.. it is more convenient for the 55
initial model extraction to assume that the assignment for both Test and Use.
Tyosi L mard Cuse=Lmins @0 T, =L, [/t =T, are made with The fitted marginal distributions were simplified by forc-
equal probability for each bit. This assignment is called the ing $=2.0 in the fit of all marginal distributions, as exempli-
“symmetrical test coverage model”. Shown below is an ana- fied by the dashed line in FIG. 7. Visual examination of all
lytical way to invoke the conservative test coverage model 60 fitted distributions shows that this gives a small underestimate
that r,, =, /T, e~ When making inferences from the of the retention time at short retention times. Such an under-
model extracted assuming the symmetrical test coverage estimate is conservative from the standpoint of customer-
model. Besides simplifying model extraction, this technique perceived quality. This analysis was repeated for each of 18
has the advantage of enabling exploration of the sensitivity of environmental conditions for each of five skews.
inferences to any chosen test coverage model. This might be 65  For each skew, this method extracts a value of the natural

used to evaluate the return on the investment of a more precise
time-in-state characterization of variable retention times. An

log of the characteristic retention time, In ., for each of 18
environmental conditions. The characteristic retention time,
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a, accurately fits an exponential voltage dependence and
Arrhenius temperature dependence:

2
Ina = Inag + a(V, — Vo) + b(Vy = Vigo) + @

ulr )

where the subscript 0 indicates a reference environmental
condition. The reference condition has been chosen arbi-
trarily as the maximum stress condition in the experiment. In
., 1s the natural logarithm of the characteristic retention time
in au at this condition. V,, is the supply voltage, V,, is the
substrate bias voltage, and T (° K) is the temperature. The
quality of the fit is shown in FIG. 8. It is known that the
activation energy of retention time is between 0.6 eV and 1 eV
for SRT bits and VRT bits in the low-leakage state and about
0.2 eV for VRT bits in the high leakage state. In this example
the fitted value of Q is about 0.6 eV (Table 4). This is expected
since most observed bits are in the low leakage state. The low
activation energy of VRT bits in the high leakage state could
lead to under-estimates of customer risk if the model is
extrapolated beyond the range of the data on the low tempera-
ture side. However, the data spanned the test conditions and
use conditions so extrapolation is not needed.

Regarding the equivalent set point method, environmental
conditions enter the statistical model only through In a, and
through possible environmental dependence of the copula. If,
in addition, the fitted copula model is environmentally inde-
pendent, as will be seen for the best fit to the DRAM example
(wedge copula), then test specifications or datasheet specifi-
cations which have a given value of r/a are statistically
equivalent and so give the same figures of merit. In Test, this
is useful because temperatures cannot be quickly changed
from test to test in an integrated test program, whereas volt-
ages and retention time settings can be. So rapid voltage
and/or retention time setting changes can be used instead of
equivalent slow temperature setting changes. In Use, equiva-
lence of datasheet specifications with a given value of r/a
gives flexibility since temperature or voltage supply specifi-
cations may be constrained by other components in a system.
The set point flexibility enabled by environmental indepen-
dence of the copula, and marginal distribution dependence
only on r/a, is called the equivalent set point method.

Kendall’s tau is a statistic used in the invention to measure
the similarity of the rank orderings between a pair of
attributes measured on a population of units. Its value ranges
from 1 when the ranks are the same, through 0 when there is
no relationship between ranks, to —1 when the ranks are
opposite. Suppose that {(x;, y1), (X, V), - - - (X,,, ¥,,)} denotes
a random sample of n observations sampled from a popula-
tion 2-vector of continuous random variables, (X, Y). Any
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pair of observations, i and j, may be labeled “concordant”, or
“discordant”, according to whether the sense of the inequality
between x, and x; is the same or the opposite to the inequality
between y, and y,. There are a total of n(n-1)2 pairs of
observations, of which ¢ are concordant and d are discordant.
Kendall’s tau for the random sample is defined as

c—d_Z(c—d) (3)

c+d  nn-1)

v =

where the prime indicates a sample estimate of tau. The
definition of the sample tau in Eq. (3) assumes that the
sampled values are known with arbitrary numerical resolu-
tion so that they can be ranked with no ties.

Test data, such as FIG. 6, has limited resolution and is
“binned” so that ties in X’s and y’s occur. The definition, Eq.
(3), has a known extension to take ties into account. The
sample tau for data with ties is

, c—d 4)

) ! nH-U ! n-v
zn(n— ) zn(n— -

where now any pairs that are tied in X or y are not counted in
either ¢ or d, and where

U:%Zu(w—l),V:%Zv(V—l). ®)

The sum in Eq. (5) is over all sets of tied x-values, and u is
the number of tied x values in each set. V is defined in the
same way, but for y-values. Code to implement (4) is known.

For each environmental condition of each skew, Eq. (4)
was used to compute Kendall’s tau for the measured sample
of retention time data. These values are plotted as a function
of environmental condition for the nominal skew in FIG. 9,
along with the fraction of the population of 48750000 bits
tested. Note that the sample tau is independent of environ-
mental condition (In ) and the degree of censoring (sample
fraction). This was true for all skews, not only the nominal
skew shown in FIG. 9. Moreover, since Table 4 shows the
average value of tau across environmental conditions for each
skew, it is clear that the value of tau does not vary greatly from
skew to skew. This key result is consistent with an environ-
mental and skew independence of the underlying dependency
structure of the DRAM VRT behavior embodied in the
copula.

TABLE 4

Parameters of extracted marginal and dependence models.
Sample tau extracted from data via Eq. (4), averaged across

environmental conditions, is also given.

Skew
Nominal Slow  Fast/Slow Slow/Fast Very Slow
Margin 2.0 2.0 2.0 2.0 2.0

In[(aw)] 11.57 11.93 11.39 11.72 12.15
ag -5.79 -4.00 -5.71 -5.55 -4.52
by -1.55 -1.09 -1.47 -1.87 -1.23

Qo (eV) 0.605 0.572 0.658 0.566 0.630
v, 045 0.45 0.45 0.45 0.45

0
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Parameters of extracted marginal and dependence models.
Sample tau extracted from data via Eq. (4), averaged across

environmental conditions, is also given.

Skew
Nominal Slow  Fast/Slow Slow/Fast Very Slow
Vo 1.2 1.2 1.2 1.2 1.2
Ty 125 125 125 125 125
Dependence SampleTau 0.828 0.828 0.769 0.802 0.822
Wedge Copula c 1.142 1.140 1.185 1.174 1.144
Gaussian Copula  (1-) x 0.695 0.646 1.250 1.026 0.634
1E3
15

Turning now to modeling the dependence observed in the
example data summarized in Table 4 using a copula-based
statistical model, start by observing that FIG. 6 is an empirical
sampling of a bi-variate probability density function (pdf),
which here is taken to be h(x, y). In this pdf, for convenience,
r,./0 is denoted by x, and r,, /o is denoted by y. The off-
diagonal cells in FIG. 6 are populated by counts of units for
which Use and Test measurements of retention time are mis-
correlated. The marginal cumulative distributions for Test and
for Use are also shown in FIG. 6 by the dashed-line areas.
Separation of modeling of marginal distributions from mod-
eling the dependency structure of the data is a key aspect and
major benefit of the current invention.

For perfect correlation the pdf sampled in FIG. 6 would be
a line of probability density running up the diagonal

h(xyAx)d(x-y) Q)

where 3(*) is Dirac’s delta function, and f(x) is the pdf of the
marginal distributions (both equal for the DRAM case study),

dF(x)
dx

7
foo= @

where F(x) is the cumulative density function (cdf) of the
marginal distributions.
Now, consider the corresponding two-dimensional cdf:

H(x, ) = f ax f "dyhe )
0 0
Y
f ax f 4y 0 - y)
0 0
% y
f s f o -y i =
0 0

ff(x’)xlxdx’ =F(x)
o

o
f [ f FO =) |ay =
0 0
"y
ff(y’)dy’:F(y)
0

= min[F(x), F(y)]

®

xzy

where, for y=x. [-]=1 because X' €[0, y], and for x=y. [-]=f(y"
because y' €0, x. A geometrical interpretation of Eq. (8) is
shown in FIG. 10, where for perfect correlation, the probabil-
ity density is a delta function on the diagonal. The two-
dimensional cdf is the probability mass enclosed by a rect-
angle with one corner pinned at (0, 0).
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On the other hand, for perfect independence, elementary
probability theory gives the two dimensional cdf as the prod-
uct of the marginal cdfs

Hxp)=Fx)F(y). ©

Generalizing, if the marginal cdfs are different, for perfect
correlation

H(x,y)=min[F(x),G()], (10)

and for perfect independence

Hxp)=Fx)G). an

A copula is the multi-dimensional cdf written as a function
of the marginal cdfs, rather than the marginal variables,

H(xy)=C[Fx),G(y)] (12)

or

Cluv)y=HEF (), (), (13)

so Egs. (10) and (11) are special cases of Eq. (12) where C is
one of the first two of the following special copulas

minfu, v] M (u, v) Perfect correlation (14)

Clu, v) = uy [1(x, v) Independence

max[u+v—1,0] W(u, v) Perfect anti-correlation.

All possible multi-dimensional cdfs have copulas which
are bounded above by M, the Frechet Upper Bound, and
below by W, the Frechet Lower Bound. IT and all other copu-
las lie between these limiting functions.

Copulas have four defining properties. A 2-dimensional
copula is a cdf with range [0, 1] on domain [0, 1]* (the unit
square) which has the following properties:

1. Grounded.

C(u,0)=0=C(0,). 15)

2. Normalized.

C(1,1)=1. (16)

3. Uniform marginal distributions.

C(u, )= and C(1 )=, 17)

4. 2-increasing. For every u,, u,, v;, v, in [0, 1] such that
u,<u, and v, =v,

Clt,v)=Cltt,v)=C(et,v)+C(1,v)=0. (18)

The expression on the left side of Eq. (18) is the probability
mass in the region defined by u,, u,, v, v, in [0, 1] such that
u,;=u, and v,=v,. The method of computing probability mass
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in a sub-area of [0, 1]* shown in FIG. 11 is used extensively in
the description of this invention.

These concepts can be extended in several known ways.
One way is to consider more than two independent variables.
Another way is to relax one or more of the four defining
properties of a copula. A pseudo-copula relaxes condition 3,
Eq. (17). For a pseudo-copula, condition 3 becomes

C(u,1)=F(#) and C(1,v)=G(v), (19)

where F has the properties of a one-dimensional cdf; that is
F(0)=0, F(1)=1, and F(u) is a monotonically increasing func-
tion and similarly for G. In the current invention a copula is
fitted to test vehicle data, and then a pseudo-copula is con-
structed to make model inferences. A pseudo-copula is also
the starting point for definition of a class of “geometrical”
copulas described in this invention.

Another known extension of the copula concept used here
is the survival copula, illustrated in FIG. 12. A 2-dimensional
copula is the fraction of the population failing by both mar-
ginal cdfs (that is, u<1 and v<1) as a function of the marginal
fail cdfs, u and v. The corresponding survival copula is the
fraction of the population surviving by both marginal cdfs
(that is, u=1 and v=1) as a function of the marginal survival
cdfs u=1-u and v=1-v. Using Eq. (18), from FIG. 12 it is
apparent that the survival copula is related to the copula by

S@, 7) = C(1, 1) = Clu, 1) = C(L, v) + Clu, v) 20

=1-Cl-7 D=-CL,1-P+C(l -7 1-7)

=u+v-1+C(l-u,1-v)

where the second equality applies to copulas and pseudo-
copulas, and the final equality applies to copulas.

The foundation of the copula method is Sklar’s theorem,
which states that the decomposition of a given multidimen-
sional cdf H into its marginal distributions and the function C
in Eq. (12) is unique. That is, there is only one function C,
which satisfies Eq. (12) for a given H. Moreover, it has been
shown that the copula corresponding to a joint cdf of statis-
tical variables is invariant under strictly increasing transfor-
mations, say 1 and C, of the arguments of the cdf. That is, if

H(xy)=C[Fx),G)]

then the transformed cdf has the same unique copula, C
H(xp)=HY(),5W=C[Fx),G)],

where F'(x)=F(y (x)) and G'(y)=G'(E(y))-

A copula contains all the information of rank dependency
of its marginal variables. Kendall’s tau is a statistic which
summarizes this rank dependency. Tau is best understood by
considering how to compute the “sample” tau from data (real
or synthesized) per Eq. (3). Less intuitively, the “population”

tau can also be computed from the analytical form of a copula
using the known formula:

T:4ff2C(u, vdCu, v)—1
C(u v)
_4f duf dvC(u, v)

where the second equality shows the copula pdf (the mixed
second derivative) explicitly. It is important to note that Eq.
(23) depends only on the copula, and not on the marginal
distributions.

eay)
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Although tau does not in general uniquely determine the
copula, for a family of copulas spanned by a single parameter,
a sample estimate of tau from data can be used to determine
the parameter. The parameter of the copula is determined by
adjusting it to make the model population value of tau from
Eq. (23) match the sample estimate of tau. This gives an easy
way to fit single-parameter copula models to data provided
that the data is sampled from the entire population space.
However, test data is typically highly censored. Remember
that the conditions of the DRAM experiment span only about
40 PPM near the origin of the copula. The sample tau for the
censored data can still be used to determine the copula param-
eter if the model tau is computed only from part of the popu-
lation model copula corresponding to the censored data. If
Test and Use right-censor x and y

x;=a,y<b (24)

then the “sub-population” model tau computed from a gen-
eralization of Eq. (23) for a restricted domain, [0, u,=F(a)]x
[0, v,=G(b)] of [0, 1]* is

C(u - (25)

it = T [P [ v

which depends on the censor limits a and b, as well as the
parameter(s) of the copula. For u,=v,=1 the censored sub-
population is the same as the entire population and Eq. (25)
reduces to the population formula of Eq. (23). Eq. (25)is a
new result, derived below, which is part of the invention
described here.

Analytical evaluation of Eq. (23) or Eq. (25) can be daunt-
ing. According to one embodiment of the invention, an alter-
native method of computing tau is Monte-Carlo (MC) syn-
thesis of data from a copula by any of many known methods,
and evaluation of tau using Eq. (3). This is a good way to
evaluate the population tau corresponding to Eq. (23). Butthe
MC evaluation of the copula model subpopulation tau corre-
sponding to the highly censored data can be very inefficient if
the samples cannot be confined to the region of the data, and
many samples must be rejected. According to another
embodiment of the invention, a geometrical copula of the
kind described in this invention provides a way to compute
the subpopulation tau by the MC method with complete effi-
ciency because samples can be confined to any sub domain of
the copula. This is not true of copulas in general.

The main challenge to use of copula methods is choosing a
copula that makes sense for the particular application. In spite
of the constraints on the functions which qualify as copulas,
there are many sometimes exotic functions that are copulas.
Many have interesting properties but the properties are often
not related to an obvious underlying stochastic mechanism.
They may also have limited parametric flexibility to fit data.
For example, Archimedian copulas have nice algebraic prop-
erties, which Make them tractable and model-fitting methods
have been developed, but it is often hard to relate them to a
plausible underlying mechanism, and even to appreciate their
geometrical shapes. A non-Archimedian example is the Mar-
shall-Olkin copula, which is a natural bi-variate extension of
the Poisson process and so has an intuitive stochastic inter-
pretation. But the Marshall-Olkin copula is not flexible
enough to fit many scenarios, including the DRAM example.
A third example is the Gaussian copula, which is a well-
known extension of the multi-normal distribution. As shown
below, when the Gaussian copula is fitted to the data of the
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DRAM example it had the drawback that its parameter was
forced to an implausible limit to fit the data.

Geometrical copulas offer an intuitive and practical
approach to the problem of choosing a copula for manufac-
turing test applications. Geometrical copulas define probabil-
ity densities along easy to visualize lines and regions of the
copula’s domain. These shapes can be adjusted by parameters
with geometrical interpretations. According to the current
invention, test data is acquired over a range of environmental
conditions and sample sizes, which span the application over
which the model is used. This means that the copula needs to
“look like” the data, and the fitted model will not be used to
extrapolate far from the data. For the DRAM application
example two geometrical copulas, the “stripe” and the
“wedge”, in addition to the Gaussian copula are derived and
fitted to the data.

An indicator that can also guide the choice of copula for
test applications is the limit

1T = tim S @6

-0+ u

which characterizes the lower tail dependence of C(u, v) near
the origin. It is seen by inspection of Eq. (14) that this limit
vanishes for copulas IT and W, but is unity for M Any finite
value for this limit indicates that the copula has asymptotic
dependence in the lower tail. Since one would expect depen-
dence of retention times observed in Test and in Use to persist
even for the few units, which have very short retention times,
a copula for which this limit is finite is a good model candi-
date for the DRAM example.

According to the invention, a major benefit of copula mod-
els is that they provide a deterministic semi-analytical way to
compute figures of merit used to characterize, and so specify,
the test manufacturing process. This is much more efficient
than doing a Monte-Carlo (MC) synthesis from the models.
But sometimes, MC synthesis is unavoidable, and the current
invention provides MC synthesis in these cases. Another
major benefit of geometrical copulas (not shared with the
Gaussian copula, for example) is that it is possible to generate
MC samples only in the important tail region, without wast-
ing samples in the larger domain of the copula. This will be
shown for the geometrical copulas described below.

Regarding Gaussian copulas, a method of modeling depen-
dence is to treat variables as multi-normally distributed cor-
related statistical variables. In the bi-normal case the cdfis

H(x, y)=®a(x, y; p) = 27
X2 - 207y + y/z

=D dy dx

=[]
- exp|—
27V1 - p? Voo

The correlation coefficient, -1=p=1, quantifies the depen-
dence. The Gaussian copula corresponding to Eq. (27) is

Ga(u,v;p)=®(®, ' (1),2, " (vip) 28)

where @, is the standard normal cdf.

Advantages of the Gaussian copula in the current invention
include easy extension to higher dimensions, easy Monte
Carlo simulation for the entire domain of the copula using
Cholesky decomposition of the covariance matrix, and avail-
ability of known numerical algorithms to evaluate Eq. (28).
For test applications, however, efficient Monte Carlo sample
generation focused only on a part of the domain such as the
tail region near the origin is not possible. This is a significant
disadvantage in the test application compared to the geo-
metrical copulas described below. The fact that LT vanishes
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for the Gaussian copula, except for p=1, would tend to dis-
qualify this copula for applications that require non-vanish-
ing correlation deep into the fail/fail tail of the multivariate
distribution, such as the DRAM example. However, because
the Gaussian copula is commonly used, it will be fitted to the
DRAM data as an example which will make clear the benefits
of the new geometrical-copula-based method described in
this invention. The related t-copula has a finite value of LT,
and so may be more suitable than the Gaussian copula, but it
shares the other advantages and, particularly the disadvan-
tages, of the Gaussian copula for the test applications
described in this invention.

Regarding the stripe copula, the data in FIG. 6 is concen-
trated along a diagonal, with some scatter to either side. This
suggests using a copula in which has finite probability density
in a diagonal stripe on either side of the diagonal, but vanish-
ing probability density outside the stripe. The width of the
stripe can then be adjusted by a parameter. Both the shape of
the stripe and the probability density are adjusted to make the
margins uniform so that it is a copula. The stripe copula is
constructed by first drawing a diagonal stripe across the unit
square shown in FIG. 13 to construct a stripe pseudo-copula.
The parameter d controls the width of the stripe, which can
range from zero (perfect correlation), to covering the entire
unit square uniformly (independence). The probability den-
sity in the stripe is uniform, normalized to unity, and vanishes
outside the stripe. The uniform probability density of the
stripe in FIG. 13 is 1/(2d—d?), the reciprocal of the stripe’s
area. A(u, v) is the function which gives the probability
enclosed by the rectangle (0, 0)/(u, v). By considering four
distinct geometrical cases, expressions for the probability
density A(u, v) enclosed by the boundaries of the rectangle (0,
0)/(u, v) shown in FIG. 13 may be found as a function of (u,
v). All of these cases are covered by the formula for the stripe
pseudo-copula

1 1 29
u’v’—zaz—zbz @)
A =
(4, v) 2—d
where
o =minfu, v +d] (30)

v = min[v, u + d]
a =max[u —d, 0]
b =max[V' —d, 0].

The function A is a pseudo-copula because it satisfies the
requirements of a copula except that the margins are not
uniform. The marginal distributions, A(u, 1)=f~"(u) and A(1,
v)=""}(v), are non-uniform since f'(z)~z. z is a dummy
argument which can be either u, or v. The function £~'(z) is:

Case d=s»

BD

12
zz +zd O=<z=d
a1 1,
! (z)——d(z_d)x %d - 5d dsz<l-d
! d)? 11 d? 1-d 1
_— - _ = - - =< =<
b4 2(z ) 2( ) <z<
1
Case d = =
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-continued
1 32
zzz+zd O<z=1-d ¢2)
1 1
PN L, ~
! (z)—d(z_d)x z-5(-a) l-dsz=d

1( 4y 1(1 d)? d=z=<l
2z ZZ 3 =Z=

To construct the stripe copula from the stripe pseudo-
copula the inverse of this function is needed.

Cose g < | (33)
< —
ase _2
flz)=
—-d+Vd2+2(2d - d?)z 0=z= 3
1-2d
Ry 3 _4-5d
( T3 ]Z 7 3-2d %324
1+d=V202d —d>(1 -z) +a? 4_5d<z<1
I-24 %%
1 34
Case d = = e
2
flz)=
—d+Vd? +202d - d?); 05151_—d2
202d —d?)
-yt (1 -y L& 1 -
—_ — - —_— =< -
( et z0-d) 20d—dh) == T 20d—
l+d-V20d—d)(1-g+d? 1—iszsl
202d —d?)
So the stripe copula sought is
St(x,3)=AF x),5»)- (35)

This is a copula because it has all the properties of a copula,
including uniform margins:

St D)=A(F 0).F (D)=A S 0, D=F F )=

since X is the cdf of the uniform distribution. The equation of

the upper line bounding the area of finite probability density
for this copula is

(36)

FFlym+d) 0=x=<f'U-a (37
r= 1 fll-dysxs=l
and the equation of the lower line is
{ 0 O=x= fHd) (38)
y= .
SUw=-d) [fd=x=1
The low tail dependence is
2 _ 39
IT = lim 2% T im0 w0 G

i QR T e e Al

so there is no asymptotic low tail dependence unless d van-
ishes.

Algorithms for Monte-Carlo synthesis of random points in
geometrical copulas such as the stripe copula can be derived
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using geometrical arguments starting with the pseudo copula,
A. It is possible to fill any parallelogram or triangle with
uniformly distributed random points using every point gen-
erated, that is, without the rejection of any Monte-Carlo
sample. This is done by weighting the basis vectors that define
the parallelogram with a pair of independent uniformly dis-
tributed random numbers. For a triangle, points in the “wrong
half” of a parallelogram are reflected into the triangle of
interest. The slice in FIG. 13 can be decomposed into rect-
angles and triangles, and random points placed in them
according to probabilities determined by area ratios of the
rectangles and triangles.

This produces uniformly distributed points within the
stripe pseudo-copula. Most importantly, it is possible to limit
the region of the stripe over which these points are generated.
Generated points may be mapped into the stripe copula using
Egs. (31) and (32), so that if u, and v are generated for the
pseudo-copula, then the corresponding points of the copula
are

x=F@)y=f" o).

FIGS. 14a-14f show examples of synthesized probability
maps of the stripe copula. The density of random points
indicates the probability density of the copula. Notice that
both the shape and the density of points have been trans-
formed by the function f, Egs. (33) and (34), from the pseudo-
copula of FIG. 13. FIGS. 14a-14c¢ show that the stripe copula
spans independence (d=1) to perfect correlation (d=0), and
FIGS. 14d-14f'show synthesized points concentrated near the
origin. The degree of censoring, or censor fraction, is indi-
cated in FIGS. 14a-f by the parameter “Censor”. The censor
fraction is the number of units in a sample or sub-population
divided by the number of units in the entire population. Ken-
dall’s tau is computed from the synthesized data using Eq. (3)
and is also shown in the header of plots in FIGS. 14a-f. Recall
from Table 3 that DRAM bits for which retention times were
measured covered only 40 PPM of the population. This
degree of censoring, typical of integrated circuit test applica-
tions, would be a tiny dot near the origin on the scale of the
plots in FIGS. 14a-f. The efficiency advantage of any Monte
Carlo (MC) sample generation method which confines
samples to the non-censored subpopulation, compared to a
MC sample generation method which must reject samples of
the entire population, is proportional to the reciprocal of the
censor fraction (“Censor” in FIGS. 14a-f). So the small cen-
sor fractions typical of test applications gives a very large MC
efficiency advantage to the geometrical copula method of
selective sample generation described in this invention.

Regarding the wedge copula, the data in FIG. 6 appears to
be more scattered as retention time increases. This suggests
constructing a wedge-shaped copula. The construction starts
with a wedge-shaped pseudo-copula A(u, v) symmetrical
about the (0, 0)/(1, 1) diagonal with uniform probability den-
sity inside the wedge, and vanishing probability density out-
side the wedge, shown in FIG. 15. This shaded region has area
(1-c)/c, where c is defined in the figure, so the wedge’s
uniform probability density is ¢/(1—c). The size of the region
is controlled by the parameter 1=c=co which ranges from c=1
for perfect correlation and to c=co for independence.

The wedge pseudo-copula can be shown by geometrical
considerations to be the probability density enclosed by the
(0, 0)/(u, v) rectangle in FIG. 15 for (u, v) anywhere in [0, 1]*

(40)

“4D

N _ ¢ (// u/z V/Z]
(14,\/)_6_1 uv—%—%
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-continued
o = minlu, cv],
v = min[v, cu]
On the margins, this is

A, D)= fHw) 42
Al v =70
where

(c+ 1 1 43)

=Z=cC
-1 —

@)= (122 I

=D 1=

which is a monotonically increasing function of the dummy
argument, z. Notice that A(u, v) is a pseudo-copula because
the marginal distributions, Eqgs. (42), are not uniform. To
construct the wedge copula the inverse of Eq. (43) is needed:

2z 1+c¢ “44)
O=z=<——
@)= c+1 2c
N l+c
(c=1¥+2-1)1-g 7 <z=l
So the wedge copula corresponding to FIG. 15 is
We(x,y)=A(F(x),5 ) 45)

which satisfies the requirement that it have uniform marginal
distributions because

We(x, 1)=A(f (0.5 (D)=A(f 0, D=F (F )=

and the same for y, since x and y are cdfs of uniform distri-
butions.

The lower boundary of the area of non-vanishing probabil-
ity is

(46)

y=HcH%)),0=x=1 @7

while the upper boundary is

Flefx) O=xs< %(c +1)/c? “8)

y= .
1 2
1 §(c+1)/c <x=1

For the test application the important region is the region
near the origin. In this region the boundaries of the regions
with non-vanishing probability given by Eqgs. (47) and (48)
are straight lines. The lower boundary is

y= 072x 49)
0 c+1
=< =<
== e
and the upper boundary is
y=cx (50)
Dexx< c+1
=YE 0
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The low tail dependence of the wedge copula is

C Wetex L ffm) 1 2x 2 6D
LT = im ———— = lim —— = lim =
-0+ X xo0f x w0t xc+l o+l

So the wedge copula has asymptotic tail dependence
except in the limit of independence (c—00) where it becomes
I1, the independence copula. In the opposite limit (c—1) the
asymptotic dependence becomes unity because We becomes
M, the Frechet upper bound copula corresponding to perfect
correlation.

Points of the wedge copula may be synthesized by gener-
ating uniformly distributed (u, v) points in the wedge-shaped
finite uniform probability density area of the pseudo-copula A
in FIG. 15, and then mapping them to the space of the copula
using x=f(u), and y=f(v) where f is given by Eq. (44). The
algorithm for generating (u, v) points is given below. The
probability density maps of the wedge copula in FIGS. 16a-
16f were generated using this method. Notice that it is pos-
sible to restrict the generation of synthesized points to sub-
domains of the copula, particularly the region near the origin.
FIGS. 16a-16c¢ show that the wedge copula spans indepen-
dence (c=o0) to perfect correlation (c=1), and FIGS. 164-16f
show that synthesized points can be concentrated near the
origin, corresponding to values of the censor fraction, “Cen-
sor” <1.

Values of Kendall’s tau given in FIGS. 16a-16f for the
synthesized data of the wedge copula were computed to good
precision using Eq. (3). It is also possible to derive an ana-
Iytical expression for Kendall’s tau for the wedge copula as a
function of the parameter c, and of the censor fraction a, using
Eq. (25):

Tsubpopulation(C» @) = (52)
& Welx, Vs c)
d dyW,
Wez(a a; c)f xf yWele. yi ) —5 5y axdy
The result, derived below, is
2c+1 (53)
TSubpopulation (€ @) = 32

The wedge copula has the attractive property that the sub-
population tau is independent of a, the censor fraction. This is
not true of copulas in general as may be seen by comparing
the cases in FIGS. 14a-14f and FIGS. 16a-16f for which the
parameter d or c, respectively, is constant, but the censor
fraction varies. Since tau may be computed directly from
data, Eq. (53) provides a way to estimate the parameter ¢ of
the wedge copula, according to the current invention.

Since it is convenient if the model subpopulation tau is
independent of the censor fraction, it is useful to know more
general conditions under which this holds so that copulas
with this property can be identified. A sufficient condition for
this to be true is that a copula be expressed as C(x, y)=A[f
(x),f(y)] where A satisfies A(axu, axv)=a’xA(u, v), for a<l.
This is shown below. The geometrical interpretation is that all
sub-regions [0, a]* of the pseudo-copula A are geometrically
self-similar. It is immediately apparent by inspection of FIG.
13 that this is not true of the stripe copula, whereas FIG. 15
shows that it is true of the wedge copula.
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Turning now to an example of fitting DRAM data to copula
models, the selection of a copula is guided by the conditions
of data acquisition and specific knowledge of integrated cir-
cuit manufacturing. The DRAM retention time data is delib-
erately symmetrical between Test and Use because the selec-
tion of a symmetrical test coverage model for the purpose of
model-fitting maps r,,,,, and r,, . for each bitton,,, andr,,
with equal probability. So only “exchangeable” [C(X, y)=C(y,
x)] model copulas need to be considered. All of the candidate
model copulas are exchangeable. According to one embodi-
ment of the invention, if the dependent attributes of a test
vehicle or product are expected to be related only by the
intrinsic physics of the materials and design, and defects will
affect one or the other but not both of the attributes, then one
can expect that dependency will be strong in the bulk but
weak in the tails of the two-dimensional distribution. In this
example case, a copula such as the Gaussian copula, for
which LT=0, will be suitable. If, on the other hand, a defect is
regarded as potentially affecting both attributes, as in the
DRAM case, then the dependency will extend deep into “fail/
fail” tail of the two-dimensional distribution. In this case, one
would choose a copula model which can have a finite lower
tail dependence, LT=0. Since both the Gaussian copula and
the stripe copula have LT=0 except in limiting cases, and the
data suggest that a model with LT=0 will be needed, a two-
parameter copula model was constructed using a linear com-
bination of each of the wedge, Gaussian, and stripe copulas
with the Frechet upper bound copula, M The model is

C'(x,y,p,parameter)=pM(x,y)+(1-p) C(x,y;parameter) 54)

where the parameter is p, d, or ¢ when C is the Ga, St, or We
copula described above. This model C' will have LT=0 if p=0.
It may have LT=0 for vanishing p, if C has LT=0 by itself.

A least-squares method was used to extract the best fit
copula at each of the 18 environmental conditions for each
skew of the DRAM data. The following sum was minimized
using Excel’s solver to determine p, and the copula-specific
model parameter:

55
Z Z (N X 6C};(p, parameter) — n;j)z 63
SSQ(p, parameter) = ' 5
2xm
i
where
6C; =Cl=Cly ;= Clpy +Ciy i (56)

where i, and j are cell indexes in FIG. 6, where n,; is the
number of failures observed in each cell, and where
N=48750000 is the total population size.

In every case the best fit was found at p=0. So, for the
DRAM, a one-parameter model suffices for any of the three
candidate copulas.

For a one-parameter copula, a simpler and more convenient
way than the least-squares method to extract the parameter of
the copula is to compute a “sample” estimate of Kendall’s tau
directly from the data and compare it with the theoretical
expression for the subpopulation tau, Eq. (25), to solve for the
parameter. The theoretical expression for the subpopulation
tau is generally also a function of the censor fraction, which is
known from the experiment.

Regarding model parameter estimation for the wedge
copula, an estimate of ¢ may be derived by substituting the
sample tau computed from the data using Eq. (3), and given in
Table 4, into the inverse of Eq. (53), written as
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1+vV1+37 &7
= ———.

37

Generally a relation like Eq. (§7) depends on the censor
fraction but for the wedge copula there is no censor fraction
dependence. FIG. 17a shows estimates of ¢ as a function of
the 18 environmental conditions, In . Estimates using Eq.
(57) and the more generally applicable least-squares method
show good agreement in the figure. Moreover, the figure
shows that ¢ is independent of the environmental condition.

Regarding the Gaussian copula, FIG. 175 shows a reason-
ably environmental-condition-independent fit to the Gauss-
ian copula by the least-squares method. It was not possible to
determine the copula parameter using the sample tau method
because there is no easily derived expression from Eq. (25),
nor is it possible to do an efficient Monte-Carlo computation
of the sample tau because there is no known way to confine
random samples to the tail of the copula without rejection of
points. Remember that the range of the data covers only 40
PPM of the population (for the nominal skew), so sampling
the entire population to estimate tau for the range of the data
is not practical. The best least-squares fit was obtained for a
correlation coefficient of about 0.999 (see FIG. 17b), with the
significant variation occurring in the 3/ and higher digits. It
seems that the main, unobserved, body of the population must
be forced to have an extremely strong correlation, so that the
weaker correlation in the tail, where the data is observed, will
be sufficiently strong to fit the data. So, the Gaussian copula
is not a natural fit to the strong dependence observed in the
range of the data:

Regarding the stripe copula, FIG. 17¢ shows parameter
estimates for the stripe copula as a function of environmental
condition, In @, for both the least-squares and the sample tau
methods. Because a single parameter value could not be cho-
sen for all environmental conditions, no single value of the
stripe copula parameter can be given in Table 4. The strong
environmental dependence of the copula parameter makes
this an undesirable copula for the DRAM application. The
sample-tau method requires an efficient way to compute Eq.
(25) for the model copula. For the stripe copula, derivation of
an analytical formula was daunting. But, as for any geometri-
cal copula, it was possible to do very efficient and accurate
Monte-Carlo numerical calculations of the sample tau
because all the samples may be concentrated in the sample
region of interest. This is the easiest method for most geo-
metrical copulas.

The quality of fit for each of the three types of copula is
compared in FIG. 18, which shows a comparison of minimum
sums of squares computed from Eq. (55) for each of 18
environmental conditions for the nominal skew. Most of the
plotted points in FIG. 18 are above the diagonal, showing that
the wedge copula gives the best fit.

The discussion shows application of several principles of
copula selection, which led to the selection of the wedge
copula to model the DRAM application example:

Copula models with parameters independent of environ-
mental conditions are preferred because they greatly
simplify the model, and probably reflect a fundamental
underlying dependency structure of the mechanism.
Moreover, an environmentally-independent copula
model in combination with marginal distributions that
embody all Test and Use conditions in a single parameter
such as r/a, enables an “equivalent set point” test
method which gives flexibility in determining test and
datasheet specifications. For the DRAM example, the
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wedge copula was environmentally independent, the
Gaussian copulas was less so, and the stripe copula was
strongly environmentally dependent.

Copula models with a plausible tail dependence based on
application knowledge are desirable. Geometrical copu-
las are preferred because they are easy to construct to
mimic observed or plausible behavior. Only the wedge
copula satisfies this for the DRAM example. Compari-
son of FIG. 6 with FIGS. 194-195 show that the best-fit
wedge copula is a better representation of the shape of
the tail dependence of the data than the best-fit stripe
copula. FIGS. 194-196 were synthesized from the best
fit wedge and slice copulas at the highest environmental
condition of the nominal skew. The sample size of 1641
and censoring also matched the experimental conditions
of FIG. 6.

Geometrical copulas are also preferred because it is pos-
sible to concentrate Monte-Carlo samples in the tail
region of a geometrical copula. This has two major ben-
efits. First, highly accurate Monte-Carlo evaluations of
the sample tau can be obtained, sidestepping the need for
deriving analytical formulas from Eq. (25). Second, any
Monte-Carlo simulation from the copula can be
extremely efficient since sample generation can be
focused on the tail region. Both wedge and stripe copu-
las have this advantage.

Based on these considerations, the wedge copula model
was selected to model the dependency structure of the DRAM
bit retention time.

Turning now to the aspect of the invention in which the
copula-based statistical model fitted to the data according to
the preceding description is used to model Test and Use of a
integrated circuit product, FIG. 20 shows how good and bad
(defective) units of an integrated circuit product such as a
memory array are produced by the Fab/Assembly process,
and then are screened by final Test and go on to Use. The
figure also shows important figures of merit (FOMs) includ-
ing Yield Loss, Overkill (there are two kinds), and End-Use
Fail Fraction.

Regarding the FOMs, targets and cost models, a schematic
drawing of how the Test and Use conditions divide the popu-
lation of manufactured units into categories is shown in FIG.
21. The three proportions shown in FIG. 21, which are mod-
eled as probabilities, are sufficient to characterize the effect of
Test and Use. The four FOMs described next are defined in
terms of these probabilities.

First, Yield Loss is given by

YL=P(Fails Test)=1P(Passes Test) (58)

where P(Passes Test) is the fraction of units which pass Test
irrespective of whether they are good or bad in Use. Yield
Loss is a primary manufacturing indicator since it directly
affects revenue.

Second, End Use Fail Fraction is given by

EUFF = P(Fails in Use | Passes Test) 59

=1 — P(Good in Use | Passes Test)
P(Passes Test and Good in Use)
P(Passes Test)

P(Passes Test) — P(Passes Test and Good in Use)
- P(Passes Test) ’

=1

EUFF is the fraction of units classified as failing in Use, given
that they have passed Test (a conditional probability). End-
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Use Fail Fraction (EUFF) is a primary quality indicator since
it is the customer-perceived proportion of defective units.
Third, Manufacturing Overkill is given by

OKill(Mfg)=P(Good in Use)-P(Passes Test and Good
5 in Use). (60)

Finally, Test Overkill is given by

P(Good in Use) — P(Passes Test and Good in Use) 61)

10 OKill(Test) = 1 — P(Passes Test)

Overkill is associated with the cost of missed opportunity for
revenue caused by invalidly rejecting units at Test. FIGS.
15 20-21 shows that Manufacturing Overkill, Eq. (60), is the
fraction of all manufactured units (good and bad in Use),
which are invalidly rejected by Test and that Manufacturing
Overkill is a subset of Yield Loss. Manufacturing Overkill is
ameasure of the cost to the entire manufacturing process. Test
20 Overkill, Eq. (61), is the fraction of all units rejected by test
which are invalidly rejected by Test and is a measure of how
good the Test screen is.
Turning to consider targets, the definitions of FOMs show
that each FOM is a ratio falling into the range [0, 1] and that
25 for each, “0” is most desirable and “1” is least desirable. So
specifications for a product and test manufacturing process
are found by requiring that FOMs meet do-not-exceed targets
for each FOM. Targets are chosen with producer costs and
customer-perception of brand image in mind, and are prod-
30 uct-specific. Quality-related customer costs are one aspect of
this perception. Example targets used in the application
examples later in the description of the invention are YL (Tar-
get)=20%, OKill(Mfg, Target)=2%, EUFF (Target)=200
DPPM. The values of the example targets are not representa-
35 tive of any particular product or manufacturing process.
Regarding the Datasheet Specification and Test Condition
shown in FIG. 20, one embodiment of the invention (the
DRAM example) specifies these in terms of environmental
conditions (V,, V,;, T) and retention time, r. The settings of
40 these four parameters in Use (Datasheet Specification) and at
Test (Test Condition) will be different. Usually the Test Con-
dition is more “stressful” than the Datasheet Specification.
Because of the fit of environmental conditions (V,,, V,,, T) to
the model of Eq. (2), the environmental condition is mapped
45 into the single parameter o, in Use and o, in Test. The
datasheet specifies a refresh time r,,,, and the Test specifica-
tion uses a different retention time limit setting, r,,.,. So, a
single parameter, x, depending on both the environmental
condition via o and retention time limit r,_ in the datasheet

use

50 defines the Datasheet Specification (Use) condition:

x=1- exp[—(%)ﬁ] 62)
55

And similarly, a single parameter, y, defines the Test Con-
dition:

60 ol exp[_(ﬁ)ﬁ]. 63)

Qrest

Figures of merit are used in cost models of the integrated

5 circuit product. Costs to the producer of a component and
costs to the customer producing systems using the component
must be included in these models. Regarding producer costs,

o
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suppose the cost of manufacturing a component is $Cost and
the sale price of a component is $Price, and suppose N com-
ponent units are to be manufactured. Besides costs of mate-
rials used in the unit, $Cost includes per-unit capital depre-
ciation costs associated with the manufacturing equipment
such as testers, charged to the unit. For testers, this cost-
contributor will depend on the time needed to test each unit,
among other factors. According to the definitions of the
FOMs defined above, the cost of manufacturing N component

units is
Cost of manufacturing N units=Nx$Cost (64)
and the revenue from the N units manufactured is
Revenue from N units manufactured=Nx(1-YL)x
$Price-NxOKill(Mfg)x$Price (65)

where OKill (Mfg) is the fraction of manufactured units
which would have been good in Use, but were rejected at Test.
If the revenue reduced by overkill is regarded as an oppor-

tunity cost then the per-unit-manufactured cost is
$Cost'=$Cost+OKill(Mfg)x$Price. (66)
and the revenue is
Revenue from units manufactured=Nx(1-¥L)x$Price (67)

For products with high margins so that $Price>>$Cost, and
with significant yield loss, overkill may significantly affect
the business viability of a product.

Regarding customer costs, the producer’s price per com-
ponent unit is the customer’s nominal cost per unit plus addi-
tional costs to the customer due to debug and rework or
scrapping of systems which fail because of faulty compo-
nents which have escaped the component manufacturer’s pro-
cess. It is also possible that some faulty components may
escape the customer’s testing and lead to warranty costs. So,
for the customer

Cost of components=Nx$Price+NxEUFFx$Average

cost impact of defective unit to customer. (68)

The cost impact of a defective component to a system
manufacturer is usually much greater than the price of the
component, particularly for surface-mounted components.
Therefore, EUFF is typically required to be less than about
200 DPPM. Beyond cost, EUFF has a qualitative impact on
brand image. This is often the primary consideration in
choosing the EUFF target.

Turning now to consider the test coverage model, note that
for the copula-based statistical model fitted to the data, the
test coverage model used assumed that the minimum and
maximum retention times for each bit are equally likely to
occur in Test and in Use. This is called a “symmetrical test
coverage model”. However, for a realistic Manufacture/Test/
Use flow like FIG. 20, Use occurs over extended time periods,
so that if a minimum retention time can occur for a bit it will
certainly occur in Use. On the other hand, Test is brief so the
probability of occurrence of the minimum or the maximum
retention time of a bit in Test depends on details of time-in-
state of bit-leakage which are beyond what can be known
from the DRAM example data. So an assumption must be
made in order to proceed to model the Manufacture/Test/Use
flow of FIG. 20. The most conservative assumption from the
end-user perspective, called the “conservative test coverage
model”, is that Use always “sees” the minimum retention
time and that Test always “sees” the maximum retention time.
Other test coverage model assumptions are also used to model
Test and Use in order to gauge the sensitivity of the model to
this assumption.
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The test vehicle data were fitted assuming a symmetrical
test coverage model, in which Test and Use are equivalent, by
assigning r,,;, and r, .. to Test or Use using a computer-
generated “coin flip”. So identical marginal distributions for
Test and Use were extracted from the data, and an exchange-
able copula C(x, y) was fitted. If Test and Use retention times
sampled from this symmetrical model, indicated by the
primes, are assigned to Test and Use under the conservative
test coverage model assumption that Test always “sees” r,,,,
and Use always “sees” r,,,,,, then

’

‘tesol usels Fuse=IN[F,

testr

¥ (69)

is the 2:2 order statistic and r,,__ is the 1:2 order

use

Pres~MAX[F usel

Thatis,r,,,
statistic of the pair (r',,, t',..)- It is known that the 2-dimen-
sional cdf connecting the 2:2, and 1:2 order statistics of a pair
of random variables distributed according to a 2-dimensional
cdf H(u, v) is

Hu, v+ Hv,u)— Hu,u) u<vy
Hv,v)

(70)
Ku,v) = {

uz=y

and that if the marginal distributions of H are the same, then
the pseudo-copula of the order statistics has the same form as
K. If in addition, the copula of the original random variables
is exchangeable so that C(x, y)=C(y, X), then

2C(x, y) = Clx, x) x<y
Cy, »

an

xzy

Dix, y) = {

So D is the transformation of the fitted copula, C, embody-
ing the conservative test coverage model that Test always
“sees”r,,,, and Use always “sees”r,,,,,,.

Notice that the x and y marginal distributions are cdfs of the
1:2 and 2:2 order statistics of pairs of numbers sampled from
XandY:

D(x,1)=2x-C(x,x)

D(1y)=Cyy)

This shows that in general D is a pseudo-copula, not a
copula, because D(x, 1)=x and D(1, y)=y.

An integrated circuit DRAM memory includes an array of
many, N, bits. The preceding description gives a model of the
dependence structure, D, of retention times for a single bit.
Needed is a model of the dependence structure of retention
times for an N-bit array.

Derived next is the dependence structure of N-bit arrays
which are good only when all N bits are good. The more
realistic and complex cases when an array can be good if
some bits are bad (fault tolerance) and when arrays with bad
bits can be repaired at Test will be described later. The prob-
ability that every bit in anarray of N bits is good when the Test
and Use conditions are x and y is the survival pseudo-copula
of a single bit, S, raised to the power of N

(72)

SnE=ISEN T =[1-D(1-x,1)-D(1,1-y)}+D(1-%,1-

il (73
where x=1-x and y=1-y. S, is the survival pseudo-copula of
the array, so a little manipulation using D(x, 1)+D(1-x, 1)=1
and similarly for y gives the pseudo-copula of the non-fault-
tolerant array as
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Dy(x,y)=1-Sy(1=x, D)=Sy(l, L =) +Sy(l-x,1-y) (74

=1-[1-Dx DN -[1-D, ¥+

[l -D(x, 1) - D, y)+ D(x, wV.

Notice that D,~=D when N=1, as it must.

Eq. (73) and (74) can be generalized in an obvious way to
get the survival copula of a product with multiple copies of
several types of module for which copula models were
extracted from test vehicle data. (For the DRAM, there is one
type of module; the bit.) In particular, Eq. (73) becomes a
product over module types with the survival copula of each
module raised to a power which is the number of modules of
that type in the product.

The FOMs of interest for the non-fault-tolerant array can
now be described. FIG. 22 shows a schematic representation
of how the Test and Use conditions in Egs. (62) and (63)
superimposed over the bit pseudo-copula pdf of Eq. (71)
divide the population probability space into four regions
labeled according to a bit’s Use/Test pass/fail category. This
depiction is schematic because, for the DRAM, x and y are
much closer to the origin than shown. It will be shown that
FOMs can be expressed in terms of the probability mass
(shaded) enclosed in each of the four labeled regions of the
population probability space, and the probability masses can
be expressed in terms of the pseudo-copula D. The essential
tradeoft between overkill and end use fraction fail can be seen
in FIG. 22 since moving the intersection of the Test and Use
condition settings to reduce overkill (reduce probability den-
sity in region pf) will necessarily increase the probability
density in region fp, and so increase end use fail fraction. For
any given Test condition and Use condition each bitin a given
array will fall into one of the four categories shown in FIG. 22.
For an N-bit array the same considerations apply but the array
pseudo-copula D, given by Eq. (74) is used rather than the bit
pseudo-copula D given by Eq. (71). So, for an N-bit array
which is good only when all of'its bits are good (that is, it has
no fault tolerance) the probability of occurrence of each cat-
egory of the array is

P, =Dn(x,1)=-Dpfx,y)
Pp=D(1,y)-Dp(x.,y)
Py=Dy(x,y)

P, =1-Dp(x,1)=Dp(1,9)+Dpfx.y)

where the rules for writing the probability mass of a region of
apseudo-copula, Eq. (18), have been used. Note thatp;, +p,, +
ps+P,,=—1. Keep in mind that, as shown in FIG. 22, the first
subscript for a probability mass like p, refers to Use, and the
second refers to Test.

Probabilities used to define FOMs may be written

@3

P(Passes Test)=p,,+p4,
P(Good in Use)=p,,,+p,,

P(Passes Test and Good in Use)=p,,, (76)

so using Egs. (58), (59), (60), (61), and (75) expressions for
FOMs in terms of the model copula may be written:

Py +Por an

_ _ Dy (L, Yrest)
P+ Pprt Pt Ppp

Dy(1, 1)

= Dp(L, Yrest)
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-continued
EUFF = P _ Dy (Xuses 1) = Dy (Kuses Yeest) 78
Pt Ppp 1= Dn(1, Yeest)
OKill(Mfg) = pyr = Dn(L, Yrest) = Dv(Xauses Yrest) (80)

Pof  _
Pg+ Prr

_ Dy (L, Yrest) = Dy (uses Yrest)

OKill(Test) = TR
s Ntest

An example of a perfectly correlated Test and Use is pro-
vided. For perfectly correlated Test and Use the probability
density is uniform along the diagonal of FIG. 22 and C(x,
y)=min[x, y|. This in turn means, from Eq. (71), that D(x,
y)=min[x, y]. So,

Dy(x,y)=1-[1 =D, DIV = [1 - DU, »I¥ + (8D
[l - D(x 1) =D(L, y) + Dx, y)IY

=1-[1-x" =[1 = y1V +[1 —x— y +minfx, y]|¥
I-(1-x" x= y

{1—(1—y>N xzy

YL=Dy(L, yrest) =1 = (1 = yrm)N 82)

Jl
Dy (Kuse, 1) = Dy (Kuses Yeest)
1= Dy(L, Yiest)
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Eq. (83) shows that for perfect correlation, EUFF vanishes
if the Test condition exceeds the Use condition, and it quan-
tifies the fraction failing whenever the test condition is made
less than the use condition. The behavior of the overkill
FOMs complement this, showing the essential tradeoff
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between EUFF and overkill. Notice that Use and Test condi-
tions are quantified by the single parameter r/c. and o depends
onV,,V, and temperature.

Regarding fault tolerance, the array model is generalized to
take account of fault tolerance at Test and in Use. At Test fault
tolerance is implemented by physically remapping of failed
bits to a small number of rows or columns, whereas in Use
fault tolerance is implemented by error correction redun-
dancy coding (ECC), not physical repair. Statistical models of
the effect of fault tolerance schemes on FOMs is done by
expanding the definition of a “good” array to include arrays
with some “bad” bits. “Bad” bits in arrays that are considered
“good” are taken to be covered by a fault tolerance scheme.
The maximum number of “bad” bits that can be tolerated is a
measure of the repair capacity of the fault tolerance scheme.
Only the repair capacity of a fault tolerance scheme is needed
to estimate the effect on FOMs. It is not necessary to know
implementation details of the scheme. The expressions for
FOMs for two fault tolerant cases are derived. The cases are 1)
No Repair at Test, and 2), Repair at Test. In the first of these
cases the tester does not actively repair any failing bits that it
finds, whereas in the second case the tester can repair some
failing bits.

Consider an array made from N of the bits characterized
and modeled by the copula-based model in the DRAM
example experiment. The probability that the array has
exactly ng, bits in category fp, n,¢ bits in category pf, and ng¢
bits in category ff is, by the multinomial theorem and its
Poisson limit,

N . N ponp (86)
of e FF Ppf T

Pof P P (L= Por = Pp— Pg) —
(npf,nfp,nff] IR e Nosoo

/Iffffexp(—/lff) /Ip}’fexp(—/lpf) /Iﬁ{pexp(—/lﬁ,)

ng! ! np!

pf

where A, =N p, ¢, A, =N Py hs=N pys and where p, ¢, s,
and py; are related to the bit-level pseudo-copula D by Eq.
(75) with N=1. It will be shown that expressions for the three
probabilities P(Passes Test), P(Good in Use), and P(Passes
Test and Good in Use) all involve sums over terms like either
side of Eq. (86). FOMs depend, in turn, on these probabilities
via Egs. (58), (59), (60), and (61). The Poisson limit is well-
justified for the DRAM since typical arrays have many thou-
sands of bits with only tens of failing bits at most. Moreover,
the mathematical manipulations are more tractable in this
limit.

The method of summing sums of terms like Eq. (86) over
categories of failure mechanisms (single cell, word-line, etc.)
is known. The invention described here uses the same
method, except that the categories are pass/fail in Use or Test.
Itis also known from earlier work that account can be taken of
variation of defect density across wafers, lots, and factories
by replacing the Poisson terms on the r.h.s. of Eq. (86) by a
negative binomial distribution

[ae+nrn) @A/a)”
nll(@) (L+A/al™® ave

A" exp(—A)
n!

@7

where o quantifies the variation of defect density and a—c
corresponds to uniform defect density. It is important to note
that this description applies to variations in cell defect density
of much greater spatial extent than the size of the N-bit array,
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so that the defect density within any given array is constant.
Ways to extend yield models of defect-tolerance to arbitrarily
complex chip floor plans and to defect density variations,
which can occur within the chip have also been established in
earlier work. All of these extensions are available to the
method described here, but to minimize clutter the single-
mechanism Poisson formulation, Eq. (86), will be used to
show the novel aspects of the invention. The novel aspects
with regard to fault tolerance are 1) calculation of pass/fail
probabilities for Test/Use categories, 2) calculation of all
important FOMs, not just yield loss, 3) graphical representa-
tion of fault tolerance schemes, 4) efficient ways to compute
functions needed by the theory. These enable earlier work
covering other aspects to be extended to take account of
miscorrelation between Test and Use, and to consider FOMs
other than yield.

Fault tolerance schemes in Test and in Use may be
described by a set of constraints on the range of indices over
which the sums of terms like Eq. (86) range in expressions for
the probability functions appearing in the expressions for the
FOMs, Egs.(58), (59), (60), and (61). In general, sets of
allowed values of ng n,; and ng, consistent with the con-
straints may be computed once for any test and array design
scheme and then be reused to compute FOMs for different
values of Ay A, and A, In the examples shown next, atten-
tion is confined to cases for which FOMs may be computed
even more conveniently using special functions. Two cases
will be considered: No Repair at Test, and Repair at Test.

In the No Repair at Test case, Test tolerates, but does not
repair, =n, failing bits, and Use tolerates =n , bits. In this case,
n, is a measure of the transparency of Test to failing bits. On
the other hand, the Repair at Test case would restore up to n,
failing bits to functionality by, for example, replacing a word
with a bad bit with a word with all good bits. In this case, n, is
a measure of the size of the supply of spares. n, and n, are
usually small integers, which makes evaluation of various
required functions easy. In the following, keep in mind that
the first character in labels such as ff, pf, and fp refers to Use,
and the second refers to Test.

Turning to the No Repair at Test case, expressions for three
probability functions are needed. The first of these is the
probability of Passes Test where an array is defined as passing
test with up to n, bits failing. The permitted counts of bit
categories for arrays in the Passes Test category is the set of
integers:

s Hpps Rppt (88)
PT_ NR=S O<ng+ny<n
O=ng <oco
which leads to
P(Passes Test) = (89)
/Irflfﬁ e /Ir};{p e\ /IZ}’f e _
1 1 1 —R(Aﬁ' +Apf,ﬂ,)
ng! np! [
PT R
where
(90)

¥
Rx,n)=e™™ e
Z !

O=i=n
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Manipulations leading to Eq. (89) and (90) are shown
below. As shown below, the function R is related to the cumu-
lative Gamma distribution, which is available in many soft-
ware function libraries.

The second probability function required for the No Repair
at Test case is the Good in Use probability function where an
array is defined as good in use with up to n,, bits failing. The
permitted counts of bit categories for arrays in the Good in
Use (irrespective of Test) category is the set of integers:

©n

gy Ppf s g
GIU NR=<0 =ng+ng<n,

O<ny <co

which, by symmetry w.r.t. Eq.(88), leads to

P(Good in Use)=R(hgthg,n,). 92)

The third probability function required for the No Repair at
Test case is the Passes Test and Good in Use probability
function. The permitted counts of bit categories for arrays in
the Passes Test and Good in Use category is the set of integers

g, pf, App 93)
PTGIUNR =4 O <ng+ny <ny
O<ng+ng=<n
which leads to
P(Passes Test and Good in Use) = 94)

nE Ay 3 A A
Af e Agfe P A e
!

=Ky, dp, iy, Apry 1y)
iy ! !
PTGIU_NR

np pf

Notice that, as expected from the definitions of the prob-
ability functions P(Passes Test), etc., the set of integers
PTGIU_NR is the intersection of the sets PT_NR and
GIU_NR. The function K, shown in Eq. (146) below, is easy
to evaluate because it is a sum of a small finite number of
terms involving products of the function R.

Sets of integers corresponding to three categories of arrays
given by Egs. (88), (91), and (93) may be visualized as
regions in bit category index space as shown in FIGS. 23a-
23¢ for n,=3 and n,=7. Each lattice point in this space corre-
sponds to a term like Eq. (86) in the probability functions
given by Egs. (89), (92), and (94). The magnitude of the term
depends on values of A, A, and A and is larger for lattice
points closer to the origin. The Passes Test, and the Good in
Usecategories are infinite prisms running down then g, andn,, -
axes, respectively. The Passes Test and Good in Use category
is the intersection of these prisms. For no fault tolerance, the
allowed integers collapse to the single point at the origin, (0,
0,0). Because the three probability functions used to compute
FOMs correspond to shapes in index space shown in FIGS.
23a-23c, the FOMs derived from these probability functions
via Egs. (58), (59), (60), and (61) also correspond to volumes
inindex space. The volume corresponding to Yield Loss is the
entire space outside the prism in FIG. 234. The volumes for
Overkill (Mfg) and EUFF [apart from the normalizing factor,
P(Passes Test)] are shown in FIGS. 24a-245. Notice that, for
n,>n, the volume corresponding to Overkill includes array
configurations which would pass in Use with fairly high
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probability since the index points are close to the origin. That
is, as n,, increases and n,>n,, Overkill becomes larger and
more nearly equal to Yield Loss because Test is rejecting more
arrays that would have been good in Use. On the other hand,
EUFF is small because all of the terms contributing to it are
distant from the origin. Geometrical considerations like this
are helpful in interpreting the dependencies of the model.

Turning to the Repair at Test case, expressions for the three
needed probability functions are derived. Suppose that Test
can repair up to n, bits. In this case, the active intervention of
repair at Test changes the meaning of the array Good in Use
criterion involving n,,. So Egs. (88), (91), and (93) for the No
Repair at Test case are rewritten as described in the following.

The Passes Test probability function for the Repair at Test
case is defined by the same set of integers as the No-Repair at
Test case because the criterion for rejecting an array at Test
depends only on the number of bits tolerated at Test, not on
whether or not any of the tolerated bits are repaired. So the
Passes Test category of arrays in the Repair at Test case is
defined by the set of integers:

g, pf, App 95)
PT R=PT NR=<0=<ng+n,=<n

O<ng <co

which leads to the same expression as for the No Repair at
Test case:

P(Passes Test)=R(hgth,z1,). (96)

Regarding the Good in Use probability function of the
Repair at Test case, if an array is subjected to a repair process
at Test with capacity n,, then the effective number of ff and pf
bits affecting the post-test classification of the array is the
union of the ff and pf categories, minus n,: ng+n, ~n,. If'it is
assumed that the repair process does not distinguish between
ff and pt'bits (both kinds are detected as fails in Test), then the
proportion of ff and pf bits affecting post test array classifi-
cation is the same as the pre-test proportions of these bit
categories. So one may model the post-test ff' bit count, which
must figure into classification of arrays in Use as

g (97)

njf + npf

Wy =Wy (g, ny, m) = [maxlng +nye —ny, 0]

where this is rounded up to the next integer. So the set of
integers defining the Good in Use category of arrays for the
Repair at Test case is

g, Rpf, Rpp 98)
GIUR=<0=< n}r(nﬁ, Rpps ) + R <1y

0<ny <co

Eq. (98) coincides with Eq. (91) when n,=0 because n=n',
(ng n,, 0).

In general, ny=n's, but whenever n,,is greater than a suffi-
ciently large value, m, then the eftect of n, in Eq. (97) is
negligible and n=n'y. That is,

ng=n'dngn,qn,) for n,z=m. (99)
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The geometrical interpretation of m is shown in FIG. 254.
Careful study of Eq. (97) shows that m is the smallest integer
value (=0), which satisfies

n,=n'yn,+1,mn)-1 (100)

Eq. (100) is easily solved incrementing m through a small
number of integer values until the equation is satisfied. So
m=m(n,, n,)isafunctionofn,, and n,. Some special cases are:
m(n,, 0)=0, m(n, n)=n>.

Because of the property n =n'j, the set of integers GIU_NR
is a subset of GIU_R. That is

GIU_R = GIU_NR |JAGIU_R (101
where
g pr gt (102)
0 <nly(ng, nyr, i) +np <y,
AGIU R = SN Tepf s T fp

g +np >ny,

0 =np = mng, ) =1

In Eq. (102) the second inequality ensures that the integers
in AGIU_R are notin GIU_NR, and the final condition limits
the range of n,to cases where ny<n'; is possible, for the
purpose of efficiency. A geometrical interpretation of GIU_R
is shown in FIG. 255b. Notice that, in FIG. 2556, AGIU_R is
represented by the 5-sided polyhedron atop the Good-in-Use
prism for GIU_NR shown in FIG. 235b. The sum over the
integers GIU_NR has been given by Eq. (92), to which must
be added terms resulting from Eq. (102)

P(Good in Use) = Ldgr, Aoy Apf, fu» 1) + R gr + A gy, ) (103)

where

N e e N e (104)

LAg, Mgy Ay s 1) =

AGIU_R

g p fipf !

When n,=0 the set AGIU_R is empty, then [.=0, and the
repair-in-Test case becomes the same as the No-Repair-in-
Test case. The function L is easy to evaluate for the usual case
when n, and n,, are small integers since it is a sum over the
small set of integers in the 5-sided polyhedron in FIG. 255
referred to above. Notice that m in the figure limits the range
over which the sum over n,,,must be taken.

The Passes Test and Good in Use probability function of
the Repair at Test case corresponds to the intersection of
allowed indexes for the Passes Test and Good in Use cases
previously described:

Ry Rpps Rpy ' (105)
PTGIU_NR =4 0 < np(ng, npr, ) +ng <n,

Osng+ny <ny
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The final inequality in Eq. (105), substituted into Eq. (97),
ensures that n'=0, so Eq. (105) becomes

Ry Rpps Rpy ' (106)

O=<ng<n,

PTGIU_R =

Osng+ny <ny

which has the simple geometrical interpretation shown in
FIG. 25c¢. Eq. (106) immediately leads to

P(Passes Test and Good in Use)=R (A, 1,)R(hgth,s1,) (107)

The expressions for the three probabilities, Good in Use,
Passes Test, and Passes Test and Good in Use, derived in this
section for arrays produced in a No Repair at Test or Repair at
Test case may be substituted into the expressions for FOMs,
Egs. (58), (59), (60), and (61) to obtain the array FOMs.

Turning now to application of the current invention, envi-
ronmental models of marginal distributions, wedge copula
models, the test coverage model, and scaling and fault toler-
ance models were implemented in an Excel calculator. The
calculator makes deterministic calculations of FOMs from
the fitted model. These FOMs, when compared with FOM
targets, can be used to determine the Test manufacturing
process, datasheet specification, and fault tolerance require-
ments of the integrated circuit memory product. The user
interface of the calculator is shown in FIG. 26. Dashed-
outlined cells are user inputs, and solid-lined cells are out-
puts. The main sections of the interface of the Excel calculator
tool are described in more detail in the following.

The Skew, Model Parameters section in FIG. 26 allows the
user to select the process skew (Table 1). The fitted marginal
distribution environmental parameters and wedge copula
parameters for the selected skew (Table 3) are displayed. An
extra skew called “Spare” which is the same as the nominal
skew but with a perfect correlation copula, M, is available in
addition to the five skews of Table 1 for which parameters
were extracted from data.

The Memory Architecture section in FIG. 26 allows the
user to select the array size and number of bits tolerated at Test
and at Use. The number of bits tolerated at Test is interpreted
in two ways: 1) For No Repair at Test, failing bits detected at
Test are tolerated but not repaired. 2) For Repair at Test,
failing bits detected at Test are tolerated and made good
(repaired). A set of FOMs is generated for each way.

The Test and Use Conditions section in FIG. 26 allows the
user to select retention time and environmental conditions
(V,, V; T) for Test and for Use. The model also requires
specification of the test coverage model, which defines how
minimum and maximum retention times for a VRT bits are be
distributed between Test and Use. The interface provides a
choice between the conservative test coverage model in
whichr,,, occursonlyinTest,andr,,, occurs only in Use, the
aggressive test coverage model for the opposite assumption,
and the symmetrical test coverage model for which min/max
retention times are equally likely to be in Test or Use.

The Figures of Merit section in FIG. 26 shows the com-
puted four FOMs defined by Egs. (58), (59), (60) and (61) for
the No-Repair-at-Test, and the Repair-at-Test cases.

Not shown in FIG. 26 are parts of the interface, which
specify targets and plotting limits for the graphs also pro-
duced by the calculator. The graphs generated by sweeping
the Test retention time past the Use refresh time give a good
appreciation of the properties of the model. Because environ-
mental conditions enter the model only through In a [see Egs.
(62), (63) and (2)], properties of the model may be explored
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by setting V,,, V,, and T to a convenient value (the reference
condition in the example shown in FIG. 26), and then sweep-
ing the retention time setting in Test past the Use refresh time
specification. Plots are generated for which all the input
parameters are entered in the user interface as described
above, except that the Test retention time (r_t) is swept
between the plotting limits defined for it. We suppose a 1 Mb
(2%° bits) array is fabricated in the nominal skew, that the
environmental conditions of both Testand Useare V,=0.45V,
V=12V, T=125° C., and that the data sheet (Use) refresh
time is 108 au. The targets for the product are taken as Yield
Loss<20%, Overkill (Mfg)=2%, and EUFF=200 DPPM. As
the test retention time set point is swept from 90 au to 150 au,
the Yield Loss, Overkill (Mfg), and EUFF FOMs vary as
shown in FIG. 27 to FIG. 31.

It is apparent from FIG. 27 that, without fault tolerance
(n,=0, n,=0), it is impossible to find a Test retention time for
which Yield Loss, Overkill (Mfg), and EUFF targets are
simultaneously met. If the array can tolerate failing bits by
some error-correction mechanism in the array, then all of the
FOMs are reduced and a Test set point exists for which all
targets are satisfied. For the conditions of the example, three
is the minimum number of faulty bits that the array must
tolerate [n,=3 (No Repair at Test) and n,=3] for a test set point
to exist, and FIG. 28 shows FOM characteristics and the range
of'possible test retention time settings (shaded region) for this
case. A set point at the left edge of this range will minimize
Overkill (Mfg) and Yield Loss while meeting the EUFF tar-
get: n,~121 au, YL=4.3%, Overkill (Mfg)=1.2%,
EUFF=173 DPPM.

FIGS. 27, 28 and 29a-29¢ show how the shape of the FOM
characteristics reflect the underlying copula model. In the No
Repair cases of FIG. 27, FIG. 28, and FI1G. 294-29¢, vertical
asymptotes on a logarithmic plot of the Overkill and EUFF
figures of merit correspond to the boundaries of the wedge
copula, transformed by the test coverage model, at the Use
condition. If retention time in Test is alwaysr,, .. and in Use it
is alwaysr,,,;,, (the conservative test coverage model) as in all
figures except FIGS. 29a and 295, then the Overkill vertical
asymptote corresponds to the Use condition. The case of the
symmetrical test coverage model is shown in F1G. 294 and the
aggressive test coverage model is shown in FIG. 294. FIG.
29¢ shows how the case of perfect correlation makes vertical
asymptotes of Overkill and EUFF both align with the Use
condition. Comparison of FIGS. 27, 294, and 295 gives an
example of how the conservative test coverage model maxi-
mizes the model estimate of EUFF compared to the sym-
metrical and aggressive test coverage models.

Another way to implement fault tolerance is to repair
arrays at Test. Consider arrays defined as for FIG. 27, except
that Test tolerates 2 bits but does not repair them. In this case
many arrays will fail in Use because Test is transparent to
arrays with up to 2 bits failing, but Use cannot tolerate any
failing bits in the array. This leads to a large value of EUFF
shown in FIG. 30a. Now suppose that Test repairs the 2 bits
that it tolerates. In this case EUFF is much reduced, and FIG.
305 shows that it will be possible to find a Test set point,
which meets the targets (shaded range).

Finally, consider the case of Repair at Test when Use can
tolerate bad bits by comparing FIG. 306 and FIG. 31. The
conditions in these figures are the same, including n=2,
except n,=0 in FIG. 305 and n,=1 in FIG. 31. Increased
tolerance of bad bits in Use significantly reduces EUFF in
FIG. 31 compared to FIG. 305. Tolerance of bad bits in Use
also makes Overkill the dominant subset of Yield Loss in FIG.
31 because, as tolerance of failing bits in Use increases, Test
will reject more arrays that would have been good in Use.
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Here, it is chosen to determine the range of acceptable set
points (shaded) in FIG. 31 only by Yield Loss and EUFF,
which determine the cost and quality of the Test. The
increased Overkill in FIG. 31 is not a “problem”, but is an
“opportunity” for some other test method beyond the scope of
the manufacturing flow considered here. For example, yield
loss rejects could be screened by a “Use-like” test to recover
(some of) the arrays that are good-in use. Viability of this will
be determined by the cost of the additional screening.

Turning to a description of a two-part methodology, which
integrates the techniques and methods described thus far; the
first part is Model Extraction shown in FIG. 324 and F1G. 325,
and the second part is Inference shown in FIG. 33. FIGS. 324
and 325 show alternative approaches to characterizing sam-
pling variation in the Model Extraction part of the methodol-
ogy. While, at a high-level, the two-part methodology is prior
art, the discussion shows how copula-based statistical models
are integrated into the two-part methodology and improve key
aspects of it. The purpose of the methodology is to determine
the design, test manufacturing and datasheet (end use) speci-
fication of an electronic system or integrated circuit product,
taking into account dependent attributes of the product. The
end result of Model Extraction is a Statistical Model of the
test vehicle fitted to the data. The Statistical Model is then
used by the Inference part of the methodology to compute
FOMs for product design, manufacturing, and datasheet
specifications different from those of the test vehicle. FOMs
of the product of interest are compared with targets, which
reflect corporate manufacturing and quality policies to decide
whether the specifications of the product of interest meet
requirements.

The improvements in the methodology afforded by the
copula-based statistical model have broader applicability
than the DRAM example used to demonstrate them. For
example, this methodology may be applied to different
dependent attributes measured at Test, such as I, (stand-by
current) vs. F,, . (maximum operating frequency) in order to
optimize test manufacturing screens based on measuring the
more conveniently measured attribute (I, ). The methodology
also applies to integrated circuits, which integrate various
types of elements, not just memory bits, and to electronic
systems which integrate components such as integrated cir-
cuits and other modules.

Turning now to the Model Extraction aspect of the meth-
odology shown in FIG. 324, an Experimental Design is used
to acquire test vehicle data (“Real Data™), which is then fitted
to a selected model. An Experimental Design is a specifica-
tion of particular conditions of the experiment such as the
temperatures, voltages, retention time bins, sample sizes for
each environmental condition and so on, according to one
embodiment of the invention. Model Selection includes
choosing the form of the marginal distributions (Weibull for
the DRAM example, Eq. (1)), the environmental model (like
Eq. (2) for the DRAM example), and the copula model
(wedge copula for the DRAM example). Then “Real Data” is
fitted to the selected statistical model that includes the
selected marginal, environmental and copula models, to gen-
erate “Parameters from Data” like those in Table 4 of the
DRAM example, according to one embodiment of the inven-
tion. An important benefit of the copula-based statistical
model is that fitting of marginal distributions is completely
decoupled from fitting of the copula, so that the marginal and
copula model-fitting steps may be done in any sequence. To
characterize the statistical uncertainty inherent in the Experi-
mental Design and details of the Parameter Extraction meth-
ods (e.g. least-squares, sample tau, etc.), the copula-based
model parameter set fitted to Real Data is used to synthesize
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multiple Data Replicates of the entire dataset acquired using
the Experimental Design, as shown in FIG. 32a.

Parameters (e.g. In o, Q, a, b, ¢ for the DRAM) are
extracted from each Data Replicate to produce a Parameter
Replicate. The variation across the Parameter Replicates
characterizes the sampling variation of the experiment and
the Parameter Extraction methods. A key enabler of the
Monte-Carlo synthesis of Data Replicates to characterize
statistical variation is the use of a geometrical copula. This is
because adequate computational efficiency is only feasible
for the highly data-censored test application if Monte-Carlo
data synthesis can be confined to the region accessed by the
experiment. This is possible for geometrical copulas, but
generally not for Archimedian, Elliptical (Gaussian and
t-copulas), Marshall-Olkin and most, if not all, other types of
copula. It is also not feasible for the conventional multi-
normal (non-copula) modeling approach. A key benefit of
using Monte-Carlo synthesized Data Replicates is that a dif-
ferent Experimental Design from the one used to generate the
test vehicle data (“Real Data”) may be assumed in the syn-
thesis, enabling optimization of the Experimental Design and
Parameter Extraction methods for subsequent data acquisi-
tion and model-fitting. FIG. 326 shows how data resampling
methods other than Monte-Carlo synthesis, for example the
Bootstrap method, may also be used to derive Parameter
Replicates to characterize sampling variation and Parameter
Extraction methods. However, data resampling methods do
not admit the possibility of varying the Experimental Design
or Parameter Extraction methods as does the geometrical-
copula-enabled Monte-Carlo synthesis method.

Further guidance for the Experimental Design and Model
Selection elements of the Model Extraction part of the meth-
odology of FIGS. 32a and 326 is provided next. This is
important because the experimental design for test vehicle
data acquisition and model extraction ultimately determine
how aggressive test set points and datasheet specifications
may be.

Guidance for the Experimental Design element of Model
Extraction in FIGS. 324 and 325 is:

Acquire data at a number of environmental conditions
spanning the datasheet specification and test conditions
of the product. Test conditions, environmental condi-
tions and sample sizes should be chosen to produce
some failures at all test conditions, and a significant
number of failures (at least 100s) at the most-stressed
corners.

Acquire data using a test vehicle designed so that it is
possible to measure attributes separately on modules
from which the product chip will be constructed. In the
DRAM example, bit-level data was acquired, so that
models for hypothetical arrays of any size could be
derived.

Acquire “continue-on-fail” measured values of all
attributes of interest on each measured module across
the entire range of environmental and test conditions. Do
not terminate measurements because the attribute values
exceed some specification limit. Binned data, as in the
DRAM experiment, can also be used but is less pre-
ferred.

Sample sizes can be determined by using the copula-based
statistical model with a “guessed” set of parameters
often based on similar products and technologies. Larger
sample sizes reduce the “guard bands” (discussed
below) necessary to contain risks of sample variation in
the experiment.

Reduce data requirements for the experimental design by
regarding some parameters as “known” and set them to
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conservative values. For example, if the underlying
mechanism is regarded as known, then acceleration
parameters, such as Q in the DRAM example, may be set
to “literature” values. Another way to reduce the data
requirements experimental design is to characterize only
a small sample across the full span of environmental
conditions, but characterize a much larger sample at the
“center” environmental condition.

Guidance for the Model Selection element of Model

Extraction in FIGS. 324 and 325 is:

Marginal distributions should be chosen to have flexibility
in scale and shape. Weibull distributions are often a good
choice because the shape parameter can control the rate
of increase of an attribute with stress.

Environmental dependence of marginal model parameters,
preferably just the scale parameter, is fitted to models
guided by physics of expected mechanisms. For
example, Arrhenius dependence of a on temperature is a
good choice for thermal effects.

Choose a copula that “looks like” the data. This can be
determined by synthesizing empirical copula data and
comparing it with the real empirical data. Because Test
data is so heavily censored it is desirable to choose a
copula that can efficiently synthesize data targeting the
restricted range of the data.

If possible, use copulas with an obvious geometrical inter-
pretation. If necessary, construct one. Avoid uncritical
application of copulas for which the behavior beyond the
scope of the data may introduce artifacts. Geometrical
copulas are recommended because of the ease of con-
struction and interpretation.

Choose a copula with parametric range that can span a
range of subpopulation tau covering observed values of
tau. For the DRAM example the Gaussian copula only
marginally meets this requirement because the param-
eter, p, was pushed very close to its limit in order to fit the
data.

Minimize the number of copula model parameters. If pos-
sible, choose a copula with one parameter so that it can
be determined by a measurement of Kendall’s tau. If
necessary to add parameters, do so by constructing lin-
ear combinations of easily interpretable fundamental
(e.g. Frechet upper bound) and geometrical copulas.

Tail dependence of the copula should align with expected
intrinsic and defect behavior. For example, the Gaussian
copula by itself (not in linear combination with M) has
LT=0, and so is not a good candidate for the DRAM data.

If possible, choose a copula for which the copula
parameter(s) do not vary with environmental condition,
or censoring. If an environmentally independent copula
model can be found, as in the case of the DRAM
example, then set points and datasheet specifications
with given values ofr,, /o, and r, /o, ., respectively,
give the same FOMs. This “set point equivalency” pro-
vides flexibility in integrating tests into a larger suite of
tests and in setting datasheet requirements. For the
DRAM example, the diagonal stripe copula violated this
guideline because the best fit of the parameter d, depends
on the environmental condition, but the wedge copula
and the Gaussian copula met (less so) this guideline.

Choose a copula for which a censored subpopulation cor-
responding to the data can be synthesized with complete
efficiency. Geometrical copulas satisfy this requirement.

Turning to the Inference aspect of the methodology shown

in FIG. 33, when the Model Extraction aspect of the method-
ology shown in FIGS. 324 and 325 is complete, the parameter
sets extracted from the test vehicle data (“Parameters from
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Data”) and Parameter Replicates derived by resampling or by
Monte-Carlo synthesis may be used to do “what-if” studies to
optimize the design, test manufacturing and datasheet (end
use) specification of an integrated circuit product different
from the test-vehicle.

Regarding Product Definition in the Inference aspect of the
methodology shown in FIG. 33, the model fitted to the test
vehicle module-level data (bit-level for the DRAM example)
must be scaled to the full size of the product, and fault toler-
ance features and the test coverage model of the product must
be specified. These aspects are set early in the product life-
cycle when the product design is fixed.

Regarding Scenario Definition in the Inference aspect of
the methodology of FI1G. 33, a scenario defines Test and Use
(datasheet) conditions (supply voltages, temperatures,
refresh times, etc.) for the product. These aspects can be
adjusted late in the product lifecycle when datasheets for the
product and its variants are published to customers. Test
conditions can be set at any time, and are frequently adjusted
during manufacturing (that is, very late) to optimize manu-
facturing figures of merit.

Regarding Policy in the Inference aspect of the methodol-
ogy of FIG. 33, figure of merit targets are set at the highest
levels of corporate policy. Targets for producer-oriented
manufacturing FOMs such as yield loss and overkill are
determined by financial and marketing cost models as shown
earlier in the description of the invention. Targets for cus-
tomer-oriented quality FOMs such as end-use-fail-fraction
(EUFF) and reliability indicators are determined by competi-
tive and marketing considerations. Confidence limits are
driven by the costs of the experimental design and data acqui-
sition required to build more precise test vehicle models,
versus the manufacturing costs due to yield loss and overkill
associated with the Test and datasheet guard bands required
for less precise test vehicle models.

Regarding the Confidence Limits aspect of Policy shown in
FIG. 33, Test and Use settings must be “guard-banded” to
control risks due to the statistical variation of the experimen-
tal design and parameter extraction methods used in the
Model Extraction aspect (FIGS. 32a and 324) of the method-
ology. This variation is characterized by the Parameter Rep-
licates from synthesized or resampled data shown in FIGS.
324 and 32b.

The following is an example showing how Test and Use set
points are guard-banded according to one embodiment. In
FIG. 28 the optimum set point would appear to be at the left
edge of the shaded zone of acceptable set points, because the
yield loss and overkill is minimized there while EUFF just
meets the target. This set point, computed using “Parameters
from Data” directly extracted from test vehicle data (“Real
Data”) in FIG. 32a or 324, is called the “nominal” set point. It
is apparent from FIG. 28 that the EUFF is rapidly varying at
the nominal set point, so a small variation in underlying
model parameters could lead to unacceptably large EUFF.
This risk can be contained by using the Parameter Replicates
extracted from synthesized or resampled test vehicle data to
calculate an envelope of Figure of Merit Distributions around
the FOM corresponding to the nominal set point, as shown in
FIG. 33. This envelope is then used to shift the nominal set
point so that the FOMs at this “guard-banded” set point give
a probability overlap of the targets meeting policy-deter-
mined confidence limits. FIG. 34 is a schematic drawing
showing this method, according to one embodiment. Overkill
is not shown, for simplicity. The semi-analytic deterministic
calculation of FOMs from model parameters and Product
Definition and Scenario Definition made possible by the
copula-based model of the product and test manufacturing
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process makes this method feasible because the calculation of
FOMs for each Parameter Replicate is nearly instantaneous.
Previously, for each Parameter Replicate, a Monte-Carlo
(MC) synthesis of individual units of product passing through
Test and Use was done and counts of various categories of
Pass/Fail in Test/Use were accumulated to estimate FOMs.
Monte-Carlo-estimation of FOMs for each of the Parameter
Replicates is computationally extremely cumbersome, if not
unfeasible because of the large MC sample sizes required to
estimate FOMs to sufficient precision. It must be emphasized
that the guard bands computed from synthesized or resa-
mpled Data Replicates account only for statistical sampling
error in the experimental design and model-fitting methods.
They do not account for errors in the selection of models.

Regarding estimation of model-selection sensitivities, the
semi-analytic, deterministic, and modular nature of the
copula-based statistical model facilitates the estimation since
different model components may be changed without disturb-
ing other parts of the model, and calculation of FOMs is
deterministic and so is virtually instantaneous. The ability of
the Excel tool for the DRAM example to try different copula
models and test coverage models and instantaneously com-
pute FOMs is an embodiment of this feature of the invention.

Turning to derivations of important mathematical results
used in the preceding description of the invention, the first
topic is Monte-Carlo synthesis from geometrical copulas.
The strategy is to sample from the regions of uniform prob-
ability density in the pseudo-copula A used to start the con-
struction of the copula, and map them to the copula using
inverses of the marginal cdfs of the pseudo-copula. A key
aspect of the invention is that data can be synthesized from a
subspace of a geometrical copula with perfect efficiency, that
is, without rejecting any sampled points. This is useful for
integrated circuit test manufacturing applications since only
the points near the origin of the copula are of interest, so
needless sampling over the entire space of the copula can be
avoided. This is shown next for regions near the origin of the
stripe and wedge copulas, which are two embodiments of the
invention. The same can be done for any region of any geo-
metrical copula constructed by the same method.

The efficient method of Monte-Carlo sampling for a geo-
metrical copula is based on the fact that any parallelogram
containing an area of uniform probability density can be filled
with uniformly distributed random points by weighting two
basis vectors which span the parallelogram each with a ran-
dom number sampled independently from the uniform distri-
bution on [0, 1]. Every sampled point will lie within the
parallelogram. Triangular areas of uniform probability den-
sity may similarly be covered with a uniform density of
random points by considering a parallelogram constructed
from the triangle and its reflection, and reflecting any sampled
point falling in the “wrong” half of the parallelogram into the
triangle of interest.

It will be recalled that construction of the stripe copula
begins with a pseudo-copula, shown in FIG. 13, in which a
diagonal stripe of uniform probability density is drawn across
the diagonal. Derivation of the sampling algorithm begins by
decomposing the uniform stripe of the stripe pseudo-copula
bounded by a region [0, a]® into triangles and rectangles
which must be covered by a random density of points. Two
cases may be identified. In FIG. 35a, Case A, merely requires
that a small square be filled with uniform random points. In
FIG. 354, Case B, divides the region to be filled into two
halves of a square, regions 1 and 2, separated by a rectangle,
3. The procedure for Case B is as follows: A uniformly dis-
tributed random number, u,, is generated to decide whether to
place the point in 3, or in the divided square, 1 and 2. This
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decision is based on the area ratio of rectangle 3 versus the
divided square, 1 and 2. If the point goes into 3, two uniformly
distributed random numbers u, and u; are used to place a point
in 3. This is done using the basis vectors, which span 3. On the
other hand, if the point is to be placed in the divided square, 1
and 2, the point is placed in a dxd square, but if u,+u; exceeds
unity the point is displaced by (a, a) so that it falls into the
triangle 2.

So, the detailed algorithm to generate samples from the
region [0,a]” of the stripe pseudo-copula, and therefore region
[0,f(a)]? of the stripe copula, where F~! is given by Egs. (31)
and (32), is

Case A. Osa=d. Generate two random numbers from the
uniform distribution on [0, 1], u,, u, and place a point at

u=au,v=aul
Case B. d=ax<].
Generate three random numbers from the uniform distri-
bution on [0, 1], u;, u, and u;.
If0=<u,=d/(2a-d) and ifu,+u,<1 place a point at (FIG. 355,
region 1)

(108)

u=du,,v=duy (109)

If Osu =d/(2a-d) and if u,+u3=1 place a point at
(FIG. 355, region 2)
u=a+d(u-1), v=a+d(u3-1) (110)
It d/(2a-d)=u,=1 then place a point at (FIG. 355, region 3)

u=d(1-u)+(a-d)uy

v=du,+(a—d)us (111)

The generated point of the stripe pseudo-copula is mapped
to the stripe copula by

x=f7w) =571
where ' is given by. Egs. (31) and (32).
Use has been made of the fact that the sum of areas 1 and 2
in the FIG. 3554 is a fraction d/(2a-d) of the sum of areas 1, 2,
and 3 inthe figure. To derive Eq. (111) note that e, and e, span
region 3 in case B, and the point [d, 0] is 0,

(112)

&=(-id
&=(i+j)(a—d)

6=id (113)
where 1 and j are orthogonal unit vectors spanning [0, 1]2 So

for region 3, a point is placed at
F=G48 1ttty =(d-duuy+(a-d)uz)i+(urd+(a-d)uz )

from which Eq. (111) follows.

Derivation of the sampling algorithm for the wedge copula
starts from the wedge pseudo-copula shown in FIG. 15, also
shown with additional notations in FIG. 36. Consider first the
problem of filling the regions I and II in FIG. 36 with uni-
formly distributed random points. To place a random point in
triangle I in FIG. 36 in (u, v) space, sample u, and u, inde-
pendently from the uniform distribution on [0, 1], rejecting
the sample if u,>u,.

(114)

F=u 6 +uré» 115

= [uy + (g — )/ ]l + 102,
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In Eq. (115) e, and e, are basis vectors spanning triangle
as shown in FIG. 36. Decomposition into the orthogonal unit
vectors spanning the unit square in FIG. 36 gives the second
equation. By symmetry, to place a random point in triangle I1
in FIG. 36, reject the sample if u,>u,, and place the point at

;:141?"'[”2"'(”1—”2)/0]} (116)

This may be generalized to sample the subpopulation of the
wedge copula [0, a]* which corresponds to the sub area [0,
f(a)]? of the pseudo-copula shown in FIG. 36. To do this, the
uniform random variables u; and u, described in the preced-
ing discussion should be independently sampled from [O,
F(a)], rather than [0, 1]%.

So the algorithm to sample a region [0, a]* of the wedge
copula is:

1. Sample two independent uniform numbers, u, and u,
from a uniform distribution on [0, f(a)] (a=1 samples the
entire copula).

2. Ifu,=u, then place a point at

2—141) (117)

—1 u;
x=f (u1+ "

y=f"w)
3. Else if u,<u, then place a point at

x=fF ) (118)

y=f71(’42+ @)

where £ is given by Eq. (43).

Regarding the subpopulation tau, an expression was given
in Eq. (25) for tau of a subpopulation of a copula in the region
T3]0, u,]x[0, v,]. This is needed so that the parameter of a
single-parameter copula can be obtained from the value oftau
calculated from censored data. To derive Eq. (25), a formula
for the copula of the subpopulation is substituted into the
formula for tau, Eq. (23). The probability density function for
the region J* is

Clu, v)
Cluta, vp)

(119)

D(u,v)=

This may be converted into a copula by using the marginal
distribution functions

C(u, vp)

O vy T

(120)

and similarly, v'=C(u,, v)/C(u,, v,)=g(v). Notice that these
are not uniform, f(u)=u, and g(v)=v, because u_~1 and v,~1.
The copula for the region J?, in terms of the transformed
variables, is

o (121)

~L, 7 =ls
vy 2 S U g0

S ) T Gl V1€
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So, using Eq. (23), the subpopulation tau is

BD(u v) , (122)
TSubpopulation —4f f D’ EPEN du' dv -1
4 D BD(u v)Bqud,d, L
‘ff( dudv _ aw av "4~
BD(u v)
—4 D( dudyv -1

BC(u v)
Cz(ua o) C(u V) dudv-1

which is the desired expression, Eq. (25).

Since geometrical copulas for which the subpopulation tau
given by Eq. (122) is independent of the degree of censoring
are particularly useful, it is convenient to have a sufficient
condition for censor-independence of subpopulation tau by
which copulas with this property may be identified. Suppose
that a copula is expressed as

CEy)=4ff®).F 0] (123)
where A is a pseudo-copula satisfying, for a<1,
Alaxu,axvy=a?4(u,v) (124)
The subpopulation tau of C is
4 AC(u, v) (125)
T subpopulation = mfdufdvcw, v) Tuae
> 0 0
4
=— | du| dvA
T T, W, A o)
dALfw. fO]
dudv
4 (@) @ Judy
- remnl, =l e
9A(x, y)
Al ) Audv -1
4 e (@) DA, y)
- f“(w)fo dxfo A N5 ae 1
Now set x=f(a)xx' and x=f(a)xy", so
(126)

4 1 1
tpapton = 7 fo f@dx fo F@dy Alf@X . fl@)y)]

AA[f(@), fl@)y] 1

axay P

4 1 ’ 1 72 ’ ’
—Wfof(awxfof(a)dyf (@AW, y')

FH@Aw, y) 1
axoy  fHe)

_4f dxfdyA(x

which is independent of the degree of censoring, QED. More-
over, the subpopulation tau for any degree of censoring is the
same as the population tau.

In the particular case of the wedge copula, an expression
for Kendall’s tau for the entire population’s copula may be
computed analytically, as will be shown. Moreover, because
the wedge copula satisfies the condition of censor-indepen-
dence of the sub-population tau, this expression is also true
for a subpopulation like J*. For the wedge copula,

-1

AW, Y)
/a/
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© 4fld fld We( )BZWe(x,y;c) leaog 2P
T(c) = x e(x, y; 0)—————— — 1 =41 -
0 0 4 4 dxdy

Since

We(x,y)y=A(u,v)

u=f(), v=F () (128)
Eq. (127) becomes

129

1—[ dxf dyWe(x, y) ‘(;Ve[(;; Y) (2

_fl f A( )BZA(u, vy dudy
~Jb Y AP dxdy

fld fldA 8 A, v)
~ b uo VAW, V) dudv

so the evaluation of tau can be done entirely in terms of the
pseudo copula A. Evaluation of the integral is facilitated by
observing; 1) The second mixed derivative of A(u, v) is the
pdf of A, which is a constant equal to ¢/(c—1) inside the wedge
and zero elsewhere. 2) By symmetry across the diagonal, the
desired integral is twice the integral of the lightly shaded zone
in FIG. 37. 3) Since A(u, v) vanishes outside the wedge, the
v-integration limits may be changed so that for each u, v
ranges from u/c to u as shown by the small dark stripe in FIG.
37. Using these observations,

(130)

1 u c
1:2[ duf dvA(u, v)
0 ufc c=

Inside the wedge, where the argument of Eq. (130) is
evaluated, using Eq. (41), the pseudo-copula may be written

(131)

¢ W VP
Alu, v) = -1 uv—%—%

So, Eq. (130) becomes

(132)

1 u c 2 1
- _ 2,02 =
1-2}0‘ duj;/cdv(c_l) (uv 2C(u +v )]_

C 2
2(—) (I, + 1, + 1) where
c—-1

(133)

1 “
:fduf dvuy =
0 ujc
1 1,
fduux—vz =
0 2 /

ufjc
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1t 134
Ib:——fdufdvuzz 1349
2c Jo ujc
1t u 1 1y 1 1 1
—— | wlduxv :——(1——][ u3du:——(1——]
2c Jo u/c 2c clJo 8¢ c
1 1l u 1 1., 135
IC———f du dnw?=-— du(—v3 ): (135)
0 ujc 0 3 ue
| 1 ld ;1 1
_5( _c_S)fo w _E( 0_3]
Summing these,
111_111 111 111 (136)
AT
1 1 1
_ a4 03 I N
_804(c L=+ 3¢ +3]
1 4 3
:W(?,C —4c” + 1)
_ (c=1P2B2 +2c+1)
- 24ct
and using Eq. (132)
_ 3c?+2c+1 (137
12¢2

Substitution of Egs. (137) into Eq. (127) gives the conve-
nient formula

2c+1
3c2

(138)

TSubpopulation =

which, when inverted, may be used to infer a value of ¢ from
a value of tau derived from a subpopulation.

Turning now to functions arising in fault-tolerant figures of
merit, the functions R and K appearing in Eq. (89), Eq. (92),
and Eq. (94), respectively, arise when terms like Eq. (86) are
summed over sets of integers defined for probability func-
tions arising in the No Repair at Test case.

The function R arises for the Passes Test or Good in Use
probability functions of the No Repair at Test case. In either
case a set of integers is defined as follows:

R={n,,ny,n3:(2=n,+1n,sn) A (0sn3<0)A (11,1153,115€

N} (139)
The integers n, and n, in this set can be generated by
n,=k—ln,=I, where Osl=k Osksn (140)
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so the sum of terms such as Eq. (86) is

Mle™ 2e™ A3 e™s Ale™ A2 (141
Z !l om! oml T k-pt 1t
R k=01
=0k
AB A3
> 2
n3!
n3=000
1
= exp[—(A; +242)] o
B
k!
—M*Wz]
(1:20;/< (k=D
A+ )
= expl-(y +2] )| S
k=0
=Ry + 22, 1)
where
. Z L 0 (142)
e — n=z
!
R(x,n) = = Kt
0 n<0

The function R vanishes when n is a negative integer since
R is null in this case. Notice that

R(x,0)=e™

R(x0)=1 (143)

R is related to the cumulative Erlang and Gamma distribu-
tions and so is available in function libraries such as Excel, for
example: R(X, n)=1-GAMMADIST(x, n+1, TRUE) (n=0).

The function K in Eq. (94) arises for the Passes Test and
Good in Use probability function of the No Repair at Test
case. K is defined by the set of integers

K={ny,ny,n3:(0sn +n,sm) A (Osn +nz=n) A (n,,n,,

nyeNOL (144)
This set of integers is generated by
#,=0,min[m,n]
#n,=0,m-n,
ny=0,n—-n, (145)
SO
Ale™ 2o ™ 1Pe™s (146)
K@y, Ay, m, A3, n) = E —_—
! n! ns!
K
A’lll e ™M A;Z e 2
- ! !
ny=0.minlm,n] ny=0,m-n|
e
3 !
n3=n-n|
Ae™
= —— R, m —DR(A3, n—1)
it
i=0.minlm,n]
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Notice that

K(hyho,m, 03, m)=K (N ha 1, My, m)
K (00,03, 1m)=e” MDR (D 1)
KMo, h3,0)=e PIMDRO, m)
Ky h,0,h3,0)=eF1372449)

K0, 0,0, 03, 1)=€ 2R (Mg, 1)
K0, M1, h3,00)=e 2R (M)
K(hy,ho,,hs,00)=1

KA o1, h3,m)=0 n<0 or m<0 (147)

The function K is easy to evaluate by computing the sum
over products of R in the last equation of Eq. (146) since m
and n are small integers.

The present invention has now been described in accor-
dance with several exemplary embodiments, which are
intended to be illustrative in all aspects, rather than restrictive.
Thus, the present invention is capable of many variations in
detailed implementation, which may be derived from the
description contained herein by a person of ordinary skill in
the art. For example:

The same system and method illustrated by application to
the design and manufacture of integrated circuits made
of subcircuits may be applied to the design and manu-
facture of electronic systems made of components.

Models using non-exchangeable copulas of more than two
dimensions are covered by the methods of this invention.

Geometrical copulas of more than two dimensions may be
constructed using the same principles as the two-dimen-
sional geometrical copulas of the exemplary embodi-
ments.

Dependency among attributes of different types, with dif-
ferent marginal distributions and with different marginal
environmental dependence can be modeled using the
methods of this invention. This includes, for example,
correlations among 1, F,, .., and product lifetime.

Modeled attributes of test vehicle and product may be in
the same Test or Use step or different Test or Use steps.
For example, a dependency of I, and F,,, may be
between [, measured at Sort (wafer level test) and F,,, ..
measured at Class (unit level Test), or may be between
I, and F, . both measured at Class.

The system and method covers use of all environmental
conditions which stress the unit while being tested or
used. Temperature, voltage and frequency are exem-
plary embodiments of environmental conditions.
Examples of other environmental conditions covered by
the method include delay settings, humidity, levels of
vibration, etc.

Products including multiple modules of several types
rather than the single type of module (bit) of the DRAM
exemplary embodiment are covered by the invention.

Models of multi-module and fault-tolerant products in
which the probability of occurrence of a defective mod-
ule is distributed according to the negative binomial
distribution (a generalization of the Poisson distribu-
tion) are covered by the methods of the invention. Exem-
plary embodiments include variation of defect density
across wafers, lots and factories.

The modules, of which DRAM bits are an exemplary
embodiment, can be any element, which is characterized
in a test vehicle and used in one or more copies in a
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product. Other exemplary embodiments include circuit

blocks, and fuses in FPGA devices.

Computation of copula-dependent figures of merit other
than the ones shown in the exemplary embodiments is
covered by the methods of this invention.

The Bootstrap method was given in FIG. 325 as a way to
generate Data Replicates that characterize sample varia-
tion. The Bootstrap method is an exemplary embodi-
ment of other data resampling methods including Jack-
knife and Cross Validation, which may be applied to
characterize sample variation.

The principle of representation of key probabilities of
product Test/Use pass/fail categories by sums over con-
strained sets of integers of counts of modules (e.g. bits)
in various Test/Use pass/fail categories applies to more
complex array fault tolerant schemes than were shown
as exemplary embodiments. Exemplary embodiments
of more complex schemes are block-wise replacements,
and schemes in which spare bits are only available
within blocks but not globally.

A test vehicle may be an electronic system or integrated
circuit not intended for customer application, specifi-
cally designed to facilitate data acquisition to build a
statistical model. Or it may be a product different from
the product of interest, which may be tested in a way that
facilitates data acquisition to build a statistical model.

All such variations are considered to be within the scope
and spirit of the present invention as defined by the following
claims and their legal equivalents.

What is claimed:

1. A method implemented by an appropriately pro-
grammed computer for determining specifications of an elec-
tronic system or integrated circuit product which satisfy qual-
ity, reliability and cost requirements, comprising:

a. acquiring data from a test vehicle, wherein said test
vehicle comprises at least one electronic component of
an integrated circuit product, wherein said acquired data
comprises at least one attribute value of said electronic
component for a plurality of physical instances or a
plurality of simulated instances of said test vehicle deter-
mined at one or more environmental conditions and one
or more o eratin conditions wherein said plurality of
physical instances or said plurality of simulated
instances comprises a sample of a population of said
instances;

b. fitting a copula-based statistical model using said appro-
priately programmed computer to said acquired data,
wherein said copula-based statistical model comprises
marginal distributions of said acquired data and a copula
for each said at least one electronic component of said
test vehicle, wherein said fitting comprises determina-
tion of a desired form of said marginal distributions of
said acquired data and a desired form of said copula,
wherein said desired form of said copula embodies a
flexibility to represent a statistical tail dependency of
said data, wherein said fitting comprises:

i. determination of an environmental condition depen-
dency of parameters of said desired form of said mar
mal distributions of said ac uired data;

ii. determination of an operating condition dependency
of parameters of said desired form of said marginal
distributions of said acquired data;

iii. determination of an environmental condition depen-
dency of parameters of said desired form of said
copula;

iv. determination of an operating condition dependency
of parameters of said desired form of said copula,
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wherein said at least one environmental condition is
selected from the group consisting of temperature,
voltage, frequency; and

c. using said fitted copula-based statistical model to com-

pute probabilities of passing a test manufacturing opera-
tion (Test) and failing in end use (Use) for said product
wherein said probabilities are used to compute figures of
merit wherein said figures of merit are compared with
target values of said figures of merit to determine
whether the product satisfies product specifications,
wherein said product specifications comprise a product
design specification, a test manufacturing specification,
and a product datasheet specification, wherein said
product design specification comprises fault tolerance
requirements, wherein test manufacturing specification
comprises:
1. specification of said one or more environmental con-
ditions at said Test;
ii. specification of said one or more operating conditions
at said Test;
iii. specification of active fault repair capacity at said
Test; and
iv. specification of a test coverage model, wherein said
test coverage model gives a degree to which said Test
is capable of detecting faults manifested in said Use;
wherein said product datasheet specification com-
prises environmental condition requirements of
said product in said Use and operating condition
requirements of said product in said Use, wherein
said target values of said figures of merit are
derived from quality, reliability, and cost require-
ments of said product.

2. The method of claim 1, wherein said copula of said
copula-based model comprises a geometrical copula.

3. The method of claim 2, wherein said geometric copula is
constructed by defining geometrical regions of a probability
mass on the unit square and transforming margins so they
become uniform distributions.

4. The method of claim 1, wherein said copula-based sta-
tistical model is used to generate Monte-Carlo samples of
instances of said product, wherein each instance comprises at
least one attribute value, wherein each said instance of said
product comprises a censored sample of a population of said
product, wherein said attribute values are compared to said
test specifications and said datasheet specifications to deter-
mine a pass or fail status, wherein said figures of merit are
determined by counting instances of said pass and fail status.

5. The method of claim 4, wherein said censored Monte-
Carlo samples are generated without rejection from said
copula of each said electronic component.

6. The method of claim 4, wherein said copula is a geo-
metrical copula.
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7. The method of claim 1, wherein a joint probability of a
product passing said Test and failing in said Use is computed
by summing terms depending on joint probabilities of a pass/
fail status of each said at least one electronic component of
said product in said Test and in said Use, over regions of a
space representing required fault tolerance capability of said
product, wherein said regions encompass allowed counts of
electronic components defective in one or both of said Test
and said Use such that said product is good in said Use.

8. The method of claim 7, wherein said required fault
tolerance capability comprises representation as said regions
an action of active repair at said Test.

9. The method of claim 7, wherein said required fault
tolerance capability comprises representation as said regions
an action of fault tolerance mechanisms built into a design of
said product.

10. The method of claim 1 further comprises determining
statistical confidence limits of said figures of merit, wherein
said determination comprises computing distributions of said
figures of merit from sets of replicates of model parameters
generated by said fitting of said copula-based statistical
model to sets of synthetic instances of said test vehicle data,
wherein said sets are generated from said copula-based sta-
tistical model fitted to said acquired data, wherein said sets
correspond to at least one experimental design different from
an experimental design that produced said acquired data.

11. The method of claim 1, wherein data acquired from at
least one said test vehicle is fitted to one said copula-based
statistical model for said components of at least one said
product, wherein said at least one product differs in variations
selected from the group consisting of a number of kinds of
components, a number of components, a fault tolerance
specification in said Use, an active repair specification in said
Test, a test coverage model, environmental and operating
conditions in said Test, and environmental and operating con-
ditions in said Use.

12. The method of claim 1, wherein said use of said copula-
based statistical model comprises calculation of a joint prob-
ability of passing said Test and failing said Use for each
individual component by transforming said copula of said
copula-based model obtained by fitting said test vehicle data
for each said component into another said copula or a pseudo
copula for each said individual component, wherein said
transformation embodies said test coverage model.

13. The method of claim 1, wherein an analytical form of
said copula-based statistical model is used by an appropri-
ately programmed computer to enable deterministic (non-
Monte-Carlo) calculation of said figures of merit to determine
product specifications.
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