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GRAIN BOUNDARY DRAG IN ALLOYS

c. G. SHIRLEyt

Center for the Joining of Materials, Carnegie-Mellon University, Pittsburgh, PA 15213, U.S.A.

(Received 2 August 1976; in revised form 22 July 1977)

Abstract-The extrinsic component of the drag force on a grain boundary in an alloy of arbitrary
composition and appreciable atomic size disparity is studied in a model in which the boundary is
simulated by an externally imposed two-dimensional distortion field. Extrinsic boundary properties

. arise from processes occurring near, but not in the boundary, so the present study may also be viewed
as a study of the coupled concentration and strain fields near a boundary. The results of this paper
may be interpreted qualitatively in terms of a velocity and temperature dependent solute-boundary
interaction potential. In the limit of small concentrations, this potential becomes velocity and tempera­
ture independent so we recover essentially the grain boundary drag theory of Cahn and Liicke and
Stiiwe. We find that for temperatures close to the coherent spinodal, the grain boundary mobility
decreases rapidly with increasing velocity at low velocity, and that this behavior corresponds to a
composition profile which is very sensitive to velocity. These effects are less pronounced at higher
temperatures. The results apply to velocities less than the breakaway velocity, but the way to extend
the theory to higher velocities is indicated. .

Resume-On etudie la composante extrinseque de la force de tralnage sur un JOInt de grains dans
un alliage de composition quelconque ou les constituants presentent des tailles atomiques nettement
differentes, a l'aide d'un modele dans lequel on simule un joint en imposant de l'exterieur un champ
bidimensionnel de distorsions. Les proprietes extrinseques du joint proviennent des processes qui se
produisent pres du joint, mais pas dans Ie joint, de sorte que l'on peut interpreter ce travail comme
l'etude des champs couples de concentration et de deformation au voisinage d'un joint. On peut in­
terpreter qualitativement nos resultats en considerant un potentiel d'interaction solute-joint dependant
de la vitesse et de la temperature. Dans la limite des faibles concentrations, ce potentiel devient indepen­
dant de la vitesse et de la temperature, si bien que l'on retrouve essentiellement les resultats de la
theorie du tralnage des joints de grains de Cahn et de Liicke et Stiiwe. Pour les temperatures proches
de la spinodale coherente, la mobilite du joint de grains diminue rapidement quand la vitesse augmente,
aux faibles vitesses; ce comportement correspond a un profile de composition tres sensible a la vitesse.
Ces effets sont moins prononces a haute temperature. Nos resultats s'appliquent pour des vitesses
inferieures a la vitesse de liberation, mais on indique comment on pourrait etendre la theorie a de
plus grandes vitesses.

Zusammenfassung-Es wird die extrinsische Komponente der Reibungsspannung auf eine Korngrenze
in einer beliebig zusammengesetzten Legierung mit betrachtlichem Unterschied in den AtomgroBen
in einem Modell untersucht, in welchem die Korngrenze durch ein auGen angelegtes zweidimensionales
Verzerrungsfeld simuliert wird. Die extrinsischen Eigenschaften der Korngrenze riihren von Prozessen
nahe, aber nicht innerhalb de Korngrenze her; die vorliegende Untersuchung Kann also als eine
Untersuchung der verkoppelten Konzentrations- und Verzerrungsfelder in der Nahe einer Korngrenze
angesehen werden. Die Ergebnisse dieser Arbeit lassen sich qualitative mit einem geschwindigkeits­
und temperaturabhangigen Wechselwirkungspotential Legierungsstoff-Korngrenze interpretieren. In der
Grenze kleiner Konzentrationen wird dieses Potential geschwindigkeits- und temperaturunabhangig,
so daB wir im wesentlichen die Theorie von Cahn und .Liicke und Stiiwe erhalten. Fiir Temperaturen
nahe der koharenten Spinodalen nimmt bei kleinen Geschwindigkeiten die Korngrenzbeweglichkeit
rasch mit zunehmender Geschwindigkeit ab; dieses Verhalten entspricht einem sehr geschwindigkeit­
sempfindlichen Zusammensetzungsprofil. Bei hoheren Temperaturen sind diese Effekte weniger aus­
gepragt. Diese Ergebnisse beziehen sich auf Geschwindig keiten unterhalb der LosreiBgeschwindigkeit;
der Weg zu Erweiterung dieser Theorie zu hoheren Geschwindigkeiten wird angedeutet.
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1. INTRODUCfION
The problem of the effect of impurities on grain
boundary motion has received a good deal of theor­
etical attention. The first important paper was by
Lucke and Detert [1J, and improved versions were
later published independently. by Cahn [2J and by
Lucke and Stuwe [3, 4]. We shall refer to this theory
as the CLS theory. The model used by these workers
is one in which the solute atoms interact with the
boundary by a potential well which moves with the
boundary. The detailed nature of the potential is not
important in these theories, but the major contribu­
tion to the solute-boundary interaction is thought to
be the elastic interaction caused by the atomic radius
disparity between solvent and solute atoms. For
small-angle boundaries, the elastic interaction arises
from the strain field of the boundary dislocations. For
a general boundary, the strain field is due to the
elastic accommodation of the crystal lattice to the
mixture of structural units each of which corresponds
to a coincidence boundary with orientation near that
of the general boundary [5]. The range of the elastic
interaction is commensurate with the spacing of the
dislocations or structural units.

For small solute concentrations, the solute atom­
boundary interaction energy is independent of the
presence of other solute atoms. But for large solute
concentrations, two effects can influence the solute­
boundary interaction. The first is that the solute
atoms interact with each other, and the second is that
for equilibrium situations (stationary boundary), the
elastic moduli in Hooke's law are replaced by effective
elastic moduli which are strongly temperature depen­
dent. The effective elastic moduli arise in alloys with
appreciable atomic-radius disparity because of the
coupling between composition and strain fields [6].
The effective elastic moduli do not apply, however,
to situations in which strains vary much more rapidly
than the characteristic diffusional relaxation time of
a composition field with similar spatial configuration.
Thus, the elastic constants governing ultrasonic wave
propagation are different from those governing the
strain field around a static dislocation. Similarly, the
nature of the strain fields near a moving grain bound­
ary will change with velocity. For low velocities, the
appropriate moduli are the effective elastic moduli;
whereas for high velocities, the appropriate moduli
are the ultrasonic moduli. In the language of the CLS
theory, the solute-boundary interaction potential in
concentrated alloys is velocity and temperature
dependent at low velocities.

The grain boundary drag force consists of two
parts: an intrinsic part due to dissipative processes
occurring within the boundary, and an extrinsic part
due to dissipative processes related to fluxes in the
grains near the boundary. The main thrust of the CLS
theory is the evaluation of the extrinsic part of the
drag force, although the intrinsic part is also con­
sidered. In the present work, attention is confined to
the extrinsic part of the drag force. The theoretical
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depth of Cahn's potential wells, (28)
applied force field, (3)
regular solution energy parameter, (18)
atomic volume (= a3/4 for f.c.c.)
lattice parameter
area of grain boundary
Burgers vector
(30b)
mole fraction of A-atoms
average C

elastic modulus
effective elastic modulus, (15)
amplitude of imposed distortion field, (48)
diffusion coefficient, (39)
self diffusion coefficient, after (39)
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Quantities with a tilde are Fourier transforms of the
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transform of (J.

Lower case Greek subscripts refer to Cartesian com­
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to the free energy density, and the total free energy
is written

When (2) and (3) are used, this equation of motion
becomes, for cubic crystals,

a2u a2u a(J
p atz· = C.pyJ axpa:y - tlC.pyy axp + t/J.o (5)

Assuming the same phenomenological diffusion law
as Hilliard [9J, the flux of A-atoms in the frame of
reference in which the total flux vanishes is

(4)

(6)a (brg)lex = -c(l - c) M - - ,axex b(J

.~ = LU(c) + tK(Vc)Z + -!p-1mZ

+ tCex{3y<>eex{3 ey<>J d V, (2)

where K is the gradient energy coefficient. This is
essentially the free energy used by Cahn [8J in the
theory of spinodal decomposition. In the formal de­
velopment which follows, it will be convenient to con­
sider the response of the alloy to external chemical
and mechanical forces. The appropriate thermodyna­
mic potential to study is rg where

'!J = :F - L[Xa + t/J.u.J d v. (3)

Here X = XA - XB where XA is the externally applied
chemical potential field for A atoms, t/J ex is the applied
force field and U ex is the displacement field. Both X
and t/Jex are functions of position in the crystal.

Imagine an additional mechanical force field ~t/J ex
applied to the solid solution. The condition for equi­
librium, brg = 0, leads to ~t/Jex = brg/buex. If the force
field is removed, the restoring force is - ~t/J ex and
Newton's second law gives

amex
at

2. GENERAL EQUATIONS FOR COUPLED
COMPOSITION AND STRAIN FIELDS

Since the thermal conductivity of an alloy is suffi­
ciently high to keep the system isothermal for pro­
cesses of interest in this work, it is the free energy
density which is of interest in a thermodynamic de­
scription of the system. The free energy of a composit­
ionally uniform (mole fraction c of A-atoms) strained
and moving volume element of volume d V is

[f(c) + tp -1 m2 + tCex{3y<>eex{3e)J<5Jd v:

Here f(c) is the free energy density of an unstrained
stationary volume element; it is the free energy of
a homogeneous unstrained solid solution as measured
by conventional means. The second term is the kinetic
energy density (m ex is the momentum density, p is the
mass density). The third term is the elastic strain
energy density due to distortion of the volume ele­
ment from the shape it would have in isolation from
the rest of the solid solution. Cex {3Y<> are the elastic
moduli as measured by, say, ultrasonic techniques,
and eex{3 is the difference between the total strain Eex {3
and the stress-free strain:

method to be used is, however, quite different from
the CLS theory, and it may be characterized as a
study of coupled composition and strain fields near
an alloy grain boundary.

General equations governing coupled composition
and strain fields are derived in Section 2, and various
special cases of and approximations to these equa­
tions are discussed. In Section 3, the relation of the
present theory to the CLS theory is discussed. Section
4 is an application of Fourier techniques to analyse
the linearized equations derived in Section 2 for a
model of a moving grain boundary. The final section
is a summary.

where for cubic crystals

where M is given by

M = CVA + (1 - c) VB' (7)

dIna
ry=~,

(a is the lattice parameter) and (J = c - co. The aver­
age composition of the entire solid solution is Co, i.e.

in which the integral is over the entire crystal (volume
V). Lower case Greek subscripts indicate Cartesian
components of vectors and tensors, and the conven­
tion of _summation over repeated subscripts is
employed throughout this paper. When the part of
the chemical interaction between neighbouring
volume elements which arises from composition dif­
ferences is taken into account, the gradient energy
density introduced by Cahn and Hilliard [7J is added

(9)

where VA is the velocity of an A-atom under unit
potential gradient. In the simplest model, M is inde­
pendent of composition. From (2) and (3) one finds

brg., 2
-=f(c)-K'V (J-ryCa{3yyea{3-XO-X, (8)
b(J

where Xo is a (spatially constant) chemical potential
chosen to satisfy the condition (1). If the externally
applied chemical potential field is localized, the condi­
tion of equilibrium at infinity leads to Xo = f'(co). The
flux must obey the equation of continuity

a(J = _Q ala
at axex '

where Q is the atomic volume. Equations (5), (6), (8)
and (9) are the general equations governing the
coupled composition and strain fields. The model

(1)LadV = 0

A.M. 26 -' (
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(11)

(15)

could be made more elaborate by, for example, using
composition-dependent elastic moduli, but the above
model is the simplest which contains the essence of
the composition-strain coupling.

A quantity which is of considerable interest in this
work is the rate of entropy production. The change
of entropy for the crystal is

dS = dS i + T- 1 dQ,

where dSi is the internally produced entropy (dSi 2:: 0)
and dQ is the heat flow from the surroundings. The
change in internal energy is given by

dU = dQ + dW = dQ + Iv (Xb/T + l/t.bu.)dV,

so

TdSi = TdS - dU + Iv (Xb/T + l/t.bu.)dV

= -d':§ - Iv (/TbX + u.bl/t.) dV. (10)

In the analysis below, we shall consider externally
applied force fields which are constant in time in a
frame of reference moving with uniform velocity. For
such a case, the integral in (10) vanishes in the moving
frame, t so that

T dSi = _ d~ = _ r (b~ aUa + a
2
ua aUa

dt dt Jv bUa at P at2 at

b~ a(J)+-- dV
b(J at

=Q r b~aJadV
Jv b(J aXa

= _Q r Ja~(b~)dV
Jv aXa b(J

or

T dSi = Q r J
2

dV
dt Jv c(1 - c)M'

In the manipulations leading to (11), equations (4),
(6) and (9) were used, and the divergence theorem,
assuming local equilibrium at infinity, was invoked.
Equation (11) gives the total rate of heat production
as, for example, the points of application of the exter­
nally applied force-fields move at uniform velocity v
through the crystal. In the development below, the
external force fields X and t/Ja will be regarded as for­
mal devices for introducing a moving local composi­
tion and strain inhomogeneity into the crystal so that

t All partial time derivatives in the following are for
coordinates fixed in the moving frame.

t ~ is equivalent to 1 in Ref. 7. ~ may also be regarded
as a measure of the range of short-range order.

~ For the non-equilibrium case of an inhomogeneity
moving at constant velocity, the following term is added
to the left-hand side of (14):

[Qc(1 - c)M(f"(c) + 1]2CKKAA)J-ICaoyyvoa.

(11) may be interpreted in terms of a diffusional drag
force, F, on the moving inhomogeneity:

F = ~ dSi = ~ r (J2 dV (12)
v dt Q Jv c(1 - c)M'

where we have used J':/. = Q-l (JV':/., which follows from
(9) when the condition for steady state in the frame
of reference moving with the inhomogeneity is
employed.

In general, the equations governing the composi­
tion and strain fields are difficult to solve analytically,
but it is possible to make several approximations
which simplify their solution for the situation of inter­
est in the present work. The most important approxi­
mation is linearization because this makes it possible
to employ Fourier techniques. The gradient-energy
term in (8) can be handled by Fourier methods, but
it complicates the solution and has little effect when
the correlation length [7J ~ is much smaller than dis­
tances over which concentration changes are appreci­
able.t The correlation length is on the order of atomic
diameters or less except very near To (defined below).
A concentration profile near a boundary has a decay
length on the order of the diffusion length, Dlv, so
that solutions ignoring the gradient energy are valid
only for velocities sufficiently small that ~ ~ Dlv. As
we shall see, this is equivalent to velocities less than
the breakaway velocity. The effect of primary interest
in this work, viz., the change in elastic character of
fields near a boundary, occurs in the low velocity
regime so the gradient energy terms will be dropped.
Another term which can be ignored is the inertial
term on the left-hand side of (5). This is appreciable
when the inhomogeneity moves with a velocity
approaching that of sound.

The special case of equilibrium and small composi­
tion deviations is particularly easy to handle because
the strain part of the problem decouples from the
compositional part [6]. We derive results for this situ­
ation as a starting point for the analysis of the non­
equilibrium situation which follows, and in order to
define some model parameters. If the gradient energy
term is ignored, equation (8) becomes for equilibrium
and no external chemical forces

f'(c) - f'(co) + (J1]2CaafJfJ - 11 Ca fJyy EafJ = O. (13)

The gradient of this yields an expression for a(JlaxfJ
which when substituted into (5) leads to§

a2u
C~fJYb-aab + t/Ja = 0, (14)

XfJ x y

where C~fJYb is an effective elastic modulus given by

C' = C _ 112C
afJEE CYb~~

afJyb afJyb f"(c) + 11 2 C/
O

().).·

For small composition deviations, we can write

f'(c) ~ f'(co) + (Jf"(co)

in (8) which makes the effective elastic moduli inde-
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pendent of composItIon variations, and the total
strains may be computed using ordinary elasticity
theory but with effective elastic moduli given by (15)
with f"(c) replaced by f"(co). For an isotropic crystal
Cll = 2 + 2fl, C12 = 2 and C44 = fl, where 2 and fl
are the Lame constants, so (15) becomes

It will often be convenient to present results in terms
of this parameter and the dimensionless temperature

(21)

(22)
KT T

r=-----
2wco(1 - co) Tic

from which we may derive the following convenient
parameter:

8 = 1 _ To = 211
2
fl (32 + 2fl) Q .

Tic w(2 + 2fl)

(16a)2' = 2 _ 11
2
(32 + 2fl)2

f"(co) + 311 2 (32 + 2fl)

fl' = fl·

For a regular solution model in which

Qf(c) = wc(1 - c) + KT[cln c + (1 - c) In (1 - c)J,
(17)

In the present paper, attention is confined to tempera­
tures and compositions outside the coherent spinodal,
i.e. 1 - 8 ~ r < 00. In terms of these parameters (16a)
is written

where K is Boltzmann's constant and w is a character­
istic energy parameter given by

2' = 2 _ (32 + 2fl) (2 + 2fl) 8
4fl(r - 1) + 3(2 + 2fl) 8

(23)

t The incoherent spinodal is the locus of f' (co) = o.

Now Cahn [8J has shown (see also below) that the
coherent spinodal, To, is defined by the locus of

At the incoherent spinodal we have r = 1 and
2' = - t fl. This indicates that the crystal would
become unstable to homogeneous dilatations at the
incoherent spinodal if the average composition were
not constrained to be Co (the bulk modulus would
be 2' + t fl). At the coherent spinodal we have
r = 1 - 8 and 2' = - 2fl, which means that any static
distortion wave induced by a constant external force
(or, by Fourier superposition, any induced distortion
inhomogeneity) becomes unstable at To (see equations
44 and 46 below). In Fig. 1 we plot 2'/2 against r
for 2 = 2fl (corresponding to a Poisson ratio of 1/3)
and various values of 8. The method of solution of
an equilibrium problem for which the composition
deviations are small is therefore to solve for the

(20)

(18)

where Iic is the temperature of the incoherent spino­
dalt at composition co, we have

I
I

Incoherent~
Spinodal

-I ""'----------""--............----I---......
2
----J.---....L

3
----..L.-----J

4
T

Fig. 1. The effective elastic modulus A' in units of A as a function of the dimensionless temperature
T for several values of f} = 1 - To/1ic, and for A = 2J1. The coherent spinodal occurs at T for which

A/A' = -1.
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(26)

where

aXe+ vexa = QMc(l - c) -, (25)aXa

the velocity dependent term which would appear in
(14) for a uniformly moving inhomogeneity vanishes
(see footnote). Thus, the elasticity problem for an in­
homogeneity moving with uniform velocity in a dilute
alloy is exactly the same as for a stationary inhomo­
geneity in the pure metal and is therefore decoupled
from the composition variations for all velocities.
(Whereas the elastic problem is decoupled from the
concentration problem in concentrated alloys at high
velocity.) The unlinearized version of (24b) may be
written by replacing Co by c; then using (19) we write
for the isotropic regular solution

which is an effective chemical potential field. For
small concentrations (25) becomes

which is exactly Cahn's equation with an effective in­
teraction energy Xe. Now we have just shown that
the elasticity problem (and hence ~) is velocity and
temperature independent in the low concentration
limit, so the CLS picture of diffusion in a moving
velocity-independent potential is consistent and com­
plete at low concentrations.

The situation is more complicated for arbitrary
concentrations. First, equation (25) is nonlinear.
Lucke and Stuwe [3, 4J took into account the non­
linearity on the right-hand side of (25), but did not
take into account the non-linearity arising from solute
interaction (square brackets). The other complication
is that Xe becomes concentration and hence velocity
dependent, introducing further nonlinearities. It is
possible to study alloy grain boundary drag by linear­
izing (25) about some arbitrary composition co, and
this leads to an equation similar to (27); but with
c replaced by Co and with Xe a linear function of con­
centrations and displacements. This linearization is
carried out, albeit in a different fashion, in the follow­
ing section so that t-he model we shall study becomes
formally equivalent in the low concentration limit to
a simplified version of the CLS theory which has c
replaced by Co in (27). It is easy to show that the
solutions to the simplified CLS theory coincide with
the unsimplified CLS theory when QXe/KT ~ 1.

Cahn [2J and Lucke and Stuwe [3, 4J predict the
phenomenon of grain boundary breakaway. This
occurs when the total drag force has a local maximum
for some finite velocity. This maximum is due to the
extrinsic drag force component which first increases
but then decreases with increasing velocity. It is not

strains using conventional elasticity theory with effec­
tive elastic moduli, and then to substitute the dila­
tation field ~ = Ell + E22 + E33 into

Notice that if the dilatation field remains finite at
To (r = 1 - 8) then the composition field will also
remain finite. The dilatation field will remain finite
at To if the boundary conditions to the elasticity prob­
lem are constant strain, as opposed to constant stress,
boundary conditions. The grain boundary model ana­
lyzed in Section 4 has a composition profile which
is finite for equilibrium at To for this reason.

When composition deviations are not small, or
when equilibrium does not obtain, the equations are
not as simple to solve. Large composition deviations
introduce nonlinearities and the elastic and composit­
ional parts of the problem do not decouple for gen­
eral non-equilibrium situations. (However, we shall
see in the following section that decoupling does
obtain in the case of a grain boundary moving in
a dilute alloy as studied by Cahn [2].) The object
of the present paper is to study a situation in which
the effective decoupling does not occur, namely, a
steady-state non-equilibrium situation in an alloy of
arbitrary composition. However, nonlinear effects will
not be studied. The set of linear equations applying
to the situation of interest is

These equations follow from Equations (5), (6), (8) and
(9) and they hold in a frame of reference moving at
velocity Va in which an inhomogeneity induced by
external forces has reached steady state (is stationary).
The following approximations have been made:

(i) Composition deviations are small.
(ii) Composition has small spatial variation on the

scale of the correlation length.
(iii) The velocity of the inhomogeneity is much less

than that of sound.

which follows from (13). For the isotropic regular
solution this is

In the limit of small solute concentrations, it is
apparent from equation (19) that f"(co)~ 00. This
means (see equation 15) that C'exfJyo~ CexfJyO, and that

3. RELATION TO THE CLS THEORY
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by

(31)

(34)

(35)

(33c)

(32a)
(32b)

(33a)

(33b)

a = f"(co) + 11 2 CXX {3{3

+ B:x $:x,/ BfJ + Kk 2

+ ikex vex [co(l - co)MQk 2J- 1

a- = a- 1x+ {3exlifex
£lex = - {3exX + {ex{3lif{3'

Bex = - i (3A + 2J1) krx

cfJex {3 = J1k 2 bexfJ + (A + J1)k:x kll.

It is easy to verify that

For simplicity's sake, calculations will be performed
for an elastically isotropic solid solution. Results will
be given both for an arbitrary free energy density,
and for the regular solution model defined in Section
2. For the isotropic case

where

and consequently to demonstrate that

Bx cfJ;r/ BfJ = - 11 2 (3,1 + 2J1f (A + 2J1)-1.

Thus at k = 0 and v = 0, a is given by

a- = Iv a exp(ik. x.) dV.

We have temporarily reintroduced the gradient
energy contribution in ao. Equations (29) may be in­
verted to find the composition and strain fields which
arise in response to the chemical and mechanical force
fields X and ~ex:

(28)

q/ = 1 - exp( - p) (square well)

~'=~l(l-~)+(l +~)exP(-p)J
(triangular well),

or

where

where p = hvlD, h = potential well width, and Xe(O)

is the maximum potential well depth. Hillert [10J has
found, however, that breakaway will occur even for
a square well potential if one truncates the solute
"spike" at the boundary at a distance of several
atomic diameters from the boundary, and that the
effect of the spike truncation becomes appreciable
when DIv is on the order of atomic diameters. The
spike truncation procedure has its basis in the fact
that concentration profiles cannot exist physically if
they are narro\ver than a few atomic diameters, thus
physically one expects breakaway always to occur at
some sufficiently high velocity, no matter what the
potential well shape is. The neglect of the spike-trun­
cation procedure in the CLS model is equivalent to
the neglect of the gradient energy in the present
model, so from the viewpoint of the breakaway
phenomenon, we see again that the model studied
in this paper is valid only for ~ ~ DIv.

commonly recognized, however, that this behavior in
the CLS model depends on the nature of the solute­
boundary interaction potential. For example, break­
away occurs for the triangular potential well studied
by CLS, but not for a square well. The same behavior
occurs in the simplified CLS model and one finds
that the extrinsic drag force per unit area, FIA, is
given by

4. APPLICATION OF THE LINEAR
EQUATIONS TO MOVING GRAIN

BOUNDARY

a(O) = f"(co) + 411 2J1(3,1 + 2J1)(,1 + 2J1)-1

= 2evQ - 1(T - 1 + 8),

(37a)

(37b)

If in addition to the isotropic regular solution
assumption, we assume a model in which M is inde­
pendent of composition, then M = D*IKT, where D*
is the self-diffusion coefficient in the pure metals (both

where the second equality is for the regular solution
model. a(O) vanishes at the coherent spinodal (see
equation 20). At this point, we drop the gradient
energy contribution from (33a) but note that for other
applications of the equations (such as grain-boundary
drag for Dlv < ~) it may be necessary to retain it.
Equation (33a) becomes

a = a(O) [1 + ikex Vex (Dk 2
) -1J, (38)

(a) The Fourier traniformed equations in an isotropic
alloy

The linear equations (24) are most naturally
handled by Fourier analysis, and their Fourier trans­
forms are

(29a)

(29b)

where

cfJex {3 = CexY{3b kykb (30a)

Bex = - i11Cex{3yyk{3 (30b)

ao = f"(c o) + 11 2 Cexex {3{3 + Kk 2

+ ikex Vex [co(1 - co) MQk2J-1, (30c)

where kex is a cartesian coordinate in reciprocal space
and where the Fourier transform of, say, (J is given

where

D = a(O) Co (1 - co) MQ. (39)
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have the same D*). If D* = Do exp (- Q/KT) where
Do is a constant, then

D = Do [1 - (1 - 8)/r] exp (- Q/KT), (40)

where we have used equations (37b) and (22). We also
have

il1 (3A + 2/1) ka

fl. = - IX(O)(A + 21l)(k2 + ikpvpD- 1) (41)

and

For v = 0 it can be shown that Yap has exactly the
form of (36) but with A replaced by A'.

I.
---- -----r1

-:::::/

(0)

(b)

(b) A planar distortion model of a symmetric grain
boundary

Computer simulations of grain boundary structure
and energy [11] have revealed that although the
energy is sensitive to the precise form of the inter­
atomic potentials, the structure is not. This is consis­
tent with the notion that the grain boundary structure
problem can be regarded in a first approximation as
one of finding the best fit of arrays of "hard balls".
It is therefore reasonable to simulate the displacement
field near a grain boundary by the displacement field
in a semi-infinite crystal with an externally imposed
two dimensional distortion field (not force-field) on
its free surface. The strain field on each side of the
grain boundary can be simulated in this way, but not
necessarily by the same two dimensional distortion
field. For example, one side of a symmetric tilt bound­
ary will have a strain field, one Fourier component
of which can be simulated by an imposed two-dimen­
sional distortion field with polarization normal to the
free surface (see below). Because of the symmetry, the
other side of the boundary must have its correspond­
ing strain field Fourier component simulated by an
imposed two-dimensional distortion field of opposite
sign. We shall call this a "physical simulation" (see
Fig. 2). On the other hand, for the mathematical
methods used in the present paper it will be more
convenient to use a mathematical simulation in which
the imposed distortion field is applied to a plane
bisecting an infinite crystal. This necessarily corre­
sponds to applying the same two-dimensional distor­
tion field to the surfaces of the semi-infinite crystals
defined by the plane. Any strain field simulated in
this way by an imposed two-dimensional distortion
field with polarization normal to the plane cannot
have the reflection symmetry required of the physical
symmetrical boundary. However, each normally
polarized Fourier component in this mathematical
simulation generates a distortion field on one side
of the boundary which is related to the corresponding
field in the physical simulation by a shift of half a
wavelength parallel to the wavevector of the imposed
two-dimensional distortion on the plane as in Fig. 2.

Fig. 2. (a) Physical simulation of a Fourier component of
the strain field near a symmetric boundary by imposing
two-dimensional distortions on the free surfaces of semi­
infinite crystals. (b) The corresponding mathematical simu-

lation obtained by the translation indicated in (a).

When the polarization vector of the imposed two­
dimensional distortion field is in the plane of the
boundary there is no distinction between the physical
and the mathematical simulations because the mathe­
matical simulation will have the physical reflection
symmetry required of a symmetrical boundary. Thus,
even though the total distortion field in the mathema­
tical simulation may not have the reflection symmetry
of the physical symmetrical boundary, each Fourier
component has reflection, or reflection plus trans­
lation, symmetry in the boundary plane. Since the
present model is linear, calculations such as the inte­
gration of (12) may be performed separately for each
Fourier component. Taking each Fourier component
separately, it is fairly obvious that the non-physical
translations introduced by using the mathematical
simulation depicted in Fig. 2 will have no effect on
the value of the integral in (12). By superposition this
is also true when all the Fourier components are
taken together. The conclusion is that the mathemati­
cally convenient but unsymmetrical simulation of the
strain fields obtained by imposing a two-dimensional
distortion field on a plane bisecting an infinite crystal
will yield the correct value for F (via 12) correspond­
ing to a symmetrical physical boundary in which nor­
mally polarized Fourier components are related to
the corresponding Fourier components in the mathe­
matical simulation as in Fig. 2.

Consider a plane, which we shall call the defect
plane, cutting through an infinite crystal and moving
with velocity v, and let there be an external mechani­
cal force field applied in this plane. Let 0-1- be a unit
vector in the direction of the velocity (normal to the
plane). We can write a position vector in real space
as r = rll + 01- r-1-, where rll is the component of r

parallel to the planar defect. We take the origin of
coordinates to lie in the defect plane. k, k II and k-1-
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and

and to find its matrix inverse. The result is

The results for the p~ 0 limits have the same form
but with A replaced by A' in (46a). It is also possible
to use complex analysis to find fJa (k II' r -1-), and the
result is:

fJ(
k r) i_I1_(3_A_+_2_J1_) exp[ - (1 + p2)t k II r-1-J

II' -1- - 2a(0) (A + 2J1) (1 + p2)t

X [0Il - i 0-1-(P + (1 + p2)t)J (r -1- > 0) (47a)

and

i 11 (3A + 2J1)
fJ(k II' r -1-) = 2a(0) (A + 2J1)

exp[((l + p2)t - p)k II r-1-J
x 2 1

(1 + p }z

x [0Il - i0-1-(P - (1 + p2)t)J(r-1- < 0). (47b)

u(rll' 0) = d(oll cos qll . rll + 0-1- sin q!1 . rll)' (48)

where

A + 3J1 b
d = ---= 020b

A + 2J1 2n . ,

where the second equality holds for v = 1/3. The two­
dimensional distortion field simulating the r -1-~ - 00

behavior of the strain field is the same as (48), but
with -0-1- replacing 0-1-' The model given by (48) is
not expected to give more than a crude approxima­
tion to the extrinsic properties of a symmetric tilt
boundary. The main purpose of the asymptotic
matching is to give an estimate of the magnitude
of d to be expected in the dominant Fourier com­
ponent of a model of a general grain boundary. Equa­
tion (48) is the model in which the grain boundary
drag and composition profiles will be calculated
below.

Equations (44) and (47) enable one to compute the
composition profile near a moving boundary via
equation (43b). The corresponding displacement field
is not of direct interest, so Y!XP (k II' r -1-) will not be
given explicitly.

A realistic grain boundary will have strain fields
which are simulated by a complicated two-dimen­
sional distortion field U!X (r II' 0). In the present analy­
sis, we shall use the simplest model grain boundary
which demonstrates the phenomenon of interest. It is
possible to use (43a) for the special case of a station­
ary boundary in a pure metal to find the two-dimen­
sional imposed distortion field which gives a strain
field in the r -1- > 0 grain which is asymptotically iden­
tical (as r -1-~ (0) with the strain field due to an array
of edge dislocations comprising a tilt boundary [12].
If the dislocations have Burgers vector b and spacing
l = 2n/q II where q II has a direction normal to the dis­
locations in the plane of the boundary,

(45e)

(44)

(45c)

(45a)

(45b)

(45d)

p = ~ ----p--­
y 1 + p2 + (1 + p2)t

1[ A + 3J1 w J
R = Y 2(A + 2J1) + (1 + p2)t

(A + 3J1)2 (A + 3J1) w

y = 4(A + 2J1)2 + (A + 2J1) (1 + p2)t

2w2

+ 2 2 l'1 + P + (1 + p }z

where I II is a 2 x 2 unit matrix and

A + J1 - 2(A + 2J1) w(l + p2)-t
L = -----------=----

A + 3J1 + 2(A + 2J1) w(l + p2)-t

where the second equality is for the regular solution
model. It is not difficult to show that

where p is a Peclet number or dimensionless velocity
given by

11 2(3A + 2J1)2J1 (3A + 2J1) 8
w =.2a(0) (A + 2J1)2 = 8(A + 2J1) ('r _ 1 + 8)' (451)

f
+ CfJ

ua(k ll , r -1-) = (2n)-1 _ CfJ ua(k)exp( - ik-1- r -1-) dk-1-'

When the k-1--inverse Fourier transform is applied to
equations (32) and the k-1--independence of ;(Ja is taken
into account, we find

uik ll , r-1-) = Yap(k ll , r-1-) Yi/ (k ll , 0) u)! (k ll , 0) (43a)

cr(k ll , r-1-) = fJa (k ll , r -1-) y;f/ (k ll , 0) up (k ll , 0). (43b)

These expressions relate the composition and dis­
placement fields near the defect plane to the two­
dimensional Fourier transform of the imposed dis­
placement field at r -1- = 0, viz ua (k ll , 0). It is a long
but straightforward exercise in complex analysis to
find the following k -1- -projection of Yap:

y.p(kll,O) = (2n)-1 fexT

y,p(k) dk.L'

have similar definitions in k-space. Also, °II is a unit
vector parallel to kll' With these definitions, we can
say that the defect plane is at r -1- = 0, that X = 0, and
~a (k) is independent of k-1-' i.e. ;(Ja (k) = ~a (k ll ).
The two dimensional Fourier transform of Ua (r) in
a plane parallel to the defect plane is given by the
k-1--inverse Fourier transform of ua(k):

lim R = lim (1 + L) = 2(A + 2J1)/(A + 3J1) (46~);
p-+CfJ p-+CfJ

and
lim P = O. (46b)

(c) Composition profile and drag force for the model
boundary

It is of considerable interest to study the drag force
and composition profiles as a function of a dimen-

_.....
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where

where the second equality is for the regular solution
model and where (p is given by (45e) with k ll ~ Qll)'

where we have used (39) and Parseval's theorem.
Using the r1--Fourier transform of equation (43b), we
can write (53) as

Ct(O)v f 2 '" - 1
F = 4n2D d k ll ua(k ll , 0) Yap (k ll , 0)

X [2~ f:oo dk~Pp(k)Py(-k)]

x Y;bl( -k ll , O)uo(-k ll , 0).

An interesting special case of these equations is that
atv=OandT=To:

2(A + 2fl) .
s(rll' r1-) = - exp( -qllir1-l)sIn(qll erll)'

(3A + 2fl)

For A = 2fl the amplitude of this function is unity.
Figure 3 gives plots of rescaled composition devi­

ation as a function of distance from the boundary
one quarter of the way between dislocations for
several velocities and for two temperatures. One of
the temperatures is just above the coherent spinodal
and the other is somewhat higher but still below the
incoherent spinodal. Three features are apparent: (i) As
the temperature increases, the amplitude of ,the
zero velocity profile decreases from 1 at T = To.
(ii) The composition profile is more sensitive to changes
in velocity as T~ To. (iii) There is an apparent dis­
continuity in composition across the boundary for
non-zero velocity. Physically, the concentration pro­
files are continuous across the boundary, but the
curves in Fig. 3 differ from the physical profiles only
within a distance ~ of the boundary. Since the case
we are considering is Dlv ~ ~, this distance is negli­
gible in Fig. 3, and profiles are what one would
observe in any experiment with a spatial resolution
much worse than ~, which is usually the case. Figure
4 gives plots of the amplitudes of tlfe profiles just
in front and just behind the boundary as a function
of velocity for two temperatures. The apparent
macroscopic composition discontinuity increases
more rapidly with velocity at temperatures nearer the
coherent spinodal. This is an example of velocity­
dependent deviations from equilibrium (apparent) in­
terface concentrations. Apparent velocity-dependent
concentration deviations obtained by looking at the
profiles with a resolution much worse than ~ were
also studied in a different model by Langer and
Sekerka [13]. We should point out that the composi­
tion profiles given by equations (52) give no net com­
position change at the boundary, just a redistribution
along it. If one were to include non-linear concen­
tration effects, which are almost certainly important
in many cases, then there is a possibility of a net
composition change at the boundary.

To leading order in the composition deviations,
equation (12) may be written

(51)

(50)

116
s= --

2dqll'

Y = (1 + p2)-t {1 + L - P + [(1 + p2)t + p]

x (R + P)}exp[ -(1 + p2)t QII r1-]

(r 1- > 0) (52b)

Y = (1 + p2)-t {1 + L + P + [(1 + p2)t - p]

x (R - P)}exp[((1 + p2)t - p) Q II r1-]

(r 1- < 0). (52c)

where D' is given by

D' = coD~ + (1 - co)DX,

The concentration profiles are

fl11 2(3A + 2fl) Y. '
s(r II' r1-) = - SIn (q II er II)

Ct(O) (A + 2fl)

OY. )
ll) sIn(qll erll)' (52a

8(T - 1 + u

p = p' T exp[z (~ - 1)], (49)
T - 1 + 0 T

Z may be regarded as a dimensionless activation
energy. To compute the dimensionless drag forces and
composition profiles defined below in the isotropic
regular solution composition independent mobility
model, it is necessary to specify 0, Alfl, and Z. Plots
of drag force, etc., in the present paper are all for
o= 0.3, Alfl = 2, and Z = 1.

The composition profile corresponding to (48) may
be computed by taking the two-dimensional inverse
transform of (43b) using (44) and (47) and the Fourier
transform of (48). It is convenient to present the
results in terms of a rescaled composition deviation
defined by

sionless velocity for various temperatures. p, defined
in equation (45e) is a dimensionless velocity, but it
depends on temperature through D, so it is not a
useful parameter for this purpose. We therefore arbi­
trarily define a new Peclet number

where DX and D~ are the tracer diffusivities at compo­
sition Co at the incoherent spinodal. Thus p in Equa­
tions (45), (47), etc. is related to p', the dimensionless
velocity of interest, by p = p' (D'ID). In the model
described above D' = Do exp ( - QIKTic) so, from (39),
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__ p/=O

--- p/= 0.01_0- p/= 0 ..02
(0)

T=0.705

(b)

T= 0.75

-0.4 -0.3 -0.2 -0.1 0.1 0.2 0.3 0.4
rJ./ j,

Fig. 3. Rescaled composition deviation s as a function of distance from the boundary r 1.11 one quarter
of the way between dislocations (ql/' rll = - n12) for several dimensionless velocities pi and for two
dimensionless temperatures 'L. Note the increasing sensitivity of the composition profile to changes
in velocity as one nears the coherent spinodal ('L = 0'7). Model parameters: e= 0,3, Z = 1, AIJ-l = 2.

The boundary is moving to the right.

2,.----...----.......-----.r---~----..-----r-----"T""-----,-----,

--T=0.705

--1:'=0.75

SI

-~~~------------
------------------rJ.<O

a 0.01 pi 0.02

Fig. 4. Rescaled composition deviation s at the boundary one quarter of the way between dislocations
as a function of dimensionless velocity pi for two temperatures. Upper curves are compositions just
in front of the boundary, while the lower curves are compositions just behind it. These curves give
the velocity-dependent departures of interface compositions from equilibrium (pi = 0), and show that
such departures are greater near the coherent spinodal. Model parameters: e= 0,3, Z = 1, AIJ-l = 2.
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(57)

Evaluation of the Fourier k.l-projection in the square
brackets and multiplication on the left and right by
Yrx{/ (k II' 0) leads to

where

Scxp(k ll ) = k ll (1 + p2)-t

. [[(1 + L)2 + p
2]fi II fi II : - iP[1 + L - R]fiIIJ

x ----------------;----,------------------- .
iP[1 + L - R]oll! p 2 + R2

(55)

Equation (54) may be used "to compute the extrinsic
drag on any model boundary. In particular, the grain
boundary model given by (48) leads to

CP(dqll)-2 = 2wp(1 + p2)-t [(1 + L)2 + R 2 + 2P2],
(56)

where cp is the drag force per unit area of boundary
expressed in units of the shear modulus, i.e.

F = cpJ.lA

and where now p = vj(2Dq II). Plots of

cp(r - 1 + 8)
cp' =-----

(dq 11)28

vs p' are given in Fig. 5. The factor (r - 1 + 8)/8
removes a temperature dependence analogous to the
coefficient of cp' in equation (28). The shape of the
curves in Fig. 5 is similar to cp' for the square-well
potential in the modified CLS theory, and it is appar-

ent that breakaway does not occur. In the low vel­
ocity region indicated by the box near the origin in
Fig. 5, cp' becomes a complicated function of p' and
T with the curves for different T crossing each other
in a confusing fashion. This confusion can be elimin­
ated by plotting CP(dqll)-2 given by (56) with w given
by (45f) (second equality) vs p' and Fig. 6 gives such
plots. A particularly interesting feature of these plots
is that the slope of these curves grows without limit
as T~ To (i.e. r~ 1 - 8) for finite p', but for p' = 0
the slope approaches a finite value as T~ To. In fact
the slope at p' = 0 is given by

dcp 2(A + 2J.l) (3). + 2J.l) 8r
---

(dq 11)2 dp' (A + 3J.l)2

x[r -1+ 8+ (3A + 2J.l) 8J-2

4(A + 3J.l)

This is plotted in Fig. 7.
It is possible to give a physical interpretation of

the interesting features of Figs. 3-7. As T~ To,
A'~ -2J.l and for a static boundary "1;/ (k ll , O)~O

(see equations 44 and 46), while on the other hand
f3cx (k ll , r.l)~ 00 (see equation 47 and note that
a(O)~ 0 as T~ To). Thus, it turns out that the reduc­
tion in stresses as T~ To (due to the effective elastic
softening) induced by the imposed two-dimensional
distortion field is balanced by an increase in suscepti­
bility of composition deviations to the the stresses
so that there is a finite concentration profile at

2

'//

T=2

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
p'

Fig. 5. A temperature rescaled drag force q/ (see equation 57) as a function of velocity for several
temperatures. All curves asymptote to the horizontal broken line which shows that breakaway does

not occur in this model. Model parameters: (} = 0·3, Z = 1, )./J1 = 2.
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Fig. 6. Dimensionless drag force cp(dq II) - 2 as a function of velocity for several temperatures. The
slope at p' = 0 has an upper limit indicated by the broken line. As the coherent spinodal is approached
(L~ O'7) the slope of the curve begins to depend strongly on velocity, indicating a rapid decrease
in mobility with increasing velocity at low velocities near the coherent spinodal. The curves are labelled

with values of L.

403~

t The grain boundary mobility is proportional to the
reciprocal of the slopes of the curves in Figure 6.

T = To, and a consequent finite grain boundary
mobility (see equation 12). As the boundary begins
to move, the effective elastic constants A' tend to be
replaced by A so that the induced stresses increase
as the boundary velocity increases. However, the sus-

ceptibility will remain high if T is near To so that
the concentration profile will be particularly sensitive
to increases in velocity, for low velocities, and we can
expect a rapid decrease in grain boundary mobilityt
with velocity. For temperatures considerably higher
than To A' is not so different from A so the sensitivity
of the composition profile and mobility to changes

I in velocity will be less than for T ~ To.

~
70r----,....---,....---.,....---..,-----,-----,----....,.--------,

60

20

10

1.1

Fig. 7. Inverse mobility at p' = 0 as a function of temperature, showing a finite mobility at the coherent
spinodal as p'~ o.
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cities such that the diffusion length D/v is comparable
with the correlation length, such interpretations are
impossible and one cannot avoid including the
gradient energy in the model. Thus, the model studied
in the present paper is valid when D/v ~ ¢, and to
remove this restriction, one must include the gradient
energy in the model. It is still possible to employ
Fourier techniques when the gradient energy is in­
cluded, and although the analysis remains tractable
it is more complicated. '

The linearization of the general equations makes
it possible to employ Fourier techniques and to use
the superposition principle to derive general results
such as equation (54) for grain boundary properties
in the linear regime. However, nonlinearities will be
important, for example, at relatively low temperatures
near dislocation cores. Chemical nonlinearities (i.e.
f(c) non-parabolic) will probably lead to a net
accumulation of one species at the boundary due to
s~rains. The linear theory studied in the present paper
gIves a redistribution along the boundary, but no net
segregation to the boundary. (The linear theory can
give a net accumulation at the boundary if there is
a chemical component X to the externally applied
force fields-this was not studied in the present
paper.) Although nonlinearities are very interesting,
the mathematics is largely intractable except perhaps
for some very idealized models, or by a resort to nu­
merical analysis.

REFERENCES

1. K. Lucke and K. Detert, Acta Met. 5, 628 (1957).
2. J. W. Cahn, Acta Met. 10, 789 (1962).
3. K. Lucke and H. P. Stuwe, Recovery and Recrystalliza­

ti~n of Metals (edited by L. Himmel), p.171. Inter­
SCIence, New York (1963).

4. K. Luc~e and H. P. Stuwe, Acta Met. 19, 1087 (1971).
5. H. Glelter, Phys. Status Solidi (B) 45, 9 (1971).
6. F. Larche and J. W. Cahn, Acta Met. 21, 1051 (1973).
7. J. W. Cahn and J. E. Hilliard, J. chern. Phys. 28 258

(1958). '
8. J. W. <;a~n, ~cta Met. 9, 795 (1961); 10, 179 (1962).
9. J. E. Hl1lIard, In Phase Transformations, p. 497. A.S.M.,

Metals Park, Cleveland (1970).
10. M. Hillert, Monograph and Report Series No. 33, p.

231. Institute of Metals, London (1969).
11. M. J. Weins, H. Gleiter and B. Chalmers, J. appl. Phys.

42, 2639 (1971).
12. J. P. Hirth and J. Lothe, Theory of Dislocations, p.

669. McGraw-Hill, New York (1968).
13. J. S. Langer and R. F. Sekerka, Acta Met. 23 1225

(1975). '

SHIRLEY: GRAIN BOUNDARY DRAG IN ALLOYS

5. SUMMARY AND CONCLUSIONS

t We sh?uld indicate that below the incoherent spinodal
the alloy IS metastable so that incoherent nucleation on
t~e ~oundary is a possibility in a real alloy. Such a possibi­
lIty IS not encompassed by the present model.

In a concentrated alloy with appreciable atomic
radius disparity, the coupling of the concentration
and strain fields leads to interesting extrinsic grain
boundary properties which are not observed in dilute
alloys.t When T is near To grain boundary mobility
is sensitive to velocity at small velocities, decreasing
rapidly with increasing velocity. The composition
profile is correspondingly sensitive to velocity. At
higher temperatures, the mobility is not as sensitive
to velocity, and the composition profile is less polariz­
able. These properties can be seen in Figs. 3 and 6.
This behavior may be understood qualitatively in
terms of the effective elastic constants. The character
of the strain field near the boundary changes as vel­
ocity increases because composition variations have
less time to relax, and consequently the appropriate
elastic constants which relate the imposed strains to
the dilatational stresses which induce composition de­
viations change from A', Ii to A, J.1. The effect is less
pronounced at higher temperatures because A'~ A as
T~ 00 (see Fig. 1). The character of the strain field
is also independent of velocity and temperature in
the low concentration limit because we also have
A'~ A in this limit. This leads to the concept of a
temperature and velocity-independent solute-grain
boundary interaction potential for dilute alloys. This
interaction potential may be identified with the poten­
tial in a simplified version of the CLS theory, thus
establishing the relation between the present theory
and the CLS theory.

The curves in Fig. 5 do not peak at a finite velocity
so it is apparent that the phenomenon of breakaway
does not occur for the model studied in the present
work. Physically, however, breakaway must occur at
a sufficiently high velocity. This will be due either
to the effect of the gradient energy or, at some lower
velocity, to the specific nature of the solute-boundary
interaction potential, as in the case of the triangular
potential well in the CLS theory. In terms of the con­
centration profiles, the neglec~ of the gradient energy
means that the occurrence or'discontinuities in con­
centration at the boundary may be regarded as a
result of viewing the concentration profiles on a
macroscopic scale on which the correlation length is
invisible. On this macroscopic scale, the composition
discontinuities may be interpreted as a special case
of velocity-dependent departures from equilibrium
interface compositions (see Fig. 4). However, for velo-
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