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Abstract. The systematic critical voltage phenomena observed in high-voltage electron
diffraction provide a sensitive method for determining submicroscopic alloy parameters such
as Debye temperatures, the extent of long-range order, and atomic scattering factors. Only a
very limited number of critical voltages can be observed in the voltage range usually
available, 100—1200 kV, so that quantitative interpretation of the data must be based on a
few-parameter model which incorporates all the pertinent factors. A satisfactory model has
been developed which can be used to interpret or compute the critical voltage of ordered Bcc
binary alloys as functions of composition, temperature and long-range order. This model can
also be used to analyse the Debye—Waller factors of these alloys measured by x-ray or
neutron diffraction techniques, and thus provide supplementary information about the
vibrational behaviour of these systems.

1. Introduction

The use of the critical voltage technique to measure structure factors in metals and alloys is
well established (see for example Lally et al 1972, Hewat and Humphreys 1973, Sinclair et
al 1975, Shishido and Tanaka 1976, Shirley and Fisher 1979, Sellar et al 1980). This
method involves the observation of a particular Bragg excited reflection in a given
systematic row over a range of accelerating voltages, and the measurement of the voltage
at which this reflection is a minimum. Associated with this minimisation are asymmetry
changes of Kikuchi lines and rocking curve profiles which can lead to an accurate
determination of the critical voltage, V..

The value of a critical voltage measured in a systematic row depends on the values of
the structure factors at the reciprocal lattice positions corresponding to the set of atomic
planes (the systematic reflections). The structure factors for an alloy depend on the
following: (i) the values of the atomic scattering factors for the reflection concerned,
(ii) composition and long-range order (LRO), and (iii) mean-square static and thermal
displacements from average sites, which cause a Debye—Waller type attenuation of the
scattering factors. To utilise the critical voltage effect one must employ an appropriate
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model which characterises all or some of the above effects by a few well chosen
parameters. Some of these parameters may be fixed beforehand (e.g. composition by
chemical analysis, or LRO by heat treatment) and others may be determined. For example,
Hewat and Humphreys (1973) and Shishido and Tanaka (1976) used measured values of
the Debye—-Waller factors for Si and Ge and determined the low-angle atomic scattering
factors from V., measurements, in order to examine the electron charge distribution
associated with the covalent bonding in these materials. On the other hand, Shirley and
Fisher (1979) determined the low-angle atomic scattering factors in pure metals, and
considered these unchanged on alloying in primary solid solutions. They then determined
the atomic mean-square displacements (MsD) for solid solution alloys from critical voltage
measurements, and used a simple nearest-neighbour (NN) central force model to analyse
the results.

The present paper is the first of two on the theory and analysis of structure factors and
critical voltage measurements in ordered BCC alloys and outlines a theory based on the
ideas of Shirley and Fisher (1979) for the structure factors and atomic MSD in disordered
binary alloys. In the second paper (Fox 1983) the theory is used to analyse critical voltage
measurements in a FeCo, f’ CoAl and f’ NiAl. The model can also be used to obtain
information from Debye—Waller factors measured by x-ray or neutron diffraction. The
preliminary results of this work have been reported by Shirley and Fisher (1980) and Fox
(1980).

2. Outline of the model for the structure factors of ordered BCC alloys

In a fully ordered stoichiometric B2 alloy (AB), there are equal numbers of A and B atoms.
The A atoms are all on a simple cubic sublattice designated a and the B atoms are allon a
sublattice designated 8. It will be shown later that if there is no short-range order (SRO),
then the atomic MsD will depend only on the sublattice (& or ) and not on the type of atom
occupying it. On this basis, the structure factors, F, for an arbitrary B2 alloy with
substitutional defects are given by (Warren 1969).

e fle™Ma + e M)+ JAfS(e Ma —e—Mp) (fundamental) (1a)
| fleMa—eMr) + AASS(eMa + e~ Mp) (superlattice) (1)

where f=m, fa +my fy, Af=fs —f3 and
M, =§n*(ul)s? My =§7*(up)s*. (1¢)

In these equations, s =sin /4, where @ is the Bragg angle and A the electron (or x-ray)
wavelength. The atom fraction of A atoms (or B atoms) is m, (or my) and their atomic
scattering factors are f, and f3. The mMsD for a and f sites are (u2) and (u}) respectively
and S is the LRO parameter. When §=0 in equations (1), F=0 in equation 1(4) and
equation 1(a) reduces to the structure factor for the disordered case.

Expressions for (12 and (u) will now be developed using the ideas of Shirley and
Fisher (1979). Essentially this theory uses the harmonic approximation and assumes that
NN central forces predominate. The following definitions for the B2 lattice form the starting
point for this derivation.

Yo and yg are the fractions of a and f sites and therefore

Ya=yp=4. (2
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The fractions of correctly and wrongly occupied a sites are r, and w, respectively, and
similarly the fractions of correctly and wrongly occupied f sites are ry and wg. Therefore

Fa +we=1 rg+wp=1. 3)
Using the definition of the LRo parameter, S, due to Warren (1969) and equations (3) gives
Fa=ms +3S rg=my +1S (4a)
Wq=np —3S wg=mp —18S. 4b)

Correlations of the type o and o} used by Shirley and Fisher (1979) in their derivation for
solid solutions can be used in a similar manner for B2 alloys. In this case, account must be
taken of the two sublattices & and 3, and so

oA (Y= 1 for an A atom on site / in the a sublattice
““o for a B atom on site i in the a sublattice
with similar definitions for 6®({), o*(4) and ¢®(3). 6*(;) and 6®(}) can both be expressed

in terms of one correlation o(}) and also o“‘(é) and oB(j) can be expressed in terms of a(j)
where

2w for an A atom on (%)
oA=1 " N )
—2r, for a B atom on (/)
2w for a B atom on (})
o(h=4" " ’, D
2rg for an A atom on (4)
and so from equations (4)
2mg — S Aon(}
o(i)= B (7) (6a)
—2m, —8 Bon(g)
2mp + S A on (§)
a(§)= B f (6b)
—2mas + 8 B on (p).

It should be noticed that these reduce to the disordered definition, a, =(2my, —2m, ) when
S =0, the definition used by Shirley and Fisher (1979) for primary solid solutions. From
these definitions it follows that

M) =ra +10(3) 0*(3)=wa —40(3) (7a)
o*()=wp +10(}) a®(§)=rs —}o(}). (7b)

The mean field theory of Clapp and Moss (1966) can now be used for each sublattice to
find (u*({))a, the MSD of A atoms on a sites; and similarly for (#*({))s, (#*(4))a and
(u¥( ,§)>B. The MSD of A atoms on « sites is found by summing the displacements for all
configurations where A atoms are on « sites; thus

~1
W(a =3 w(;w(;)(z oAu,)) ®
i i

and using the first part of equation 7(a)

W ()a = (WH(Q)) + 2ra) ™ (o )u* () %a)
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Similarly,
(U (2))s = (U (2)) —(2wa) ' (o(2)*(2)) (9b)
) =P (B) + 2wp) (o (u(§)) (9c)
W (g)ys = (U (4)) — (2rg)~ Ko (5)). (9d)

Shirley (1974) showed how the MSD in solid solutions could be split into thermal and static
parts; this procedure can be applied equally to ordered Bcc alloys, and so

W(2)y = U@ + (WP (@) (10a)
(o) (2)) = (oD + (o) (2))s (10b)

and similarly for u*(4)) and {a(4)u?(})}.

The {(o()u*(})), which arise as a result of the defects are an order of atomic radius
mismatch smaller than (u*(})), and (u*(}$)): (as discussed by Shirley and Fisher (1979)
for solid solutions). Because of this, and because {(o(4)u*(4)) and {(a(j)u?(4)), will be
experimentally inseparable from (u(4)) and {u*(3)), the following definitions will be
made:

(Ul =), (for both A and B atoms) (11a)
(upy, =u* (), (for both A and B atoms). (11b)

Expressions for {u2), and {u}), can be obtained by considering the nature of the
average NN force constant for the a and f sublattices, and for simplicity the effects of sro
will be ignored. An examination of the force constants of Bcc alkali metals (Flocken and
Hardy 1969) and for the B2 alloy 8’ NiAl (Georgopoulos and Cohen 1981) shows that NN
central forces make by far the largest contribution to the MsD in these systems, and second
NN central force constants make the next largest contribution. Angular and higher order
force constants account for only a small part of the MSD. As central forces arise
predominantly from core electrons they are unlikely to be affected by alloy composition as
discussed by Shirley (1975). The force constants between A—A, B—B and A—B atom pairs
are therefore assumed to be independent of composition in their contribution to the MsD.

This procedure implies the use of the harmonic approximation, and it should be born in
mind that there will be anharmonic contributions to the MSD which can be important at
higher temperatures. A quasi-harmonic approximation which takes account of thermal
expansion will be outlined later, but such a correction requires knowledge of the volume
expansion coefficient and the Gruneisen parameter, which may not be available. The
average NN force constant for an q site can be written as

ka =kAArawp+kABrarﬂ +k55warp+kABwawﬂ (12)

where k4, is the force constant between NN A atoms, kgg is the force constant between NN
B atoms, and k,p is the NN force constant between an A—B atom pair. If §=.5/2, then
substituting equations (4) gives

ko =kaa(ma —8%) + kg (mb — 87) + 2k,g(mymyg + 52). (13)
For kg, the average NN force constant for f sites, the equivalent expression is
k,g:kAAwpra +kBBrpwa +kABrarﬂ +kABwﬂwa- (14)

It can be seen from equations (14) and (12) that k, =kz =k, i.e. the average interatomic
force constant is the same for both sublattices.
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For Bcc alloys with ‘normal’ phonon dispersion characteristics where anomalous
behaviour such as the w-phase transformation is absent, in the classical regime, the
thermal MsD are proportional to the temperature and inversely proportional to the average
interatomic force constant:

(uay = (upy ={u*) =CKT/k (15)

where C is a constant, K is the Boltzmann constant and T is the absolute temperature.
When S =0 in equation (13), (#*), can be described by the Debye formula as pointed out
by Krivoglaz (1969) and Shirley and Fisher (1979). This is

2
wy=2 (—T"’(eﬁn + —1—) (16)
KA uo 4u0

where @(0/T) is the Debye function, @ is the Debye temperature, u=m, us + mgus where
Hae) is the atomic weight of an A (B) atom and #, K and 4 have their usual meanings. As
the classical and quantum results must agree for T=co then kocuf? in equation (15).
When a Bcc system is ordered it is well known that the Debye formula is not a good
representation of {u ) and (uj) at low temperatures, unless the atoms A and B have
similar masses. However, a comparison of the classical and quantum theories (equations
(15) and (16)) shows that if 7> 0.68 when > 300 K (which is true for a majority of metals
and alloys) then the difference in (u?), predicted by these two equations is at most 2%.
Hence, above 7=0.660 the quantum effects on (%), and (u}), are small and (u) =
(u}), ={u?), given by equation (16) is a good approximation. Unfortunately, there are
very few accurate measurements of Debye—Waller factors in alloys at any temperature to
check this assertion. However, a review of the x-ray measurements of the Debye—Waller
factors in B2 alkali halides given by Agrawal et al (1975) shows that (u2), and {uj), for
these systems have similar but not exactly equal values for 7>0.66, even when 8 is less
than 300 K; this also indicates that equation (16) is a good approximation for this
temperature range. The reason for the two sublattices not having exactly equal thermal
MsD in B2 alkali halides at higher temperatures, near 6, is because of the contributions of
second and possibly higher nearest neighbours, since the second NN distance in Bcc lattices
is only 1.195 times greater than the first NN distance.

At lower temperatures the effect of the different masses of atoms A and B becomes
important, and there are no simple quantum expressions such as equation (16) to describe
the behaviour of (u2) and (u}),. Govindarajan (1973) and Agrawal et al (1975) have
used model potentials which fitted measured phonon dispersion curves to calculate the low-
temperature Debye—Waller factors in B2 alkali halides, and they obtained good agreement
with experiment. From this work it can be seen that, at low temperatures, the sublattice
which contains the atoms of the higher mass has a lower value of the thermal MSD than the
other sublattice, and this statement will apply equally to any binary B2 system with atoms
of different mass. Because no simple model expressions can be derived for (#2 ), and (u}),
in B2 alloys at low temperatures, it is better to make measurements of these temperatures
above 0.64 so that equation (16) can be used with reasonable accuracy.

To calculate the static displacements for the a and f sublattices in Bcc ordered systems
the method of Shirley and Fisher (1979) will be used. Their equation (12) shows that the
static displacement of an atom at site j due to atoms at sites k can be written as

u,=—§ fjk-ok. (17)
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This equation can be modified to incorporate the existence of two sublattices, thus
u())=—2. &i)o(}). (18)
k

Here y or  specifies the sublattice (a or f) while j and k are indices summing over a simple
cubic lattice. In the derivation leading to expressions for the static MsD for solid solutions,
it was found by Shirley and Fisher (1979) that the displacement due to one substitutional
defect for an atom at the origin, &, was proportional to the ratio of the NN force on the
defect, F(1), to the NN force constant, a;. &, was then expressed as a function of
concentration and SRO only, by assuming that NN central forces predominated. Shirley and
Fisher (1979) expressed &, as

& =4yanTy (19)

where a is the lattice parameter, n=d In a/dm,, y is the static amplitude displacement
factor which is derived to be equal to 1.0, and Ty, is an element of a dimensionless
displacement field tabulated in the (100) directions for a Bcc lattice in table 1. Now since
o(}) and o ,5) reduce to the disordered definition o, = (2my, —2m, ) for S =0 (full disorder),
the displacements for the ordered case can be written down directly by comparison with
equation (19); thus,

&(aa) = 1yanT(s)- (20)

The problem now is the evaluation of (¥2(3)),, 4*(§)),, <o(L)u*(L)), and {o())u?(4)),.
Now,

W) =2 8% - &) o5)a()). Q1)
G

Table 1. Dimensionless displacement field T, for a BCc lattice.

I'mn T, (I mn) T, (I mn) T, (I mn)

111 0.2470 0.2470 0.2470

200 —0.2597 0 0

220 0.0717 0.0717 0

222 0.1341 0.1341 0.1341

311  -0.0326 —0.0147 —0.0147

331 0.0403 0.0403 0.0022

333 0.0775 0.0775 0.0775

400 —0.0341 0 0

420 —0.0027 —0.0010 0

422  —0.0089 0.0034 0.0034

440 0.0276 0.0276 0

442 0.0257 0.0257 0.0032

444 0.0460 0.0460 0.0460

511 —0.0125 —0.0015 -0.0015

531 0.0010 0.0016 0.0013

533 0.0017 0.0085 0.0085

551 0.0188 0.0188 0.0014

555 0.0284 0.0284 0.0284

600 —0.0105 0 0

620 —0.0052 —0.0018 0

622 —0.0063 0.0008 0.0008

640 0.0025 0.0026 0
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Therefore

UH2))s = ZE( AREEAICLE )>+2Z§( %) - Eap)o(2)als))

+Z§( )+ &(apXo(§)o(4)). (22)

For simplicity, the effects of sro will now be ignored. This will be done for two reasons:
(i) by suitable heat treatment it is often possible to produce an alloy with zero srRoO when
LRO is present; (ii) if an alloy shows LRO the effects of accompanying srRo will be less than
in a disordered alloy, and in a B2 system where LRO is a maximum only second NN SRO can
exist which, as shown by Shirley and Fisher (1979), makes only a small contribution to the
MSD.

If there is no short-range correlation between an atom on (%) and an atom on ( ),
(0(,;)0( )) will vanish except with (¥)= ( ) for which &%)= 6( )=&0)=0 and therefore
(o(X )0( p)> 0. A similar argument applies to an atom on (/) and an atom on (%), but this
time (£) can be equal to (%) and in this case, from equations (5) and (6),

(0% (3)) =radWh + wadrk =4raw,
=4mymg +2(mg —my)S — S? =A. (23a)
Also, following a similar argument,
(O*(§)) =rgdwh + wpdri =drgwy
=4mymg —2mg —my)S—S*=B (23b)
and so from equations (20), (22) and (23)

(L)) =Tey?a’n? AZT( NT(% )+BZT( )« T(&)|. (24)

The sums T, T(X)T(X) and X, T( ). T( ) can be evaluated from table 1. The value of
the first sum is 1.071 and that of the second sum 1.766, so that

(L)) = 572 a*(1.0714 + 1.766B). (25a)
A similar procedure gives
UH(R))s = 157*a®n*(1.7664 + 1.071B). (25b)

If there is no srRo then both {a(;)u*(5)), and (o(4)u*(})) vanish, since

(a(D(l)y = Z E &) a(L)o(5)a(})) (26)

and for zero SrRo the only non-zero triplet requires that (})=(%) and (})= ( ) for which
E(X)=&0) and &L ») =&(0) which are both zero. This is also true for <o(p)u2(p)>,

From this, and equations (9) and (15), it is easy to see that the static MSD depend only
on the site (a or f), and not on the type of atom occupying it. This result was also found by
Shirley and Fisher (1979) for disordered alloys with zero SrRo. Therefore

W (E)a = @B(h))p = ud) (27a)
WP(g)a = U5y ={up). (27b)
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It should be pointed out that equations (25) reduce to the zero sro disordered case when
S =0 (equation (22) of Shirley and Fisher (1979) with all C, =0).

2.1. Effects of maximum LRO

2.1.1. Stoichiometry. For a fully ordered stoichiometric B2 alloy S=1 and m, =my =}
so that equations (1) for the structure factor become

e (fa+ fa)e ™ (fundamental) (28a)
U= s)e™ (superlattice). (28b)

Equation (13) for the average interatomic force constant is now given by K=k, and
equation (15) for the thermal MSD becomes

(Ut =CKT/kpp. 29)

Since the quantum expression (16) and the classical formula (29) must agree as T— oo then
kapocu,02 where 6, and g, are the Debye temperature and atomic weight of the
stoichiometric alloy. In equations (25) 4 =B =0 and so {(u2 ), = (u} ), =0, i.e. there are no
static contributions to the MSD at stoichiometry, and all the strain due to atomic radius
mismatch has been relieved.

2.1.2. A rich substitutional alloys. A B rich substitutional alloy will have equations
identical to those of the A rich alloy except that all the subscripts referring to A atoms will
become those for B atoms. For an A rich alloy with maximum LRo S=2mjy and from
equations (1) the structure factors are

F= fae™Ma 1 [(my —mp)fa +2mp fole™ ™t (30)

where the plus sign refers to a fundamental reflection and the minus sign to a superlattice
reflection. From equation (13) the average interatomic force constant is

k=(mA —mB)kM +2mBkAB (31)

and (u?), is given by equation (16). Since kocu? and k,p oc, 67 equation (31) can be
written in terms of the Debye temperatures; thus

16* = {[(my — my)/7'} + 2my } 11, 62 (32)
where ' = kg /Kaa -

The static displacements are (from equations (25))

(ul), =0.883y2a* P my(my, —mg) (ufdy =0.5355y* P my(my —mg). (33)
In many instances the static displacements are small and the averaging approximation
(UPyy = (Ul )y = (u} )y =0.7093y* a* P my (my —my) (34)

can be used, so that M, =My =M.

3. Potential application of the model to structure factor measurements

The analysis of structure factors in any binary alloy system requires values of the atomic
scattering factors, fy and f3, and a mathematical relationship between the NN atomic
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force constants ka,, kap and kgp expressed in terms of one unknown, which is then
determined along with the static-amplitude displacement factor y. During any such
analysis, the effects of anharmonicity or the existence of any anomalous vibrational
behaviour should be considered.

3.1. The atomic scattering factors f, and f3

Measurements of Debye—Waller factors by x-ray diffraction are usually made from the
integrated intensities from high-angle reflections, which means that tabulated values of the
atomic scattering factors, f, and f3, can be used with reasonable accuracy.
Debye—Waller factor measurements by neutron diffraction do not require a knowledge of
scattering factors.

In the case of the systematic critical voltage effect, f, and f; for the first-order and
sometimes the second-order reflections are not necessarily accurately given by tables and
so these must be determined in some way. Shirley and Fisher (1979) pointed out that the
electronic contributions to the stability of primary solid solutions are minimal, so that the
low-angle scattering factors in the pure elements could be considered to be unchanged on
alloying. For an ordered Bcc alloy which arises from a disordered primary solid solution,
there may be some electronic contributions to the ordering process, which could alter the
values of the low-angle atomic scattering factors.

Most B2 alloys, however, do not arise as a result of the ordering of primary solid
solutions, but are of the f§ type. These are intermediate phases which have strong electronic
contributions to their stability and rely on the electron-to-cell ratio being a constant value
of three. The elements which comprise these alloys often have different structures to the 8
phase, as well as having a different electron charge distribution, which means that the first-
order and sometimes the second-order low-angle atomic scattering factors of a systematic
row in these alloys must be considered to be unknown during a critical voltage analysis.

3.2. The interatomic force constants kp , kg and kay

For a primary solid solution Shirley and Fisher (1979) used the parameter
7=2kag/(kaa + kgp) in conjunction with the Debye temperatures of the pure elements to
produce a mathematical expression for the Debye temperature of the alloy. This assumes
that the system is an isostructural, continuous solid solution, and so a B2 alloy which
arises as a result of the ordering of such a solid solution will probably have interatomic
force constants with values similar to those in the solid solution. The reason for this is that
Kaas kaps kgp and therefore T depend predominantly on NN central forces (core—core
interactions), which are unlikely to be changed significantly by the long-range ordering
process, as such changes will depend on the outer electrons which are responsible for
cohesion, although there may be some force constant changes associated with the strain
relief of ordering.

In S-phase alloys no pure element information can be used to estimate k4, or kg and
all three types of interatomic force constant must be considered to be unknown when
analysing MSD measurements made on these systems; this is not a difficulty as equations
(28) and (31) show that, at most, only two of these are unknown in a fully ordered alloy.

3.3. y-static amplitude displacement factor

As discussed by Shirley and Fisher (1979), this parameter is of the order of unity and
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should be relatively independent of composition. To measure this parameter it is necessary
to prepare an alloy with minimal SRO and a maximum number of substitutional defects,
and to measure the structure factors at various temperatures.

3.4. The effects of anharmonicity

With increasing temperature, the interatomic force constants weaken and this means that
the thermal MsD increase more rapidly with increasing temperature than they would in the
absence of anharmonic effects. A detailed review of the effects of anharmonicity on the
thermal MsSD has been given by Krivoglaz (1969) and by Willis and Pryor (1975). They
point out that the effects of anharmonicity can be accounted for over a large range of
temperatures purely by considering thermal expansion. The quasi-harmonic correction
derived by Willis and Pryor (1975) for the thermal MSD is

Uty =P ym/(1 + 289, T) (35)

where (u?)y, is the measured value of the thermal MsD, (u*), is the corrected value, f is
the volume expansion coefficient, y, is the Gruneisen parameter and 7 is the absolute
temperature. Unfortunately, for many alloy systems there are no values of y and f
available, so that it is preferable to make measurements at lower temperatures where
anharmonic effects are small.

The effects of anharmonicity due to thermal expansion on the static MSD as embraced
by the quasi-harmonic approximation are less, since these depend on the ratio of the NN
force on the defect to the NN force constant, a;, where these two will both decrease
proportionately with increasing temperature.

3.5. Bcc systems and the w-phase transformation

Contributions to the MSD in some quenched Bcc solid solutions based on Zr, Ti and Hf can
also come from the w phase (see for example Kuan and Sass 1976, De Fontaine et al
1971). Associated with this contribution to the MsD are diffuse intensity streaks close to the
traces of the {111} planes in reciprocal space, and the maxima of this diffuse intensity
occur at the $(112) reciprocal lattice positions. Below a certain temperature, T, these
diffuse intensity regions sharpen into reflections characteristic of the w phase (Sass 1972,
Dawson and Sass 1970). There have been several theories proposed to explain the w phase
(see for example Borie et al 1973, Pynn 1978, Horovito et al 1978, Cook 1975). Of these
only Cook (1975) made quantitative predictions. He proposed that @ was homogeneously
nucleated by the collapse of {111} planes arising from large-amplitude displacement waves
(phonons) propagating in {(111) directions; these were considered to arise from strong
anharmonic terms in the expression for the free energy of the system which contained the
w phase. Kuan and Sass (1976) found that such a model did not adequately fit the
observed diffuse intensity effects and proposed that w is heterogeneously nucleated by
thermal vacancy point defects. In this case {111} planar collapse is limited to the region of
the point defects, i.e. a low-frequency phonon or phonon group is trapped by the defect.

Recently Prasetyo et al (1976), Ortiz and Epperson (1979), Kirchgraper and Gerold
(1978) and Georgopoulos and Cohen (1977, 1981) have detected w-like transformations in
the B2 alloys ' CuZn, ’ CoGa and 8’ NiAl, and this work has shown that substitutional
defects as well as vacancy defects can nucleate w in these systems.

Above T,, the phonon trapping process increases the static displacements and reduces
the thermal displacements so that the latter cannot be described by equations (16) and
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modifications to the model for the MSD must be considered in these cases. Below 7,,, an
w-containing alloy is two-phase so that the structure factors cannot be described by
equations (1), and no simple theory is applicable.

4. Summary and conclusions

A simple model has been developed for analysing structure factor measurements in
ordered Bcc (B2) alloy systems. This model is based on the ideas of Shirley and Fisher
(1979) who developed expressions for the MSD of solid solutions to analyse critical voltage
measurements in these.

The potential application of this model to Debye—Waller factor measurements made by
x-ray or neutron diffraction and structure factor determinations made by the critical
voltage method have been discussed, and in addition to the usual effects of static
displacements due to atomic radius mismatch, LRO and anharmonicity, the possible effects
of the w phase have been examined.

In the following paper (Fox 1983) this model will be used to analyse critical voltage
measurements in three ordered Bcc (B2) alloys: these arise from the ordering of a primary
BCC solid solution, a §’ phase and a 8’ phase which contains diffuse w.
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