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A simple formula is derived which expresses the Debye temperature of a disordered multicomponent alloy
with small atomic radius disparity in terms of the Debye temperatures of the pure components, the mole
fractions of the components, and a set of undetermined parameters, each of which can be found from the
Debye temperature for one composition of each possible binary alloy made from the components. The
formula is an improvement on a similar formula for the binary case due to Mitra and Chattopadhyay
because the physical significance of the undetermined parameters is more readily apparent. The influence
of short-range order in the binary case is considered. Application is made to the Ag-Au-Pd, Cr-Fe, and
Cu~Ni systems in order to test the formula.

where (), is the pure-metal Debye temperature. For a ran­
dom alloy, substitution of (7) into (4) yields

cubic substitutional alloy of transition and/or noble metals
of negligible atomic radius disparity,
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For the pure metals this becomes
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Now the X-ray Debye temperature, (), for an alloy is defined
by (James, 1962)
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where a is the atomic mass unit, Ii is Planck's constant,
rp is Debye's function, and
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where

in which J.ll is the atomic weight of the ith component.
Equations (1) and (5) must agree asymptotically as T --+ 00

so, using rp(O) = 1, one writes

Here f is an average nearest-neighbor force constant, Itj is
a composition-independent force constant acting between
n.n. atoms of type i and j, Pi} is the a priori probability of
occurrence of an i-j atom pair as nearest neighbors (for a
random alloy, Pij = m,mj), and C is a numerical constant
which depends on the lattice structure. For the f.c.c. lattice,
C=2'515 (Flinn & Maradudin, 1962). We define the fol­
lowing set of -tn(n - 1) constants:

'rlj = 2fij/(It, +hj) (i:f:. j) . (3)

'rlj is the factor by which fi} differs from the arithmetic
mean of fii and fjj' Using equation (3), equation (2) can
be written

where G(O) is the static Green's function for the 'average'
lattice evaluated at the origin. T is the absolute temperature
and K is Boltzmann's constant. The second equality holds
if nearest-neighbor (n.n.) interactions only are taken into
account. g is a dimensionless Green's function [tabulated
for f.c.c. by Flinn & Maradudin (1962)] and U" is given by

UI'=mfVl~ +m~V;; +2mlm2Vl~ ,

where ml and m2 are the mole fractions of type 1 and type 2
atoms, and where V;:y is the second derivative of the inter­
atomic potential acting between an atom of type x and one
of type y, evaluated at the nearest-neighbor separation of
the average lattice. If the atoms are noble or transition
metals, then the most important part of the potentials at
the n.n. separation is the exchange repulsion between the
core electrons. The shapes of the potentials are not likely
to vary greatly with composition because the core electronic
configurations are generally insensitive to composition. If,
in addition, the atomic radii are similar, then the second
derivative is taken at about the same point on the potential
curves irrespective of composition and V;:y will be largely
composition independent. These considerations lead to the
following generalization: For an n-component disordered

(u2)=KTTrace G(O)=KTTrace g(O)/2U",

Recently Mitra & Chattopadhyay (1972) derived a for­
mula which can be used to interpolate the Debye tem­
perature of a binary alloy from the Debye temperatures of
the pure metals. It contains one adjustable parameter which
can be determined from a measurement of the Debye tem­
perature at one intermediate composition. For such a for­
mula to be useful as an interpolation formula it is necessary
that the adjustable parameter be independent of composi­
tion, and that there be a physical basis for this. The pur­
pose of the present paper is to derive a generalization of
the formula to n-component alloys, and to choose a set of
adjustable parameters, the physical significance and com­
position independence of which is somewhat more apparent
than in the formula of Mitra & Chattopadhyay (1972).
The influence of short-range order in the case of binary
alloys is also considered. The formula is applied to the
Fe-Cr, Cu-Ni, and Ag-Au-Pd systems.

The derivation of the formula begins with a result which
can be deduced from a recent formal analysis of correla­
tions in disordered binary cubic substitutional alloys [see
equation (24) of Shirley (1974)]. It is that, in the classical
regime, for alloys with negligible atomic radius disparity,
the mean-square displacement of an atom from its lattice
site is
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balance, then, r does seem to reflect the strength of the un­
like-atom force constant relative to the average of the like­
atom force constants.

Table 2. Comparison of the Debye temperature for Ag-Au­
Pd ternary alloys as measured by Naidu & Houska (1971)

and as predicted by equation (8)

Table 1. Values of r for several binary alloy systems

Number of
Alloy intermediate

system compositions , Reference
Ag-Au 1 0·90 1
Ag-Pd 3 1·16± 0·06 1
Au-Pd 3 1·29 ± 0·05 1
Cr-Fe 5 0·72 ± 0·05 2
Cu-Ni 8 1·06±0·06 3
Cu-Ni 13 1·09±0·12 4
Cu-Ni 7 0·80 ± 0·05 5

References: (1) Naidu & Houska (1971). (2) Shirley, Lally,
Thomas & Fisher (1975). (3) Brandstetter, Ebel & Lihl (1968).
(4) Faninger (1971). (5) Mitra & Chattopadhyay (1972).

The formula (8) is especially useful for multicomponent
alloy systems because it is only necessary to measure fJ for
each pure component and for one composition of each
possible binary alloy to define fJ for all compositions of the
alloy system. To illustrate this for a ternary system, average
values of r in Table 1 for Ag-Au, Ag-Pd, and Au-Pd were
used in (8) with the pure-metal Debye temperatures to
predict the Debye temperatures for the ternary alloys for
which Naidu & Houska (1971) measured fJ. The predicted
and measured values of the Debye temperature are given
in Table 2. The agreement is good except for the 75 % Pd
alloy. However, when fJ for the alloys Pd(l- 2x)Ag(x)Au(x)
are plotted against x (including x=O and x=t), fJ for x=t
seems anomalously low. Thus, there is a good chance of
some kind of error in the measurement for x=t.

Predicted
274
253
227

Measured
250
250
230
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where the restriction i #- j has been removed by taking
rii= 1, and where we have used

where rx is the n.n. Cowley-Warren short-range-order par­
ameter (Cowley, 1950). When these are used in (4) one finds

pfJ 2 = m1111fJi + m2112fJ'i

+ (r12 - 1) (1- rx)m1m2(111fJi +112fJ'i). (9)

n

~mi=l.
i=l

Equation (8) is the n-component interpolation formula. If
the pure-metal Debye temperatures are known, then each
of the constants rij may be determined by measurement
of the Debye temperature of one i-j binary alloy. Of course
this procedure applies only to alloy systems forming a
single solid-solution phase for all compositions. The for­
mula will hold in any composition domain which encom­
passes a single solid-solution phase, but the determination
of all of the Ill); and r Ij may not be as simple. In general,
measurements of Debye temperatures at tn(n+ 1) composi­
tions will determine all of the Ill); and r ij, but the com­
positions must be chosen so that the 'inverse' of equation
(8) exists.

It should be noted that although the derivation of (8)
was for X-ray Debye temperatures, it also applied to specific­
heat Debye temperatures since the two differ by a factor
depending on Poisson's ratio (James, 1962), which does
not vary greatly from metal to n1etal.

For a non-random binary alloy, the a priori probabilities
are given by

PH = mi +m1m2rx , P22 = m~+m1m2rx, P12 = mlm2(l - rx)

Short-range order is a strong function of composition and
thermal history, so equation (9) shows how it can cause
some scatter in r12 determined at different intermediate
compositions or from different specimens. The effect is
limited, however, by the fact that Irxl cannot exceed about
0·2 in the disordered phase (Moss & Clapp, 1968).

To test the validity of the ideas presented above, values
of r were computed from (9) with rx = 0 for several transition/
noble metal binary alloys with small atomic radius disparity,
and the results are given in Table 1. When one examines
the data and the calculations which the numbers in Table 1
summarize, it is apparent that (except for the Ag-Au alloy,
which has mAg = O·5) the data is well spread across the com­
position range, and that variation in the values of r rep­
resented as the errors in Table 1 is largely uncorrelated with
the composition and is therefore probably attributable to
experimental error. This indicates that r is indeed composi­
tion independent as anticipated above. Although this is a
necessary condition for the formula's usefulness, it is not
especially interesting, since a parabola specified by a con­
stant could probably fit the data as well. What is interest­
ing, however, is to compare the values of r in Table 1 with
those computed via (3) using the nearest-neighbor central
force constants derived by Niu & Shimizu (1967) from
elastic constants data for the Ag-Au and Cu-Ni alloys.
The results of Niu & Shimizu (1967) lead to r(Ag-Au)=
0·95 and r(Cu-Ni) = 1·01. These values agree with the cor­
responding results in Table 1, except for those derived
from the data of Mitra & Chattopadhyay (1972). Since all
sets of data, including those analyzed by Niu & Shimizu
(1967), are independent, this indicates a possible systematic
error in the data of Mitra & Chattopadhyay (1972). On
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