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Abstract—Variable bit retention time observed in a 65-nmdynamic randomaccessmemory (DRAM) case studywill causemiscorrelation
between retention times occurring in Test and Use. Conventional multivariate normal statistics cannot adequately model this
miscorrelation.Amoregeneral copula-basedmodelingapproach,widely used infinancial andactuarialmodeling, solves thisproblem.The
DRAM case study shows by example how to use copula models in test applications. The method includes acquiring data using a test
vehicle, fitting the data to a copula-based statistical model, and then using themodel to compute producer- and customer-oriented figures
ofmerit of a product, different from the test vehicle. Different array sizes, fault tolerance schemes, test coverage, end-use (datasheet), and
test condition specifications of the product are modeled.

Index Terms—Integrated circuits, dynamic random access memory (DRAM), testing, fault tolerance, reliability, yield models

1 INTRODUCTION

EACH bit of a dynamic random access memory (DRAM)
retains its information as stored charge on a capacitor.

After the bit has beenwritten to, the charge leaks away so that
valid data has a characteristic retention time. To retain the
information, the bit must be read and refreshed with a speci-
fied time interval between refreshes. DRAM memory cells in
every technology node can have a defect which causes a some
bits to have a variable retention time (VRT), while most bits
have stable retention times (SRT) [1]–[3]. The VRT behavior is
an example of random telegraph noise (RTN) in gate-induced
leakage (GIDL) current caused by a trap in gate oxide [4] or a
defect in silicon [5] at the near-surface drain-gate boundary of
the transistor in the DRAM cell. At any time the defect can
transition reversibly between two states. One of the states is
associatedwith a higher leakage current and shorter retention
time. and are scale parameters of exponential dis-
tributions of duration of the maximum and minimum dwell
times of a bit in the maximum and minimum retention time
states. The states are maintained for many minutes [5], so
retention times are manifested at the test process step in
manufacturing (“Test”) differently from how they are man-
ifested in end-use (“Use”). Test, being brief, may “see” a VRT
bit in either the high or low leakage state. The probability that
Test will find a bit in the maximum retention time state is

. On the other hand, since Use has an
indefinite duration, aVRTbit’s high leakage state (worst-case)
will certainly occur inUse. If aVRTbit passes aTest screen in a
low-leakage state, and the high leakage state causes the

retention time in Use to be shorter than the specified refresh
time, then the VRT bit will fail in Use.

The proportion of VRT bits can be controlled in the silicon
fabrication process by reducing the density of, or passivating,
RTN-inducing defects, or by reducing the mechanical stress
which activates the defect [6]. But Test screens and fault-
tolerant array design are still needed tomeet yield and quality
targets for a product array of bits. Data with VRT bits which
fail in Use are not suited to correction by ECC schemes used
for soft errors (for example, due to cosmic rays) because of the
performance impact of repeated error correction of a bit stuck
in a failing state for many minutes. Run-time-repair schemes
suited to “hard” bit failures [7] can be used.

The performance and quality requirements of a memory
product may be met in different ways with possibly different
costs. For example, the fraction of arrays with VRT bits
escaping to Use, and failing, can be reduced by setting the
Test retention time much longer than the refresh time in Use.
This has a high cost of rejectingmanygood arrays (overkill) or
repairingmany “innocent” bits at Test. On the other hand, if a
run-time-repair scheme is employed, the Test condition may
be set closer to the Use condition and overkill may be reduced
at the cost of design complexity. Tradeoffs like this occur at all
stages of the product lifecycle, from product definition to
manufacturing. Decision-making requires a statistical model
of the memory product which adds considerations of array
size, array repair capacity, Test conditions and datasheet
(Use) specifications to the bit-level instability characteristics
measured in recent studies [8]. This paper describes a new
approach to the statistical modeling.

The paper breaks new ground in two aspects of statistical
modeling: 1) Model-fitting involves selection of the mathe-
matical forms of distributions to be used, and determination
of goodness-of-fit of data to the models. 2) Inference involves
“what-if” transformation of thefittedmathematicalmodels to
conditions different from the data (different array sizes, fault
tolerance, different Test andUse conditions), anddefinition of
the rules of decision-making. Decision-making rules use
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carefully-defined figures of merit closely related to cost mod-
els, such as yield loss (YL), overkill loss (OL), and customer-
perceived defect level (DL).

Model-fitting for semiconductor products usually involves
fitting a multivariate normal (Gaussian) distribution to the
data. But when a bivariate normalmodel was fitted to DRAM
bit retention time data acquired at PSU’s ICDT lab (in Sec-
tion 2.2 below) it was found that the model did not properly
characterize the deep tail of the data. Unlike the data, the
correlation in the Gaussian model fades away as one moves
deeper into the bivariate tail. Actuarial and financial applica-
tions have also encountered this problem [9]. Inadequacy of
multivariate normal models for financial and actuarial appli-
cations has motivated rapid development over the past de-
cade of copula-based modeling methods because copulas
provide a completely general approach to modeling multi-
variate dependency.Nelsen [10] and Trivedi andZimmer [11]
give good introductions to copulas. This study finds that the
Clayton copula, which differs fundamentally from the usual
bivariate normal Gaussian model, is needed to describe the
underlyingdependency (correlation) structure ofDRAMVRT
behavior, and the way it is manifested in Test and in Use.

Semiconductor product applications require uniquemeth-
ods to handle scaling to various array sizes, for handling fault
tolerance, for modeling Test and Use conditions, and for
computing and using figures of merit closely related to
product cost and quality models. This paper develops the
necessary statistical machinery to do all of this for the DRAM
application. The methods are, however, quite general and
may be applied to any semiconductor product for which
miscorrelation between Test and Use or among Test opera-
tions needs to be modeled.

The plan of the paper is as follows: In Section 3 copula
models are extracted from the DRAM data described in
Section 2. The central problem of model extraction is choice
of the copula used to fit the data. Section 3 shows the short-
comings of theGaussian copula,whichmirrors theproblemof
multivariate normal models, and uses the Clayton copula
which is well-suited to the DRAM data. Section 4 covers the
inferential aspects of the application of copulas to test. These
include:

Modeling how Test and Use are manifested.
Scaling from bit-level to array level.
Modeling tolerance to single-bit faults.
Modeling active repair at test.
Definition of figures of merit (FOMs).

Section 5 describes where statistical copula-based model-
ing method fits in a wider context, and Section 6 indicates
future directions.

2 DRAM CASE STUDY

2.1 Experimental Design
The experiment follows a design similar in principle to that of
Kim et al. [8] except that only the retention timeminimumand
maximum for each bit was determined. The experiment did
not determine the time constants and of the maxi-
mum and minimum retention time states.

Test chips with four identical DRAM arrays on each chip
were fabricated in a 65nmprocess. Eachof the four arrays on a
test chip has 1,218,750 bits. Test chips packaged in ball grid
array packages and 10 test chips, prescreened for gross fail-
ures, were selected for the experiment. So the number of bits
tested is .

The arrays were tested in PSU’s ICDT Lab on a Credence
Quartet tester with temperature controlled by a Silicon Ther-
mal Powercool LB300-i controller. Temperature was mea-
sured by a calibrated sensor on the silicon die. Pass/fail at
12 retention times for each bit in the array was determined at
18 environmental conditions, and the physical , location
and retention time of each failing bit in the array was
recorded. The environmental conditions were:

Three temperatures: , , .
Three values of supply voltage, : 0.8, 1.0, 1.2 volts.
Two values of substrate bias, : 0.4, 0.45 volts.

For each bit, 60 retention times in five groups of 12 were
measured as follows:

12 retention times, , were tested, increasing from 60 au to
604 au in steps of 49.5 au: to 12,
with pass/fail determined at each test stop, . Retention
times are given in arbitrary units (au), related to the true
retention times by a numerical ratio.
Each group of 12 retention times was repeated five times.
Groups were separated by variable durations, typically
many hours.

Fig. 1 shows how the maximum observed retention time
index and the minimum observed retention time index

were extracted from the pass/fail pattern of each failing
bit. If > the bit is classified as VRT, otherwise it is
SRT. A difference of 2 eliminates tester quantization effects
which might misclassify SRT bits as VRT bits, at the risk of
classifying some less variable VRT bits as SRT bits. If the
leftmost retention time index in any group is 1 (fail) the bit is
“dead” and is excluded from the study.

2.2 Experimental Results
Table 1 summarizes failing bit counts sampled from 49 Mb
across all environmental conditions. Six bits were found to
be dead and were excluded from analysis. At each environ-
mental condition “live” bits passing at least the first test stop

Fig. 1. Example of the pass/fail pattern of a VRT bit, and extraction of
and . Pass/Fail is indicated by 0/1.

TABLE 1
Bit Categories with < au Failing in At Least One of the 18

Environmental Conditions
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and with < are classified as SRT or VRT. A given bit
may be classified differently in different environmental con-
ditions. For example, 1610 failing bits showed only SRT
behavior, and 288 bits showed SRT behavior in at least one
environmental condition and VRT behavior in at least one
environmental condition. The total number of bits with
< observed to fail in the sample of 48,750,000 bits

(minus 6 dead bits) was .
Fig. 2 shows bit categories by environmental condition,

and Fig. 3 gives a spatial map of the location of failing bits.
Important observations are:

At the highest stress, retention times less than 604 auwere
observed for only a small fraction (40 PPM) of the popu-
lation of bits. At less stressful environmental conditions,
the fraction is smaller. These bits are representative of the
“tail distribution” of retention times observed by White
et al. [12].
Statistical analysis of the spatial distribution of failing bits
in Fig. 3 shows no evidence of clustering. The distribution
of bit failures from die to die and array-to-array within
dies is also indistinguishable from random. So the exper-
iment may be regarded as sampling 48,750,000 indepen-
dent bits.
Yield loss for a 1Mbarraywith 1.2DPPMofbits defective,
corresponding to the lowest environmental condition in
the experiment, is 72%. Since array sizes of 1 Mb and
larger are generally used in applications, this shows that
fault tolerance is required for any product array made
from the bits studied here.
18% of the bits with < , ,
show VRT behavior. This shows that VRT behavior must
be included in any statistical model of DRAM retention
time.

Each failing bit has a minimum and a maximum retention
time. For stable bits, these retention times are equal. The
fraction of time that an unstable bit is in the maximum versus
minimum retention time state could not be empirically deter-
mined because the DRAM arrays in the test chips were
indirectly accessed through a BIST controller which gives
only pass/fail for a given refresh time. So, to construct a
model of Test/Use correlation from the data it is necessary to

additionally specify how retention time is manifested in Test
and inUse. Themanifestationwill be different in Test andUse
because in Use a given bit will be accessed an indefinite
number of times and the minimum retention time will cer-
tainly occur, whereas Test is a single brief measurement for
which the maximum or minimum retention time occurs with
probability depending on the fraction of time-in-state.

Model-fitting is simplified by displaying the retention time
data in a way that is different from any plausible Test/Use
model with the understanding that, for decision-making, the
data or fitted model will be transformed later into a plausible
Test/Usemodel. The data display in Table 2 is constructed by
assigning ( , ) to ( , ) or ( , ) with equal probabili-
ty. Similar tables were generated for the 17 other environ-
mental conditions. Several observations can be made: 1) The
display of and in Table 2 does not represent a plausible
Test/Use scenario of sequentially observed retention times
because it does not include the possibilities of

and . 2) Fitting a
model to the data in Table 2 is greatly simplified because
only exchangeable copulas (symmetrical about ) and a
singlemarginal distribution (the same for and ) need to be
fitted due to symmetry of the data. 3) The data in Table 2 and
anymodel fitted to it will be transformed later into a plausible
Test/Use model via Eqs. (14) or (15).

The marginal empirical cumulative distributions ( as a
function of or ) given in Table 2 were fitted to a single
Weibull distribution following Lieneweg et al. [13] andWhite
et al. [12], as shown in Fig. 4. The slope and intercept of the
fitted lines give the shape, , and scale, , parameters of the
Weibull distribution of retention time:

Fits like Fig. 4 were done for every environmental condi-
tion. The shapeparameter was always nearly 2, so themodel
was simplifiedby forcing to 2. results in a small under-
estimate of the retention time at short retention times,which is
conservative.Arrhenius temperature and exponential voltage
dependence gave an excellent fit (Fig. 5) to the scale para-
meters, , extracted from all environmental conditions:

The good fit shown in Fig. 5 means that the single parame-
ter, ln , computed from Eq. (2) is a measure of the combined
effect of , , and , simplifying the display of the environ-
mental dependencies observed in this study. The leftmost
point in Fig. 5 (smallest ) corresponds to Fig. 4 and Table 2.

Fig. 3. Mapof spatial locations of all bitswith < from4arrays on
10 chips, sampling 49 Mb. VRT bits are shown as .

Fig. 2. VRT and SRT-only counts vs. environmental condition sampled
from bits.
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A given value of ln defines a surface (nearly a plane) of
“statistically equivalent” test set points in ( , , ) space,
providing useful flexibility when integrating different kinds
of test into a test program.

Thedistribution of data across and cells in Table 2, and
at 17 other environmental conditions was characterized by
Kendall’s tau. Suppose the retention times, and , are
known exactly for each of measured bits so that every bit
maybe ranked by andby without ties. The number of bit-
pairs, comprises “concordant” pairs and “dis-
cordant” pairs. For a concordant pair, the relative ranks of
for a bit pair is the same as the relative ranks of of the bit
pair. For a discordant pair the relative ranks are opposite.
Kendall’s tau for the sample (indicated by the prime) is

.
Test data is typically binned into cells as in Table 2 so that

Kendall’s tau must be calculated for data with many ties. A

method for computing fromdatawith ties is given in [14] as:

where any bit pairs that are tied in or are not counted in
or and where, in , is the number of tied values in each
set. is defined in the same way, but for values. Code to
compute from data with ties is available in many statistical
software packages. for the data in Table 2, and 17 other
environmental conditions was computed by Eq. (3) and
plotted in Fig. 6. Also plotted in Fig. 6 is the fraction of the
population sampled at each environmental condition,

TABLE 2
Maximum and Minimum Retention Times at the Highest Environmental Condition (Rightmost Bars in Fig. 2) Binned into Cells Using a

“Symmetrical” Method of Displaying the Data (See Text)

Fig. 4. Weibull fit of marginal distributions at the highest environmental
condition, from Table 2.

Fig. 5. Extracted vs. model-fitted scale parameter , Eq. (2), for all 18
environmental conditions.
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ranging from 35 PPM at the highest stress (smallest ) to 1.2
PPM at the lowest stress. A remarkably constant value of

, independent of environmental condition, is ob-
served. If only the diagonal cells in Table 2 were populated,
the value of would be unity.

Extractedparametersof themarginal scalingmodel,Eq. (2),
are given in Table 3 along with parameters describing the
correlation (aka “Dependence”) including copula parameters
described in the following Section.

3 MODELING DEPENDENCE USING COPULAS

3.1 Copula Background
If the cell-counts in Table 2 are divided by the sample size to
give the probability mass in the cell, then the table is an
empirical 2-dimensional probability density function (pdf)
sampling a population pdf . The corresponding
bivariate cumulative distribution function (cdf) is

For marginal distributions , and
(in the present application, ), the

definition of a copula is given by written as a function
of the marginal distributions

or

A two-dimensional copula is a function on the unit square
domain with range [0,1], which:

Is grounded. .
Is normalized. .
Has uniform marginal distributions.

.
Is 2-increasing, so that for every , , , in [0,1] such
that and the probability mass in the
rectangular area defined by ( , ) and ( , ) is positive
definite

The definitions have generalizations to more than two
dimensions.

Sklar showed that for a given , the copula is unique.
And Schweizer and Wolff showed that is invariant under
monotonic transformations of and . This history, and
more, is covered by Nelsen [10]. These results are profound
because they imply that contains all of the rank-dependency
information in any multivariate cdf, and that the study and
modeling of this dependency can be completely decoupled
from details of the marginal distributions.

Two copulas are especially important:

Also important is the definition of tail dependency in the
low tail

Notice that LT for perfect correlation is unity, whereas for
independence LT vanishes.

The population Kendall’s tau may be calculated analyti-
cally from a copula by

For perfect correlation , for perfect anti-correlation
, and for independence . Equation (9) can be

generalized to compute for truncated regions of the copula
[15].

Copulas come in families spanned by adjustable para-
meters, so Eqs. (8) and (9) provide a way to fit the model
parameters to data. For example, if the empirical (sample)
value of is known from Eq. (3), then the value of the
parameter of a single-parameter copula may be determined
by comparisonwith computed fromEq. (9) integrated over a
truncated region of the model copula corresponding to the
data sample.

Fig. 6. Sample tau, , is independent of sample fraction and environ-
mental conditions (ln ).

TABLE 3
Parameters of Extracted Marginal and Dependence Models
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Copulas give a complete generalization of the usual mul-
tivariate normal approach for modeling statistical dependen-
cy. But this leads to the main problem of copula modeling;
choosing the appropriate copula. The universe of possible
functions even in twodimensions is vast, so some application-
specific guidance is needed. In the course of this work several
kinds of copula were tried for the DRAM; the Gaussian
copula, geometrical copulas, various kinds of Archimedean
copulas, theMarshall-Olkin copula, and convex combinations
of various copulas [10]. Just two of the fitting attempts are
described in the following; the Gaussian copula, and the
Clayton copula (an Archimedean copula). The Gaussian cop-
ula is described because it is the conventional multivariate
normal modeling approach in copula guise and therefore
shows the problem with conventional multivariate normal
modeling. The Clayton copula is shown because it is the best
model found, and was used in subsequent application of the
model.

3.2 The Gaussian Copula
In two dimensions, the Gaussian copula is

where is the standard normal distribution. Numerical
methods to compute bivariate and trivariate integrals like
Eq. (10) are available [16]. The Gaussian copula was fitted to
the data of Table 2 by finding which minimizes the sum of
squares:

where and are cell indexes in Table 2 and

is the probability mass in cell with computed
via (10) at each cell , is the count in a cell, and

. This was repeated for each of the 18 envi-
ronmental conditions and the fitted values of were
plotted vs environmental condition in Fig. 7.

The value of must be forced to within a few parts in
10,000 of unity to fit the observed datawhich are the deep tail
(1.2 to 35 PPM) of the bit population. The tiny value of
shows a key problem with multivariate normal modeling
and with the Gaussian copula which has been recognized in
otherfields [9]. As onemoves from the bulk of the population
into the tails the correlation in the Gaussian copula fades
away unless is exactly unity. That is, for the Gaussian
copula, except when . The Gaussian copula’s
tail dependency may be valid for intrinsic properties of
devices, but for defect-related mechanisms such as the reten-
tion time mechanisms of the DRAM one would expect that
dependencywould bemaintained nomatter how far into the
tail the sample is taken. That is, onewould prefer a copula for
which . The significant scatter in as a function of
environmental conditions in Fig. 7 also shows that the
Gaussian copula is not a “natural”fit to the data. The average
of across environmental conditions is given in Table 3
above.

3.3 The Clayton Copula
TheClayton copula (see [10], p116) for the rangeof of interest
is

< <

where corresponds to independence, and
corresponds to perfect correlation. The probability density
map corresponding to Eq. (13) for the parameter value

which fits the DRAM data is shown by the density
of ( , ) points in Fig. 8 synthesized by standard methods
described in the appendix of [11] and in [17]. Properties of
the Clayton copula include the low-tail dependence,

. and Kendall’s tau for the entire probability
space, derived using Eqs. (8) and (9), respec-
tively, with Eq. (13). Recently Oakes [15] showed that the
Clayton copula is the only absolutely continuous copula
with a remarkable “truncation invariance” property: If the

Fig. 7. Values of for the Gaussian copula fitted by least squares to
data like Table 2, as a function of environmental condition.

Fig. 8. Probability density map for Clayton copula with , and
example rectangular truncation.
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probability map of any rectangular truncation of the copula
with one corner pinned at (0,0) as shown in Fig. 8 is re-
mapped to the entire copula domain, , then the same
Clayton copula (same ) is recovered. A consequence of this
is that computed from any rectangular truncation of the
probability density map with one corner pinned at (0,0) is
always .

Truncation invariance of the DRAM data was seen in
Fig. 6 because Kendall’s tau for the failing bits remains
constant as larger and larger samples of the 49 Mb popula-
tion were exposed by increasing the test environmental
condition (reducing ln ). The samples correspond to square
truncations of the empirical copula with one corner fixed at
(0,0), and the opposite corner at ( , ), where varies with
the environmental condition. Tau for the Clayton copula is
also invariant as data is truncated by rectangles (and, a
fortiori, squares) like the one shown in Fig. 8. So the Clayton
copula is a plausible model for the observed dependency
behavior. Occam’s razor was used to choose the Clayton
copula over others with small but non-vanishing truncation
variation of . Fig. 9 shows for the Clayton copula fitted at
each of the 18 environmental conditions by the same least
squares method used for the Gaussian copula. Fig. 9 also
shows determined from Fig. 6 using the inverse of the
relation between and for the Clayton copula:

.
Monte-Carlo synthesis of random vectors ( , ) from a

copula is often needed to “play back” amodel to validate it, or
to do numerical calculations when analytical calculations are
intractable. The Clayton copula has a very useful property for
Monte-Carlo simulation stemming from the truncation in-
variance. It is possible to synthesize points in a truncated
region of the copula, such as shown in Fig. 8,without rejection.
This feature of the Clayton copula and of certain other
copulas is very important for efficient simulation because
only the extreme tail of the distribution (40 PPM in the
current example–a tiny area near the origin in Fig. 8) is of
practical interest and needs to be synthesized. The Gaussian
copula does not have this feature and requires extensive
rejection to generate tail samples. This is another significant
disadvantage of the conventional multivariate normal
approach.

4 APPLICATION

4.1 Model of Test and Use
The symmetrically displayed bit data in Table 2 were fitted to
an exchangeable copula (symmetrical in its arguments,

). Although the fitted exchangeable copula
is not a plausible model of Test and Use, the exchangeable
copula may be transformed into a pseudo-copula (having
properties of a copula except for non-uniformmargins)which
is a plausible model of the way Test and Use are manifested.
An advantage of this approach is that different Test/Use
scenarios may be explored by varying the transformation of
the fitted copula.

A plausible model of Test and Use manifestation is one in
which the maximum retention time of a given bit is exhibited
at Test with probability (and minimum
retention time is exhibited atTestwithprobability )while
the minimum retention time for the bit is always exhibited in
Use. If and are retention times sampled from the sym-
metrically displayed data of Table 2 or sampled by Monte-
Carlo from the fitted symmetrical model (the Clayton copula)
then the plausible Test/Use model is

The probability density map obtained by using Eq. (14)
with to transform the symmetrical model Clayton
copula density map in Fig. 8 is shown in Fig. 10.

Association of minimum retention time of a bit with Use is
realistic because a bit will be accessed an indefinite number of
timesmaking it certain theminimumretention timewill occur
eventually. Test, however is a single brief event so association
of the maximum or minimum retention time with Test
depends on the probability, , that the bit happens to be in
the maximum retention time state when tested. The assump-
tion that the bit is always in themaximum retention time state
at Test ( ) is conservative from the customer perspective
because a model based on this will over-estimate DPPM in

Fig. 9. Values of vs environmental condition (ln ) for theClayton copula
fitted by least squares to data like Table 2, and by from in
Fig. 6.

Fig. 10. Test and Use conditions divide the bit pseudo-copula (with
, ) into four categories labeled by , , , , where the

first character refers to Use and the second to Test.
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Use, and thereby lead to customer-conservative Test and Use
specifications.

Usingmethods ofNelsen (problem2.16 onp26 of [10]), and
Navarro and Spizzichino [18], it can be shown that1 since the
marginal distributions for and are the same in the
symmetrical model by construction, the transformation of
(14)may bewritten as a transformation of thefitted exchange-
able copula into the pseudo-copula :

Fig. 10 shows the densitymap of with when is the
Clayton copula with (Fig. 8).

4.2 Test Set Points and Datasheet Specifications
Test set points and datasheet specifications (Use conditions)
are expressed in terms of environmental conditions ( , , )
and retention time, . These four parameters at Test and at Use
are usually set so that the Test set point is more “stressful”
(causes more failures) than the Use condition. The environ-
mental conditions aremapped into inTest and inUse
by (2). So a single parameter, , depending on both the
environmental condition via and retention time limit

in the datasheet defines the datasheet specification (Use
condition), and a single parameter, , defines the Test set point:

When the datasheet specification and Test set point and
are superimposedon thebit pseudo-copula, , as inFig. 10, the
probabilitymasses associatedwith each of the four regions are
given by

where, for example, is the fraction of bits failing in Use and
passing in Test.

4.3 Array Statistics and Fault Tolerance1

The random spatial distribution of bit failures (Fig. 3), the
large sample size of bits (49 Mb), and the small probability of
failure (1 to 40 PPM, depending on environmental condition)
easily justifies use of the Poisson approximation to model the
statistics of arrays of bits. Consider an array of bits. The
probability that the array has exactly , , and bits in
the mutually exclusive categories defined in Fig. 10 is

where

Fault tolerance ismodeled by expanding the definition of a
“good” array to include arrayswith some “bad” bits. Bad bits
in arrays that are considered good are taken to be covered by a
fault tolerance scheme. The maximum number of bad bits
which can be tolerated is ameasure of the capacity of the fault
tolerance scheme. Suppose an array can tolerate up to bits
bad in Test and up to bits bad inUse. Also suppose that the
bits tolerated in Test are not repaired, but are included in the
bad bits tolerated in Use. Then the probability that the array
“PassesTest” is the sumofEq. (18) over sets of integers ,
and allowed by the constraint ( is
unconstrained). And the probability the array is “Good in
Use” is a sum constrained by ( is uncon-
strained). The probability that an array “Passes Test and is
Good in Use” is a sum over values of , and which
satisfy both and . A geometrical
interpretation of the regions of bit category index space
corresponding to three array categories is shown in Fig. 11.

Analytical expressions for the sums over terms like Eq. (18)
corresponding to the zones in Fig. 11 are expressible in terms
of the bivariate correlated Poisson distribution introduced by
Campbell [19], derived as follows: If an array has exactly
bits which are bad in Use and exactly bits which are bad at
Test, then , and may vary within the following
constraints:

where the last inequality is awayof expressing the constraints
and . So if and are random variables

giving the number of failing bits in Use and Test respectively,
the probability that an array has exactly bits failing in Use
and exactly bits failing in Test is the sum of Eq. (18) over
values of allowed by Eq. (20):

Fig. 11. Zones of bit category space corresponding to three array cate-
gory probabilities for bad bits tolerated but not repaired at Test, and
tolerated in Use. For and .

1. Derivation of Eq. (15) and details of manipulations in Section 4.3
are given in supplementary material available online at http://doi.
ieeecomputersociety.org/10.1109/TC.2013.129.
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and the cumulative form of this distribution is

where is the univariate cumulative Poisson distribution
available in many software packages:

which vanishes when < . and are usually small
integers so calculation of the cumulative bivariate Poisson
distribution using the second equality in Eq. (22) is easy.
Equations (21) and (22) are Campbell’s [19] bivariate corre-
lated Poisson distribution. Johnson et al. [20] point out that
(21) is the distribution of

where , , and are mutually independent Poisson
random variables with means , , and . On the
margins (that is, with or ), and have
Poisson distributions with means and ,
respectively.

The mapping of proportions of three Test/Use categories
of bits into proportions of three Test/Use categories of arrays
with specified fault tolerance is given by Campbell’s correlat-
ed Poisson distribution, Eq. (22). If an array can tolerate up to

bad bits in Use and up to bad bits in Test then the
probability that the array “Passes Test and is Good in Use”
corresponds to sums over bit category indexes in the intersec-
tion of the two infinite prisms along the and axes in
Fig. 11, and is

The probability that the array tolerates bits in Use,
irrespective of the number of bad bits in Test the sum of
(18) over bit category indexes in the prism running down the

axis in Fig. 11 and is

The probability that the array tolerates bits in Test,
irrespective of the number of bad bits in Use corresponds to
a sum of (18) over bit category indexes in the prism running
down the axis in Fig. 11 and is

In practice Eqs. (25), (26), and (27) would be applied when
the fault tolerance mechanism on the chip is enabled in both
Test and Use ( > ).

When the tester actively repairs the bits that it tolerates, the
constraints on the integers , and allowed in the
sums over terms like Eq. (18) are changed from the constraints
shown in Fig. 11 to the constraints shown in Fig. 12. Repair of
bits tolerated at Test causes the tolerance mechanisms in Use
to have fewer category bits to tolerate. So, more tolerance
capacity is available in Use for test escape bits ( category
bits) and bits exceeding the repair capacity of Test. The
effect is seen in Fig. 12 as an extra volume of bit category index
space on top of the “Good in Use” volume shown for the
no-repair-at-Test case in Fig. 11. (Details are given in supple-
mentary materials.1)

The “Passes Test and Good in Use” volume is the intersec-
tion of the “Good inUse” and the “PassesTest”volumes, so its
probability sum changes too. But the “Passes Test” volume is
the same as for the no-repair-in-test case.

The probability expressions corresponding to the volumes
in Fig. 12 are

where is the sum of terms like Eq. (18) over the “extra”
volume of “Good-in-Use” bit category space in Fig. 12. does
not have a tidy analytical expression, but it is easily evaluated
because the number of terms in the “extra” volume is finite
and small. The “Passes Test and Good in Use” volume in
Fig. 12 is a simpler truncated prism than the corresponding
shape in Fig. 11, giving

Andfinally the “Passes Test”probability for active repair is
the same as Eq. (27) for no-repair-at-test, as it must be because
this proportion will be agnostic to the repair status of Test-
tolerated bits.

Fig. 12. Zones of bit category space corresponding to three array cate-
gory probabilities for bad bits tolerated and repaired at Test, and tolerated
in Use. For and . Corners of the extra volume of “Good in
Use” due to active repair at Test are shown by circles.
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4.4 Figures of Merit and Decision-Making
Manufacturing and quality figures of merit (FOMs) can be
expressed in terms of the three array probabilities, P(Passes
Test), P(Good in Use), and P(Passes Test and Good in Use)
derived in Section 4.3. The FOMs are required to meet target
values to determine fault tolerance, test specifications, and
datasheet specifications of the product. The FOMs are yield
loss (YL), overkill loss (OL), and end-use defect level (DL). YL
andOL are producer-oriented cost-related FOMs, andDL is a
customer-oriented quality FOM. Fig. 13 shows how these
FOMs are related to the probabilities derived in Section 4.3.

Yield Loss given by

is the fraction ofmanufactured arrays rejected by Test. is a
primary manufacturing indicator since it directly affects pro-
ducer costs.

Overkill Loss given by

is the fraction of manufactured arrays (a subset of )
invalidly rejected by Test. affects the manufacturing cost
charged to Test.

End Use Defect Level given by

is the customer-perceived proportion of defective arrays. It is
the fraction of units classified as failing in Use, given that they
have passed Test (a conditional probability). is a quality
indicator since it affects the customer.

For business decision-making FOMs corresponding to
hypothetical Test, Use (datasheet), and fault tolerance speci-
fications are comparedwith targets. Only specificationsmeet-
ing all three targets are acceptable. The FOMsdefined here are
designed to lie in the range [0,1] such that a larger value is less
desirable. Therefore “target” values are regarded as the max-
imum acceptable values of the FOMs. Arbitrarily chosen
typical targets for the product example shown below are

, and DPPM.

Equations (2), (13), (15), (16), (17), (19), (25) or (29), (26) or
(28), (27), (30), (31), and (32) provide a fully deterministic
analytical model readily implemented in, say, Excel to do
“what-if” calculations of FOMs as a function of array size,
fault tolerance, Test, and datasheet (Use) specifications. The
sensitivity to models of Test/Use manifestation may be ex-
ploredbyadjustingparametersof the transformation,Eq. (15),
of the fitted copula into the pseudo-copula embodying
thesemodels. Since the experiment did not give the fraction of
time aVRTbit is in the long retention time state, the customer-
conservative assumption used in examples described next is
that at Test VRT bits are in the long retention time state all of
the time ( ).

As an example, suppose the -bit array has an internal
mechanism, which can tolerate up to bad bits, enabled in
both Test and Use ( ). Figs. 14 and 15 show FOMs
computed using the model for a 1 Mb ( bits) array at the
maximum environmental condition of the experiment
( ) for both Test and Use,
with a datasheet (Use) refresh time specification of 110 au. The
FOMs are plotted as a function of the Test retention time
setting which is swept past the datasheet refresh time specifi-
cation (“Use Condition”).

Fig. 13. Relationship of figures of merit (italic) to population category
probabilities.

Fig. 14. Figures of merit vs. Test retention time set point for a 1 Mb array
with no fault tolerance , assuming . There is no Test retention
time setting for which all three FOM targets aremet. Arrows show set point
ranges which meet targets.

Fig. 15. Figures of merit vs Test retention time set point for a 1 Mb array
which can tolerate bad bits, assuming . All FOM targets canbe
met for Test retention time settings between 130 and 138 au. Arrows show
set point ranges which meet targets.
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Thedesignof the FOMsallows all of the FOMs tobeplotted
together and to be compared with their target values. Fig. 14
shows that there is no setting for which a 1 Mb array with no
fault tolerance ( ) can meet all targets. The minimum
fault tolerance capacity for which targets can all be met is

bits and Fig. 15 shows this case. Notice the greatly
improved yield loss in Fig. 15 compared to Fig. 14.

5 DISCUSSION

When the rank statistics of the DRAMVRT effect is separated
from complicated details of environmental dependence and
shapes ofmarginal (Weibull) distributions an unexpected, yet
simple, picture emerges. Unexpected because the usual meth-
od of fitting a bivariate normal distribution (or equivalently,
Gaussian copula) cannot represent the invariance of tau under
sample truncation as shown in Fig. 6. Simple, because a
single parameter Clayton copula with a single value for the
parameter can represent invariance of tau across all environ-
mental conditions. More broadly, the DRAM case study
shows the necessity of using copula methods to generalize
the usualmultivariate normalmethods of statisticalmodeling
of miscorrelation in semiconductor applications. The main
challenge of copulamethods is the need to choose a particular
copula from the vast number of possibilities. For the DRAM
the number of possibilities is greatly reduced because not
many copulas have truncation invariance to a degree suffi-
cient to match the data, and only the Clayton copula has
complete truncation invariance.

Copula methods offer considerable practical convenience.
The fitting of marginal models and copula models is de-
coupled, and can be done in any order. Moreover, many
copulas are well-suited to synthesizing data in limited parts
of the populationwithout rejection ofMonte-Carlo-generated
samples. The Clayton copula is an example of such a copula.
But the Gaussian copula (and therefore the multivariate
normal distribution) cannot be synthesized in a limited part
of the population without rejection. Rejectionless simulation
makes Monte-Carlo simulation of the small but critical tail
regions of interest in semiconductor applications highly
efficient.

Key decisions at various stages of the product lifecycle
require statisticalmodels connectingdevice-level (bit-level for
DRAM) to product-level cost and quality models. This paper
provides all themachinery needed to do copula-based “what-
if” analyses of effects of scaling of array size, fault tolerance
(including active repair at test), datasheet (Use) specifications,
and Test specifications. The statistical model may be “played
forward” from bit-level to product-level to make product
decisions based on computed figures of merit. But it may
also be “played backwards” to discover data requirements at
the device level (bit-level for DRAM) or silicon process level
actually needed for product decision-making. This is impor-
tant because device-level and process level characterizations
can be expensive or, more significantly, time-consuming. For
example, onemaywish to understand the benefit of extraction
of models of the RTN “duty cycle” time constants and

. In the example of Fig. 15 was used as a customer-
conservative assumption to determine FOMs. Fig. 16 shows
the effect of relaxing the assumption that Test alwaysfinds the
bit in the maximum retention time state, that is, of allowing

to be less than unity. Yield loss and overkill loss figures of
merit are shown for < at test settings for which all FOMs
satisfy targets. The test settings which satisfy targets all have

DPPM at the left-hand edge of the zone shown in
Fig. 15 as the limiting constraint.

Fig. 16 shows that precise knowledge of has no beneficial
effect (reduction) on the overkill component of yield loss
except for < . But Kim et al. [21] found values of varying
from bit-to-bit within a memory, ranging from to nearly
unity.AndKimet al. [8] found ,weaklydependent on
voltage and temperature ( and individually depend
more strongly on temperature). Unless < for all bits and
all environmental conditions covered in Test andUse, there is
no downside to setting for all model calculations. One
would conclude, at least for the DRAM case study here, that
detailed knowledge of VRT duty cycle is not needed for
product cost and quality decision-making.

An essential part of the method, not discussed in detail, is
estimation of risks due to, a), sampling error and, b), model
selection. Sampling error may be estimated using standard
bootstrap methods. The semi-analytical form of the model
facilitates the use of bootstrap methods [22]. When bootstrap
methods are “played forward” confidence levels at which
FOMs meet targets may be computed. And when “played
backwards”, aspects of thedesign-of-experiments for bit-level
data acquisition (such as sample size) required tomeet targets
at specific confidence levels may be determined.

Model selection risk estimation requires evaluation of
FOMs using copulas of various kinds fitted to the data. The
decoupling of copula models from the marginal models
makes it easy to “plug in” different copulas, recompute
FOMs, and thereby quantify the risk of copula selection. For
the DRAM example, truncation invariance was used to select
the Clayton copula. But although the Clayton copula has
absolute truncation invariance, another “geometrical” copula
(not shown) which had truncation invariance to a degree
sufficient to fit the data nearly as well was constructed. The
shape of the FOM characteristics such as Figs. 14 and 15 is
sensitive to whether the Clayton or the geometrical copula is
chosen. The Clayton copula gave the more customer-conser-
vative (larger value of ) Test setting.

An often-overlooked requirement to balance producer and
customer risk in integrated circuit test manufacturing is
careful design of a complete set of FOMs and targets. Tradi-
tional fault tolerance modeling [23] assumes perfect correla-
tion between Test and Use and focuses on only yield loss (YL)
and sometimes the customer-perceived defectivity (DL). But

Fig. 16. Yield-loss and overkill at DPPM for the conditions of
Fig. 15 as a function of hypothetical VRT duty cycle, . Values shown by X
at correspond to X’s in Fig. 15.
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miscorrelation introduces another degree of freedom so that
the three FOMs (YL, DL, and OL) discussed in this paper are
needed for decision-making. It’s also useful todesign FOMs to
cover [0,1] and map to “ and ” for the stake-
holder most interested in the FOM. The problem is more
complicated but same approachworks for multiple test steps.

The DRAM VRT phenomenon does not fall neatly into
classical notions of “hard” and “soft” reliability mechanisms.
Since VRT bits can be stuck in a state for many minutes, or
even hours, VRT bit errors are “soft” as far as Test is con-
cerned, but “hard” as far as fault tolerance inUse is concerned.
VRT is soft in Test because Test, being brief, cannot detect
some bits which may fail in Use. But VRT is “hard” in Use
because of the unacceptable performance effect of soft data
correction of bits stuck in a failing state for extended dura-
tions. The VRTmechanism is very different from the classical
[24] picture of foreign material particles causing clusters of
bad bits which are either hard failures or latent reliability
defects causing infant mortality that can be made to fail
(permanently) and be screened by burn-in. The VRT phenom-
enon is also different from classical cosmic-ray soft-error
mechanisms which cause only a momentary upset in Use.
But the VRT mechanism is similar to RTN instabilities ob-
served in other devices, such as SRAMs [25], [26]. Key char-
acteristics of RTN-based mechanisms are random spatial
distributions (Fig. 3 and [26]) and lack of memory in normal
operation. However, stress can alter the properties of defects,
changing the marginal distributions [12] (reducing in our
model) and increasing the miscorrelation [27] (reducing in
our model).

6 CONCLUSIONS

There are several ways to extend themethod described in this
paperwithout introducing new concepts. First,more than one
Test step increases the dimensionality of the copula and the
multivariate mathematical manipulations. The increased
dimensionality exacerbates the “copula choice” problem.
Second, the method may be extended to multiple kinds of
sub-elements (instead of bits) with differing critical areas, and
multiple kinds of defects. Another extension is when the
marginal variables are different, including different environ-
mental dependence, such as Isb and Fmax. Yet another
extension is to replace the Poisson model in Eq. (18) by a
negative binomial model to describe “large-area” wafer-to-
wafer, or lot-to-lot probability density variation [28].

An extension of the method which does require new
concepts is exploration of principles governing the form of
copulas in the semiconductor context in order to guide copula
model selection. This is important because error associated
with copula model selection is hard to gauge. A hint of the
conceptual framework needed is seen in the way the copula
model depends on how Test andUse aremanifested, Eq. (15).
And, one may ask, what is behind the remarkable truncation
invariance seen in the DRAM data? The history of the devel-
opment of the Clayton copula may provide a clue (see [15]).
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