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The critical-voltage effect of high-voltage electron diffraction has been used to measure the X-ray
Debye temperatures of Cr, (X-Fe and their disordered alloys. The 220 critical voltages were measured
at room and elevated temperatures for the pure metals and at room temperature for five intermediate
compositions. The data for the pure metals were sufficient to determine both the Debye temperature
and the deviation from the free-atom value of the atomic scattering factor at the first-order reflection
position. The results agree with those of other workers. The scattering factor deviations were assumed
to be the same in the alloys as in the pure metals, and this made it possible to determine the alloy Debye
temperatures from a single room-temperature measurement of the critical voltage at each intermediate
composition. The Debye temperatures are analyzed successfully in terms of a simple one-parameter
theory, and are correlated with the alloy melting-point data through Lindemann's formula.

Introduction

When the electron-diffraction pattern from a crystal
several thousand angstroms in thickness is studied at
electron accelerating voltages greater than about 100
kV, one often finds a critical voltage at which the
second-order Kikuchi line associated with a set of
atomic planes vanishes, and above and below which
the asymmetry of the excess-deficiency profile of the
center line of the Kikuchi pattern is reversed (Watan
abe, Uyeda & Kogiso, 1968). The value of the critical
voltage depends on values of the average atomic scat
tering factors at the reciprocal-lattice positions cor
responding to the set of atomic planes (the systematic
reflections). The average atomic scattering factors for an
alloy depend on the free-atom atomic scattering factors
modified to take account of the following: (1) redistribu
tion of the outer electrons of the atoms in the crystal
line environment (this may modify the free-atom atomic
scattering factor at low-order reflections; usually only
the value at the first-order reflection is significantly
modified), (2) composition and long-range order, and
(3) mean-square static and thermal displacements of
atoms from average lattice sites which cause a Debye
Waller type of attenuation of the scattering factors.
To utilize the critical-voltage effect one must employ
an appropriate model which characterizes all or some
of the above effects by a few well chosen parameters.
Some of these parameters may be fixed beforehand
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(e.g. composition by chemical analysis, or long-range
order by heat treatment), and others may be deter
mined from values of critical voltages. Just what crit
ical-voltage measurements are needed (e.g. for differ
ent systematics, at various temperatures and/or com
positions) depends on which parameters are regarded
as undetermined. For a review of the applications of
the critical voltage effect, see Lally, Humphreys, Meth
erell & Fisher (1972).

The information which critical-voltage measure
ments give is essentially the same as can be obtained
from X-ray diffraction measurement of Bragg inten
sities. However, the electron-diffraction method has
the advantage of probing microscopic volumes 1 f.1m
or less in diameter and several tenths of a micron in
thickness. It is also possible to use the direct imaging
facility to examine the microstructure of the region.
This makes specimen preparation much less critical
than for a comparable X-ray study.

The present paper reports measurements of the 220
critical voltages of Cr and a-Fe (both b.c.c.) at room
and elevated temperatures, and of five intermediate
alloys at room temperature. The data for the pure
metals is sufficient to determine the X-ray Debye tem
peratures, OM, and the values of the atomic scattering
factors at the first-order reflections. Because the atomic
scattering factors for atoms in the alloys are assumed
to be the same as for atoms in the pure metals, and
because the static mean-square displacements due to
the atomic radius disparity between Cr and Fe can
be shown to be negligible in these alloys, it is possible
to find the alloy Debye temperatures by a single room
temperature critical-voltage measurement at each in
termediate composition.
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Table 1. Experimental compositions, temperatures, and
critical voltages, and the room-temperature X-ray Debye

temperatures deduced from them

where the sums are over all lattice sites. Now express
at (and at) in terms of a new variable ai which has
the value (2mB, -2mA ) for an (A,B) atom at site i.

and similarly for M B • In these equations mA is the mole
fraction of A atoms, fA is the atomic scattering factor
of an A atom in the crystal, <U2)A is the mean-square
displacement of A atoms, and k = 4ns, where s =
(sin O)jA. It is useful to express <U2)A and <U2)B in
terms of correlation functions which have been studied
elsewhere (Shirley, 1974a). Let a1=(1,0) for an (A,B)
atom at site i. Then

<U2)A= 2 a1u7j 2 a1=<aAu2)jmA'
i i

where

This variable has the property (ai)=O. Then one has
at=mA +tai and

M=(k2 j6) (U2
) , (5a)

AMA = (k2j12mA ) <au2) , (5b)

AMB= -(k2jI2mB ) <au2). (5c)

In general <u2
) contains a temperature-independent

part attributable to the static distortion of the lattice
arising from the atomic-radius disparity between the
two types of atoms, and it contains a temperature
dependent part attributable to thermal vibration [see,
for example, Shirley (1974a)]. Coyle & Gale (1955)
give a formula for the static mean-square displace
ment, which in simplified form is

<u2)(static) =0·36mAmB(aA - aB)2

where aA is the lattice parameter of the pure A metal.
For Cr-Fe alloys the maximum value of <u2

) (static)
is therefore about 4 x 10-5 A2. This compares with an
error in <u2

) of ±7·5 x 10- 4 A2 corresponding to the
error of ± 3 kV in the measured critical voltage. The
only appreciable contribution to (u2

) is therefore from
thermal vibrations and (u2

) may be represented by the
well-known form (James, 1962)

(u2)=436.64 {Trp(~/T) + _1_} (A2) (6)
J10M 4J10M

where J1=mAJ1A +mBJ1B, and J1A is the atomic weight
of an A atom, T is the temperature of the crystal, and
qJ is Debye's function. In a crystal for which the atomic
radius disparity is negligible, the analysis of Shirley
(1974a) [specialize equation (24) of this reference by
setting all terms with coefficient y or y2 (y is a measure
of the order in atomic radius disparity) to zero, and
set 1=0] shows that, in the classical regime,

(Ju5) = KT<J) Trace Goo, (7)

where K is Boltzmann's constant, the subscript 0 refers
to an arbitrary origin site, J is an arbitrary function
of all of the a's and where

GOO=V,;-l ~ d3kq»-1(k)

in which <p(k) is the Fourier transform of the 3 x 3
force-constant matrix appropriate to the average inter
atomic potential, and where the integration is over a
Brillouin zone of volume Vk. If J = 1 in (7) we obtain
the classical equivalent of (6), and if J = ao we find

<U2)A = <u2) + (2mA)-1(au2) , (3a)

and similarly

<U2)B=<u2)-(2mB)-1(au2). (3b)

From equations (3), equation (1) may be written

f=exp (-M) [mAlA exp (-AMA)+mBIBexp (-AMB)]

(4)

OM
(K)

424± 12

422± 12
418 ± 12
420± 12
459·5 ± 12
466± 12
495 ± 12

Critical voltage
(kV)

305±3
254±3
293±3
285±3
277±3
271 ±3
267±3
265±3
215±3

Temperature
(K)

295±2
568±5
295±2
295±2
295±2
295±2
295±2
295±2
658±5

Mole frac
tion of Cr

0·000
0·000
0·212
0·325
0·478
0·763
0·859
1·000
1·000

Experimental

The alloys were prepared by melting together 99·99 0/0
Fe and 99·99 % Cr in a vacuum furnace. After being
rolled into thin sheets in the usual manner, the alloys
were annealed at 1000°C for several hours and
quenched. Compositions were determined to 0·1 % by
chemical analysis. Thin foils were obtained from the
sheets by conventional electropolishing.

The critical voltages were determined by observing
the 220 Kikuchi line and the asymmetry of the middle
line in selected-area diffraction patterns at various volt
ages. The experimental critical voltages and tempera
tures are given in Table 1.

Analysis of data

Assuming that each atomic site is statistically cubic,
and that the mean-square displacement has a Gaussian
distribution, the potential distribution of each atom
is convoluted with a spherically symmetrical 'spread
function' the half-width of which depends on the iden
tity of the atom. Thus, each atomic scattering factor
is multiplied by a Gaussian of appropriate half-width,
and the average atomic scattering factor is

f=mA!A exp (-MA)+mB!B exp (-MB) , (1)

where
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Interpretation of results
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Fig. 1. Variation of the Debye temperature of the Cr-Fe alloys
with composition. The solid curve is the best fit of equation
(9) to the data ('t' = 0'72). The broken curve is the best fit of
Lindemann's formula, equation (10) (x=0·197).

Recently, Shirley (1974b) rederived the Debye tem
perature interpolation formula of Mitra & Chatto
padhyay (1972), expressing it differently and includ
ing the effect of short-range order. The formula is

f.102=mAf.1AO~ +mBf.1BOi
+(r-1) (l-a)mAmB(f.1AO~+f.1BOi) (9)

were given free-atom values. f was computed using
these atomic scattering factors, and the value of <u2

)

deduced from the room-temperature critical voltage
was used to deduce OM from equation (6). The results
appear in the right-hand column of Table 1, and they
are plotted in Fig. 1.

The errors in the Debye temperatures are based on
the errors in the observed critical voltages and tem
peratures, but not on possible errors in the scattering
factors. Errors in f(110) could cause a further sys
tematic shift of all points together in Fig. 1 by as
much as ±15 oK; however the good agreement of the
pure-metal Debye temperatures with those of other
workers (Table 2) seems to indicate that the systematic
errors are considerably less than this.

f=exp (-M)f

<0"0u5) =0 because <0"0)=0. Thus, if the atomic-radius
disparity is negligible, then <O"u2

) in equations (5) is
negligible. Hence the appropriate model for the dis
ordered Cr-Fe alloys is one in which the average
atomic scattering factor is given by

(8)

where f=mAfA +mBfB' and where <u2) is given by
equation (6).

The critical voltage occurs when branches 2 and 3
[in the notation of Humphreys & Fisher (1971)] of the
dispersion surfaces come into contact at a symmetry
point (Nagata & Fukuhara, 1967; Metherell & Fisher,
1969). The n-beam matrix diagonalization method of
Fisher (1968) was employed in a computer program
which locates the voltage for which dispersion surfaces
2 and 3 coincide for a given f. For the pure metals
the scattering factors at all systematic reflections ex
cept the first-order were given free-atom values (Doyle
& Turner, 1968). The first-order scattering factors were
adjusted until <u2

) obtained from the critical-voltage
program gave the same Debye temperature at both
room and elevated temperatures when equation (6)
was used. The Debye temperatures and scattering fac
tors obtained this way are given in Table 2, where they
are seen to compare favorably with the results of in
dependent determinations. Two small corrections for
thermal expansion causing a total change of 3° or so
in OM were made. First, in order to evaluate the atomic
scattering factors and the Debye-Waller factor at the
correct positions in reciprocal space, the correct high
temperature lattice parameters were used in the critical
voltage computer program. Second, thermal expan
sion causes a weakening of the interatomic force con- ;
stants so that <u2

) increases faster with temperature ~

than it would in the absence of anharmonic effects.
Multiplication by (1 +2pyAT)-1 of the value of <u2

)

obtained from the critical-voltage computer program
corrects for this effect. p is the coefficient of linear ex
pansion, y is the Griineisen parameter, and AT is the
difference between the high temperature and room
temperature. As a consequence of this correction, the
values obtained for OM are appropriate to room tem
perature. For the alloys, the first-order scattering fac
tors obtained for the pure metals were assumed, and
the scattering factors at all higher-order reflections

Table 2. X-ray Debye temperatures and atomic scattering factors for Cr and Fe from the present study and from
other work

Cr Fe
1(110) (present) 3'040±0'015 3·008 ±0'015
1(110) (other) 3'067 ± 0·047 (1) 3·012 ± 0·043 (2)
1(110) (free-atom) 2·91 (3) 2·97 (3)
OM (present) 495 ± 12 424 ± 12
OM (other: X-ray) 510± 6 (4) 435 ± 6 (4)
OM (other: specific heat*) 505 ± 6 (5) 431 (6)

References (in parentheses after the data entries): (1) Fujimoto, Terasaki & Watanabe (1972). (2) Watanabe, Uyeda & Fukahala
(1969). (3) Doyle & TUlner (1968). (4) Paakkari (1974). (5) Clusius & Franzosini (1962). (6) Kushwaha (1974).

* The specific-heat Debye temperatures, OD, were converted to OM using the correction due to Zener & Bilinsky (1936).
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(10)

where () is the alloy Debye temperature, ()A is the Debye
temperature of the pure A metal, a is the nearest
neighbor Cowley-Warren short-range order param
eter (Cowley, 1950), and where the deviation of r from
unity is a measure of the factor by which the nearest
neighbor spring constant connecting dissimilar atoms
differs from the arithmetic mean of the spring con
stants connecting similar atoms, i.e. gAB = r(gAA +
gBB)/2, where gAA, etc. are the spring constants. It is
theoretically anticipated, and experimentally con
firmed for several systems with small atomic-radius
disparity, that r is composition-independent. Note also
that equation (9) applies to either X-ray or specific
heat Debye temperatures provided Poisson's ratio does
not vary greatly with composition. This is usually the
case.

Equation (9) was fitted to the results by constrain
ing the formula to give the pure-metal Debye tem
peratures exactly and then choosing r to give a least
squares best fit to the results at intermediate composi
tions, assuming a=O. The curve is given in Fig. 1, and
it shows that the results are adequately described by
a one-parameter model. The value of r is 0·72.

It is enlightening to correlate the results obtained
here with another physical property of the alloy sys
tem. Yamamoto & Doyama (1972) showed that Linde
mann's rule is valid for the a phase of certain alloys.
For the special case of b.c.c. alloys Lindemann's for
mula (see Ziman, 1969) is written

1 (1800T ) 1/2
()n = - --~--_'!!--

x f.1a2

where Tm is the melting point, a is the lattice parameter
in A, and x is dimensionless and constant at 0·2 to
0·25 for most solids. x is the atomic r.m.s. amplitude
at the melting point expressed as a fraction of the
Wigner-Seitz radius. In using equation (10), Tm was
the average of the liquidus and solidus temperatures,
and the difference between X-ray and specific heat
Debye temperatures was ignored. When the melting
point data in Hansen (1958) were used and x was
chosen such that ()D from equation (10) fitted the data
best in a least-squares sense, x = 0·197 was found. This
is in good agreement with what Yamamoto & Doyama
(1972) found for the f.c.c. alloys they studied. The

prediction of equation (10) for this value of x is plotted
in Fig. 1, and good agreement is apparent.
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