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Correlations and interactions in disordered binary alloys with atomic-radius disparity
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A theoretical method is developed for calculating the various correlations on which the diffracted
intensity in an x-ray or elastic-thermal-neutron scattering experiment depends. The starting point is a
Hamiltonian in which the atoms interact by pairwise "hard-core" potentials with different core radii.
The hard-core condition, which should apply to transition and noble metals, simplifies the analysis by
allowing the radius disparity to be used as a parameter of smallness for arbitrary composition. Classical
statistical mechanics is used so that atomic-mass disparity has no effect on the correlations of interest.
The Hamiltonian is analyzed in the quasiharmonic approximation, and some often-ignored terms are
included because they may be important for short-wavelength fluctuations. Rigorous relations which
express correlations involving atomic displacements and site occupancies in terms of correlations
involving only site occupancies are derived, and they will hold even if diffusion is too slow for
site-occupancy equilibrium to be established. These relations may be useful in the analysis of diffraction
data. If the alloy can come to equilibrium with respect to site occupancy, then equilibrium statistical
mechanics can predict the site-occupancy correlations, and an approximate mean-field theory is
presented. The equations are not solved, but it is shown that in the disordered phase, away from the
critical region, the site-occupancy correlations are those appropriate to a disordered binary alloy with
no atomic-size disparity but with pair, triplet, and higher-order interactions. Expressions for the effective
pair and triplet interactions are given.

I. INTRODUCTION AND SUMMARY

A disordered substitutional binary alloy with
atoms of different size may be visualized as a
regular array of pairwise-interacting atoms which
has become distorted because of differences in the
three types of interatomic potential. If these dif
ferences are not great enough to disrupt the crys
talline nature of the alloy, an Haverage lattice"
with a one-to-one correspondence between atoms.
and lattice sites may be defined. In such an alloy
the configuration may be specified by the average
lattice structure and lattice parameter, by the set
{Ut} of displacements of atoms from average lat
tice sites, by the set { U i} of two-valued variables
which specifies the site occupancies, and by the
atomic momenta. These variables are defined in
Sec. n, where a Hamiltonian which depends on
them is derived in the quasiharmonic approxima
tiono In the present work the lattice parameter is
taken as constant at the empirical value for the
entire ensemble usedo Attention will be focused
on the statistical mechanical evaluation of spatial
correlations among the occupancy and displace
ment configuration variables, eo go, (uou i), (UOU i ),
etco, where the angular brackets denote an en
semble averageo This is because the orientation
of the present work is toward the interpretation of
x-ray or elastic-thermal-neutron scattering data.
Relations between the intensity of kinematically
scattered radiation and the spatial correlation
functions are given in AppendiX Ao

In Sec. IV, a theorem derived in Seco ITI is used
to facilitate the derivation of relations which ex-

10

press displacement correlations (containing one
or two atomic displacements) entirely in terms of
concentration correlations (containing only site
occupancy variables)o These relations are infinite
series in ascending powers of "defect strength"
and concentrationo Physically, the defects are due
to both force-constant and mass variationso Al
though the latter may be large, the present paper
deals only with ensemble averages of momentum
independent quantities in the classical regime, so
that mass variations have no effecto It will be
shown that defect strength due to force-constant
variation is "small" if the atoms are hard spheres
(interacting by Born-Mayer repulsion) with small
radius disparityo Consequently, it is possible to
truncate the various series at a chosen order in
defe ct strength for arbitrary composition o There
is no restriction to dilute alloys or necessity to
sum the concentration series as in the case of
mass defectso1 Aside from the necessary trunca
tion, the relations derived in Seco IV are exact
within the harmonic approximation, and are valid
even if the system is not in thermodynamic equi
librium with respect to the concentration variables
{u i}. This may occur if diffusion rates are slow.
It should be noted that if the series are truncated
at the lowest order in defect strength and terms
due to thermal vibration are dropped, then one re
covers results derived by Krivoglaz2 and by Cook
and de Fontaineo3

A different application of theorem of Seco III is
made in Sec. V to obtain a set of linear equations
in the various correlation functionso Displacement
correlations may be eliminated in favor of concen-
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(6)

(5)

(2)

(3)

(4a)

(4b)

H"= -2
1 L [U(rij) + V(rij)(ai +OJ)

i~j

+ W( r ij )a i aj ] ,

at = »2A +~ ai'

af=mB-~ai'

where

Now if we use Eq. (3), substitute Eqs. (4) into Eqo
(1), and ignore the kinetic term and the purely
volume-dependent electronic term (since we shall
be considering only isochoric changes at the em
pirical specific volume), we obtain the follOWing
effective Hamiltonian:

tation" of the potentials defined by the average lat
tice. The theory developed below can accommo
date this type of potentiaL

In the classical statistical mechanics of the
Hamiltonian #', the momenta are statistically in
dependent of the other configuration variableso
Consequently, the kinetic part of Eq. (1) may be
ignored for the purpose of calculating ensemble
averages of momentum-independent quantities,
such as the correlation functions of interest in this
paper. The Hamiltonian may be simplified further
by assuming that each atom suffers only a small
displacement from a site in the average lattice,
and that there is a one-to-one correspondence be
tween atoms and lattice sites. If the position of an
atom is r i and its associated average lattice site
is (ri )av, then

where a i =(2mB , - 2mA ) for an (A, B) atom on site
i, and where (mA' mB) is the mole fraction of (A,B)
atoms. Note that

W(r) = t [VAA(r) + V BB (r) - 2 VAB (r)] 0 (7c)

When Eq. (6) is expanded to second order in the
small displacements, it may be written (see Refo

where iii is a small displacement. In the present
paper, {( r i )av} defines a lattice of cubic symme
tryo The one-to-one correspondence is written

Y(r) =t[mA yAA(r) - mB V BB (r)

+ (mB - mA) VAB (r)] , (7b)

U(r) = mi VAA(r) +m~ yBB (r) + 2mAmB V AB (r),
(7a)

and similarly for af. Since at +af = 1, it is pos
sible to express af and a f in terms of a single
variable a i. Thus,

+ VBB(rij}aB(ri)aB(rJ)+ VAB(riJ}

x [a A ( r i)a B ( r}) +a A (rj)a B ( r i)]} , (1)

+ -2
1 L {VAA(rij)aA(ri)aA(rj)

i ~ J

where r i , Pi' and mi are the position, momentum,
and mass of the ith nucleus, where a A ( r i) = (1, 0)
for an (A, B) atom at r i and a A( r i ) +aB(r j ) = 1, and
where r ij = rj - r i 0 The structure-independent part
of the electronic energy is contained in E, which
depends only on the specific volume Vo The inter
atomic potentials yAA, etco, have a part which is
induced by the electron-ion interactions as well as
a Born-Mayer exchange-repulsion component that
is particularly important in the noble and transi
tion metals where the ion cores come into con
tact. 7,8 It is quite possible that anisotropies in the
electronic structure will give rise to anisotropic
pair potentials (noncentral forces) with the tlorien-

If the dependence,of the electronic energy on the
spatial configuration of the ion cores is taken into
account to second order in pe rturbation theory, 6

the system Hamiltonian may be written

tration correlations using the relations derived in
Sec o IV, yielding a set of linear equations which in
principle may be analyzed and solved in the dis
ordered phase in the manner of Shirley and Wil
kins o

4 In practice, however, this is too difficult,
and a mean-field approximation following Clapp
and Mosss is made. This approximation will be
valid in the disordered phase away from the criti
cal regiono If the first two orders of defect
strength are retained, one obtains a manageable
set of equations which may be solved to obtain the
pair, triplet, and quadruplet concentration corre
lations necessary to compute the scattered intensi
ty correct to the first two orders in defect
strengtho The equations are not solved, but it is
shown that in the disordered phase, away from the
critical region, the concentration correlations are
those appropriate to a conventional undistorted-Iat
tice Ising-type model with long-range pair interac
tions o If the first three orders in defect strength
are retained, then effective triplet interactions
appear. The triplet interactions are one order
higher in the defect strength than the pair inte rac
tions. Expressions for the effective pair and
triplet interactions are given. The net effect of
the analysis is to transform the distorted-lattice
pairWise-interaction model into an undistorted-lat
tice multisite-interaction model.

II. MODEL HAMILTONIAN
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9 for details of the straightforward but tedious al
gebra)

has been ignoredo The last term in Eq~ (8) has
been added because it will be conve nie nt to satisfy
the constraint of Eqo (5) in a grand canonical en
semble in which A is dete rmined by the condition

(12)(P)=LP({C})P({C})!L p({c}) .
{c} {c}

Let Lei denote summation (or integration) over
the space of the configuration variable Ci' and de
fine

L=:;:LL:.o.L:,
{C} Cl C2 C4N

where there are 4N configuration variables o There
are N sites in the crystal. One may also define

p({c}) = e-BH({c}) ,

where fj-l = KT 0 The absolute temperature is T,

and K is Boltzmann's constanto The ensemble
average of a function P of configuration is there
fore written

III. THEOREM

be invariant under translations by vectors of the
average lattice, ioe., (0' i uJ ) =(O'i + n uJ +n), etco,
and that they w ill transform as basis functions of
various representations of the point group of the
average lattice. The system will be implicitly
constrained to have no homogeneous deformation
in the following analysis by assuming that (iif ) =0
and that the correlation functions have symme
tries appropriate to the average lattice.

It is worth pointing out that some workers 2,3

have studied a Hamiltonian (qr free-ene rgy expan
sion) similar to Eq. (8) but with W= 0, <P v = ~w = 0,
and with { ai } as continuous concentration variable s.
Such a Hamiltonian will adequately describe dis
placement waves with wavelengths considerably
longer than the interatomic spacing (such as occur
in spinodal decomposition) because little error will
be introduced by replacing O'i with the average
composition of the region surrounding site i of
linear dimension less than the wavelength [actually
(J'i - 2 (c f - rnA)' where Ci is the concentration of
A atoms]. The variables {ai} may then be thought
of as continuous and small so that terms of third
or higher order in both displacements and corre
lations may be droppedo However, for the inter
pretation of x-ray diffraction experiments which
can resolve fluctuations with wavelengths com
parable to interatomic spacings, it is necessary
to study displacement waves with these wave
lengths. Consequently, the two-valued nature of
0' i should not be ignored, and, because a i =0(1),
all the terms displayed in Eqs. (8) and (9) should
be included.

(8)

(9)

(10)

q,iJ =~~ +~~(O'i+aJ) +<p~aiaJ

- <5 if L (<P~ ak + <P~a"aJ) ,
k

~ ~ UiJ
1~1

~ -, .. 1~ .. , -.. ~
+ L..., W"'J (J'iaj uj + 2" L.J u i 4J iJ uJ + ~ L..J a i

U U i

whereiO

The definitions of q, v and <I>w have U replaced by
V or W in the above. Note that cP, defined by
Eq. (9), has the property

L<1>Oi=O
i

and where the purely volume-dependent term

as it musto
The present analysis will be restricted to

changes involving no homogeneous deformations of
the crystal. This means that as well as requiring
that there be no translation of the crystal as a
whole, that is,

In Eqs. (8) and (9) the following abbreviation has
been made (F is an arbitrary function):

F(rij )av) =:;: F ij 0

In Eq. (8), ~ ij is a column three vector with e le
ments av/axl (rii)av, etco, and :u ~J is its trans
pose, where x, y, and z are Cartesian coordi-
nates referred to the three fourfold axes of the
cubic lattice. A similar definition holds for
WiJ , with W replacing V. For (rij)av=FO, ~~
is a real-symmetric 3 x 3 matrix with elements
- a2u/ax 2

1 (rij)av, - a2u/axay I(rij)av, etc., andfor
(rij)av=O it is ILi a2 u/sx2 1(rOi )av, where lis the
unit matrixo It has the property

L<P~i =0 0

i

(11 )

we also require that (ui ) be independent of i 0 Com
bined with Eqo (11), this implies that (iii) = 00
This statistical equivalence of average lattice sites
further implies that the correlation functions will

We also define the following special average:

(13)

The average is taken overei, so that <P )Ct is a
function of possibly all the c' s except c i. With
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these definitions the following theorem may be
proved.

Theorem. For two functions of configuration
P({c}) and Q({c}),

(PQ)=«P)Ci Q ) ,

fu'(P>CjQ~ p= ~'(~PP/~p)Q ~P

=L '(LPP)Q= L PQp
{c} Ci {c'}

provided Q does not have C i as one of its arguments.
Proof. From the definition [Eq. (12)] of an en

semble average,

(14)

where

thus proving the theorem.

IV. RELATIONS BETWEEN DISPLACEMENT
CORRELATIONS AND CONCENTRATION CORRELATIONS

A. Displacement correlations with one displacement

Since neither (P >Ci nor Q depend on Ci, the right
hand side of Eq. (14) may be written

First it will be convenient to calculate (Uo )~O '
the average of Uo for fixed values of the other con
figuration variables. A special case of Eq. (13)
is written

I
respondences Ui - r, uj - rI, and ai - i .

The Green's function for the average lattice is
defined by

This Green's function is appropriate to a perfect
crystal with interatomic potentials U (f), i. e., the
average interatomic potential. It may be com
puted using, for example, the procedure of Flinn
and Maradudin. ll Replacing 0 by 1 in Eq. (16),
multiplying by G OI , and summing on l, one finds

where Eq. (8) was substituted and parts not con
taining tio have canceled from the exponentials.
Both exponentials have the same argument. 0iO is
the Kronecker {). Since <Pij, and in particular <P oo ,
is real symmetric, the three-dimensional Gaussian
integrals presented in Appendix B may be used,
and one finds

or

ePoo (uo)Uo + 4= (1- Ooi )ePOi Ui
t

'"" u-L.J G Ol 4> Ii = I 0 Oi •
r

(JO)= - L[Go, Vi' (Ji)+G oz Wit (Jil)
o

(17)

where Eq. (9) was used. The notation adopted in
Eq. (16) is related to that used so far by the cor-

When Eq. (15) is multiplied by a function J of {o}
only, an ensemble average is taken, and the the
orem of Sec. III is applied, one obtains

4= [4>~ (Ji) + 4>~ «JO T>\+ (J i i»
t

+ cP~ (J Oi r> ]- L (tP:o (Jk <5 >+ q,:o ( JkOO ) )
k

(18)

+ G01 ell~ (( J i r) + (Jl r) - (Ji i))
+ GOI <P~ «Jli i) - (Jil i»)] .

B. Displacement correlations with two displacements

Using the Gaussian integrals of Appendix B,
one may write 12

<uQ uQ )Uo = t (~ 13 <P 00 f 1 + (uo) Un ( Uo )tio .

Also, for I =1= 0 one has

This equation may be iterated to generate a series
in ascending orders of the Green's function relat
ing (J 0) to concentration correlations only. The
criterion for trWlcating the series is considered
in Sec. IVe.

(16)

(15)
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(u, uo)~= u, (iio)'!o= (ii,)~ (iio)~ ;

so, for arbitrary l ,

(ii, uo)Vo= OloKT<p~5 + (iio)~o (iii );0

or

<I>00(U1 uo)uo= Io,oKT+ <I> 00 (uo)uo (U,)Uo·

Using Eq. (15) this becomes

<Poo (ii , uo)uo = Io,oKT

-2:[ i)ioat + WiO at ao
i

+ (1- OiO)<I>Oi Ui ] (ii, )uo •

If one multiplies this by J, an arbitrary function of
{a}, substitutes Eq. (9), applies the theorem of the
previous section, and operates with the Green's
function, one obtains

(Jio)= GOI (J)KT - 2: [G Ok tjik (Jii)
ik

This also holds for higher derivatives of U, V,
and W. The parameter of smallness we shall use
to truncate the series obtained by iteration of Eqs.
(18) and (19) is €/2b. It will be convenient to
multiply V and its derivatives by a dimensionless
parameter y which will eventually be set to unity,
and to multiply W ~nd its derivatives by 'Y 2. In the
equations below, the power of y which multiplies a
term is a label which indicates the order in E/2 b

of that term.
If the following replacements are made in Eq.

(18):

G-G, V-YV, W_ y 2W, <I>v_ycI>Y, 4>W_ y 2q.W,

and if Eq. (18) is iterated retaining terms only up
to O(y 2), then one obtains

( J (5 >;;: - yL:tOi (Ji ) - Y 22: f Oi j (Jij ) , (21 )
i ij

where
.. ~ -
~ Oi ;;: L...J GOk V i k

k

c. Hard-core truncation criterion

(25)

(27)

- G Oi cI>ri~kj] • (23)

Iteration of Eq. (19) retaining terms to O(y 2)
yields

(JiO)= KT(G OI (J)+ Y~PO'i (Ji)

+ y 2 ~J( QOI if(Jij ») + y 2 4:tOjtZi (Jij ) ,
I I)

(24)
where

and

The correlation functions appearing in the diffrac
tion theory are [see Eqs. (All)) (On), (On), (Onn),
(O~), (Onn), (OOn), (Onnn), and (On On). Conse
quently, only the special cases of Eqs. (21) and
(24) given byJ= 1, ao, or aoan , and i-n or 0, and
0- nare needed. Thus the diffracted intensity
correct to O(y2) depends on pair, triplet, and
quadruplet concentration corre lations. Many of
these correlations will have site coincidences.
Such correlations may be expressed entirely in
terms of lower-order correlations with no coin
cidences by the identity4

where

(20a)

(20b)

(20c)

V AA(r) = D exp[- r(b + € f 1] ,

yBB(r)=Dexp[-r(b - Ef1] ,

yAB (r) = D exp(- rb -1) ,

The series generated by iterating Eqs. (18) and
(19) must be truncated at a given order of some
parameter of smallness, or they must be summed
completely. In the present work the atomic-radi
us disparity is a natural parameter of smallness.
The pair potentials in an alloy which is essentially
hard core in nature with small atomic- radius dis
parity may be written:

where b is the nominal core radius and €/b is
small. Small differences in D may be incorpo
rated into €. Using Eqs. (7) to compute U, y,
and W to leading order in €/2b, one finds

U=De-r!b,

+ GOkWtll (Jik i) + G Ok 4>rk (Jii 1) + (Jk IT)

y;;:De- r !&(r/b)(€/2h) ,

W=De- r / b(r 2b- 2 _ 2rb- 1)(€/2b)2.

- <J i ik ))+ GOk 4> rk ( (Jik iT) - (Jik ik ))] .
(19)

This equation may be iterated with Eq. (18) to give
a series in ascending orders of the Green's func
tion relating (JiO) to concentration correlations
only.

For nearest-neighbor interactions, which are the
most important in a hard- core alloy, it is ap
parent that y is smaller than U by a factor of €/2 b,
and that W is yet another factor of €/2b smaller.
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(28)

" [V - I (- -) 1 (- I - ')E 0= - L..J Oi + 'lJOi Ui - Uo - 2" Ui - Uo
i~O

(34a)

(33a)

(33b)

(32b)

(32a)

<aiF) = 2m A rn B ( F ) (Ii = • - <F ) (Ii = - ) •

We also have the identities

and

Tn B {F )(ji = .. = n1 B (F) - i (Faj) .

These may be combined to give

(F) =,n A (F )(1i = + + In B (F )<1i =

and

(OiAF ) -1 1=((if) =,n A (m A (F) + 2(Fuj ) )

where Eq. (4a) was used. Thus

Yfl A (F )0i =. = rfZ A (F ) + t <Fai >

and

When the Hamiltonian in the form of Eq. (6) is
substituted (With the additional term involving the
chemical potential added) and the sums are evalu
ated, one finds 4

(00)<1 = tanh[ f3 (£0+ ~)] +(n~B - m A ) , (29)
o

where

Eo=-L[V(rOi)+W(rodoi]. (30)
i~O

x tf.>6i (Ui - Uo) +W Oi ai + WOi(Ui - UO) Ui

-i(ui-i.io)4>~(ui-uO)ai]. (31)

The restriction i :f. 0 may be removed if V 00 == 0 and
Woo == O. In principle it may be possible to use
Eqs. (29) and (31) as well as the relations derived
in Sec. IV to derive and analyze an infinite linear
set of equations in the concentration correlations
in the manner of Shirley and Wilkins. 4 However,
this would be very difficult, and it is simpler to
employ a mean-field approximate theory. Such a
theory is expected to be valid except in the critical
region.

The derivation of the mean-field theory closely
follows the derivation by Clapp and Moss 5 of Cow
ley' s 14 theory for binary alloys with no size dis
parity. The mean-field approximation is conve
niently expressed in terms of "subensemble"
averages. The subensemble average of a function
F is the average over configurations for which an
A atom occupies site i, i. e.,

(F)u.=.= L atFP/L: utp
I {u,u} {u,u}

Eo may be regarded as the field acting on site 0
due to the neighboring atoms. The next step is to
expand Eo to quadratic terms in {u} :

B n=2 n- 1 [m;-(-m A )nJ.

It is not difficult to evaluate the above expres
sions for a particular model with the aid of a com
puter once the average-lattice Green's function G
has been computed.9 This is especially true if one
considers special cases such as no short- range
order, nearest-neighbor interactions, equiatomic
composition, etc. A great simplification obtains
if, as in Ref. 3, 4>v = 4>w = 0, for then Eqs. (18) and
(19) do not need to be iterated. However, as indi
cated in Sec. II, there is no a priori justification
for ignoring <P v and cI> w. The main problem is in
choosing an appropriate microscopic model. 13

There are no good theoretical estimates of V AA ,

V BB
, and V AB

, so one must choose reasonable
phenomenological forms with a few parameters
fitted to macroscopic data. A possible procedure
is to use the elastic shear moduli C 44 and ell - C 12 ,

measured at several compositions to determine
the parameters in the interatomic potentials.9 This
is possible because the speed of the long-wave
length transverse waves in the alloy depends on the
first and second derivatives of U (r). Thus Born
Mayer potentials of the form of Eqs. (20) may be
determined to within an additive constant. The
additive constants have no effect on the theory pre
sented except in a way to be shown in Sec. V.

The atomic displacements in alloys are often
visualized as consisting of a rapidly time-varying
component due to thermal agitation superimposed
on a static distortion field. No such assumption
has been made in the above analysis, but Eq. (21)
and the explicitly temperature- independent part
of Eq. (24) may be regarded as due to the static
distortions, while the explicitly temperature-de
pendent part of Eq. (24) may be regarded as a
thermal contribution.

Equations (21) and (24) will hold even if the sys
tem is not in equilibrium with respect to the {o}
configuration variables, as when the short- range
order is quenched in. However, if the tempera
ture is high enough, the system can equilibrate
completely, and the concentration correlations can
be calculated from equilibrium statistical mechan
ics. An approximate theory for computing the
equilibrium- concentration correlations in the dis
ordered phase away from the critical region is de
veloped in the present section.

A special case of Eq. (13) is

(uo)"o = L: uoe- SH
/ L: e-8R •

00=:1 00=:1

v. CALCULATION OF CONCENTRATION CORRELATIONS

and



If Eq. (37) is substituted into Eq. (38), the set of
linear equations due to Clapp and Moss 5 results.
Equation (38) may also be regarded as a high-tem
perature (small- J3) approximation.

When microscopic strains and the rmal vibra
tions are present, one must evaluate (E 0 ai) with
EogivenbyEq. (31). Thus

10 CORRELATIONS AND INTERACTIONS IN DISORDERED.•.

(00 0t ) = ( 0t tanh[ 13(E 0+ X)J) (i *0) , (34b)

which were obtained via Eq. (29) and the theorem
of Sec. III. Condition (10) was employed in Eqs.
(34). Using Eqs. (33), Eqs. (34) may be written

rn A - m B = m A (tanh[ 13(E 0+ A)] )(1. = +,
+ nl B (tanh[I3(E 0+ A)] )(1' =-

a
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and

and

rOm = r~m + 3(nl B - JJl A) ~ Omm ,

where

- roo ( Oi >- 3 L ~OOm ( Onz i > , (41)
m*O

+ Tr(<I> 6" (i n"O ))+ WOn ( in ) -+ wOn ((in n)- (in 0))

+ Tr[ <I>~n(innO) - i (inDO) - ~ (in iUi»)]}

(i ± 0) , (39)

where the following identity was used:

u'Av= Tr[A (Uv)] ,
where A is real symmetric and the right-hand
~pression is the trace of the matrix product of
A and uv. If the x-ray scattering to O(y 2) is re
qui r

2
e d., it is only nec.essary to expand (E 0 ai) to

O(y ) In order to derIve the set of equations which
will yield concentration correlations which may be
substituted into Eqs. (21) and (24). Here (E 0 ai) is
expanded to O(y 3) because it is in this order that
the triplet potentials appear, and these triplet po
tentials are of interest. 4 Substituting Eqs. (21) and
(~4) into Eq. (39) and retaining terms to O(y 3), one
fInds

(EOai)=-Lr&n(Jni)- ~ L ~Omn<lJlni), (40)
m 2 m,n

where r~m and ~Omn will be defined below and
where the sums are unrestricted. To c~st the the
ory into a familiar form it is necessary to restrict
the sums. Consequently, we write

(E 0 a i ) = - L {V~n (i n) - ~ Tr (<I> 6n (i nn ))
n

where Eq. (27) was used. Now because (Qi)
,$ O{l/z) and (Omi),$ O(1/z2) for O;t m ;t i"* 0 in the
disordered phase (see Ref. 4) and because a sum
mation contributes a factor of z, the last two
terms in Eq. (41) are an order in liz higher
than the rest of the expression. The final term
is always the smallest because it has the high
est order in both 1/z and y, and we shall ig
nore it. The second-to-last term will be neg
ligible if z» (E/2b fl. A good deal of manipu
lation yields the following expressions for r:nn,
~Omn , and dOrnm:(38)

rn A - rn B ~ In A tanh[ 13 ((Eo) 0' i = + + A)J

+ nz B tanh[J3 (E O)(1i =- + A)] (35a)

Q Oi ,s 0 (1/Z ) , J3 (E 0 0 i ) ~ 0 (1/z) ,

where z is the number of sites interacting with a
given site (z = 12 in an fcc crystal with nearest
neighbor interactions). It is therefore not a bad
approximation to replace Eq. (36) by its leading
orde r expansion in 1/z :

where (00 0i) = 411Z A nz B QOi. The term Q Oi is the
Cowley- Warren short-range-order parameter. 14

When the atoms are of identical size and ther
mal motion is ignored, Ui = 0 for all i, and Eq. (31)
reduces to Eo = - ~ j W OJ OJ, where the irre levant
constant L: i V Oj has been dropped; and when

(E 0 0i ) = - L W Oj ( OJ 0i ) = - 4 HZ A nz B L WOj Q ji
j j

(37)
is substituted into Eq. (36) and the index i is al
lowed to range over all sites except i =0, the set
of nonlinear equations due to Cowley14 results. In
the disordered phase, further simplification is
possible because 4

( 00 0 i ) = 2 m A rn B { ( tanh[ 13 (E 0 + A)] )a i =+

- (tanh[l3(E 0+ X)] )Uj =. } (i *0) .

The mean-field approximation consists in replac
ing Eo by its average value in the appropriate sub
ensemble, i. e., E 0- (E O)(1i = + or (E 0),,. = -. There-
fore, one writes 1

(OOOi)~ 2m A Jn B {tanh[J3(E o)a.=++ A)],
- tanh[J3((E 0 )aj = - + X)]} (i *0) . (35b)

From Eq. (32a) we have

(Eo)oj=+=(Eo)+(2mAfl(EoOi) ,

and similarly for (E 0 )Ut = -. When these expres
sions are substituted into Eqs. (35) and (E o)+ X is
eliminated between Eqs. (35), one obtains

(In A + n1 B Qod(m B + nz A Qod(l- Q oi f 2
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r bm = WOm - Y2 { L: ~~ktkm + K T Tr[cP~m(G Om - GOO) + L: (2~ rik G 01 4>~ I Gk Z - <P ~k G01 <P~zG lim
k kl

- cI>~kGOm cl>im Gkl - 1cI>~kG kI cI>~rGkl )]} , (42)

(43a)

where

~n =;-3 {2 to" Wmn + 2~tom cI>~ktkn +~t~k cI>~ktkn + KT Tr[~ cI>~ G Ok cI>:k (2G on - 2G mn + Gmk - G Ok )+ 2 A OmJ} ,
(43b)

where

A Omn= L: (t cPKk Gkn cP:J GmJ <P~, GOt - t cI>~kG kl <P~, GIi <P:JG kj - cI>~kG kn <P:J Gil <Prm G 10+ <P~ltG kJ 4>jn Gmn <P~, GOI
Jill

+ <P ~k GkJ tP~ GJ1 <I>~ I G 01 - ~ <P ~k GkJ <P in G Jn<P~J G10- ~ cI> 6k G kJ cI>fn GJ1 cI> rmGOm ) , (44)

(45)

Although these expressions are complicated, it is
not difficult to evaluate them by computer once
the Green's function is known. 9 As explained in
Sec. IV, if the interatomic potentials are deter
mined from elastic shear-modulus data, an arbi
trary constant may be added to each of the inter
atomic potentials V AA, etc. The only physically
significant place in the theory where these con
stants show up is in the first term of Eq. (42).
Therefore, Wam is to be considered arbitrary,
rather than O(y 2). In a nearest-neighbor-interac
tion model, '%m can be determined from the criti
cal- disordering temperature.

To find a linear set of equations in the concen
tration correlations, one substitutes Eq. (41),
without the final term, into Eq. (38). This gives

( 0 i ) =- 4 m A m B (3 (1 + 4 rn A m B (3 roof 1

x(L: rOm(mi)+ i L ~mn(mni») (i~O),
m m.n (46)

where it is understood that in the sums, rOm and
ADmn vanish if subscripts coincide. It is not possi
ble to solve the set of Eqs. (46) as it stands be
cause there are too many unknowns. However, if
the term involving ~ Omn, which is an order in I'

higher than the rest of the expression, is regarded
as a perturbation, then Clapp' s 15 relation between
pair and triplet correlations may be used. This
relation is based on the assumption that triplet or
higher-order interaction potentials (i. e., Aom")

vanish. Thus triplet correlations obtained in this
way will be correct to O(y2), and they may be sub
stituted properly into Eq. (46) to yield pair corre
lations correct to 0(1' 3). The short- range-order

I
component of the x-ray scattering may be com-
puted to O(y 3) using these pair correlations. To
compute the other components to this order, it is
necessary to take Eqs. (21) and (24) to another
order in y, and to determine fourth and higher
order coneentration correlations, possibly by
Clapp's procedure. 15 If we were to study the sta
tistical mechanics of a disordered binary alloy
with no atomic size disparity but with "effective"
Hamiltonian

where the last term is regarded as a perturbation
and where r mn and A'm" vanish for coincident sub
scripts, then we would obtain' exactly Eq. (46),
except that r 00= O. The equations could be solved
in the same manner as above. Thus r mn and A Zm "

may be regarded as effective pair and triplet inter
action potentials. 16 There is also a rescaling of
the temperature between the effective alloy and the
"real" alloy given by

(3 real = 138ff (1 - 4 rn A flZ B (3eff roof 1 •

It is simpler if one needs the x- ray scattering
correct to O(y2), for then one needs to solve just

( 0 i ):= - 4 m, Am B J3( 1 + 4 In B n1A {3 roo f 1

xL: rOm (HZ i ) + Co Oi ,
m

where the last term removes the i =I: 0 restriction.
This has the Clapp-Moss form,5 and their method
may be used to solve for the pair correlations.
The effective pair potential rOm given by Eq. (42)
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x{ 1+ iq' (uj - lid - t[ q/(Uj - Ui)] 2}

xexp{iq' (rij)avJ) . (A4)

(A6)

(A5)

(AI)I (i:i)= (t=f;lJ exp(i q. r i J )) ,

where fi is the atomic scattering factor (x rays)
or the nuclear scattering length (neutrons) of the
atom at site i. Ignoring possible isotopic varia
tions in the case of neutrons, one may write

fi=UiAfA+uffB=j+~fui' (A2)

The expansion is valid for

IqI((U
2 ) ) 1/ 2 « 1 ,

or

-
wheref=mAfA+YrlBfB and Af=i(fA-fi3), where
Eqs. (4) were used, and where (fA, f B ) is the
atomic scattering factor of an atom of type (A, B).
From Eq. (2) one obtains

r iJ = ("r ij )av + uj - Uj . (A3)

Substitution of Eqs. (A2) and (A3) into Eq. (A1)
and expansion to second order in displacements
yields

I (q) =(L [12
+ 1~f (Ui + Uj ) + (~f)2 aj aJ J

ij

=- ~ 4= ;)'(q)[<l>U(q)piJ (- q) cos\q • rOm) ,
q (47)

where
_ 1 '"""" -(_ (...._
\) Ok =N Y 'U q) exp - t q 0 r Ok) ,

q

etc., and where Eq. (17), written as G (q)
= [cPU('q)]-l, was used. Equation (47) has exactly
the same form as the interaction between point de
fects derived by Hardy and Bullough,17 which makes
the physical interpretation of this term clear. The
third part of rom is a temperature-dependent part
which is probably less important than the other two
for temperatures below the melting point, but it
gives rise to the interesting result that the corre
lations become asymptotic to nonzero values as
T - 00. To compute the x-ray scattering other than
the short- range-order scattering, one needs to
substitute the pair, triplet, and quadruplet concen
tration correlations into Eqs. (21) and (24). The
triplets and quadruplets may be found by Clapp's
relations, 15 or the quadruplets may be found by the
following relation4:

has three parts. The term WOm is present even
without atomic size disparity. There is another
temperature-independent term given by

(A8)

(ijkl >=(ij) (kl >+ (ik >(jl >+ (il >(jk) + Q(1/z 3
) •
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Equation (A5) gives meaning to the term "small
momentum transfers," and Eq. (A6) shows that
this is equivalent to small scattering angles e,
and/or small displaceUlents compared to the wave
length of the radiation A. Separating Eq. (A4)
into the Bragg and diffuse components, one finds

N- 1[(4);:;; [Bragg +1DiU. , (A7)

where

I Bra gg;:;; 1 2 (1 - t q 2 (u~>- t 1]-1 q 2
( a0 u~>)

XL exp(i q. rOi )

APPENDIX A

An up-to-date accoWlt of the experimental analy
sis of small momentum-transfer kinematical-dif
fraction data and the associated diffraction theo ry
has been given by Gragg and Cohen. I8 The results
of this type of experiment may be compared quite
directly with the predictions of the theory in this
paper, and this appendix derives the relationship
between the experimentally measured quantities
and the various correlation functions.

The intensity distribution in reciprocal space of
x rays or of elastic thermal neutrons scattered by
a substitutional binary alloy is given in the kine
matical approximation by

and

I Dlff= [ 4m AmB(~f )2]

xrA(h)+h/B(h)+h/C6~)h+h/i5(h)h], (A9)

where q= 21T ha- 1 (a is the lattice parameter) and
11 = J/ ~f. The term in the first parentheses in
Eq. (AS) is the Debye- Waller factor. In Eq. (A9)
the diffuse scattering has been separated into com
ponents which Borie and Sparks 19 have shown can
be isolated by processing the diffraction data in a
way which exploits the different symmetry of each
component. The component A (h) is known as the
short- range- order scattering and is perfectly
periodic in reciprocal space. The component
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O~mn= [rr 2/(m A m B a2
)] (11 2 (XoX 1mn )-11 (aox~mn)

+ 21] <aoxox',"n) - (uOa'mnX~mn)

perimentally determined Fourier coefficients and
the correlation functions studied in this paper may
be written down. These relations are the follow
ing:

(Al1d)

(AlIa)a ,mn = (aOolmn)/4mAmB ,

APPENDIX 8

If B is a real-symmetric matrix and A is a
vector, the three Gaussian integrals

~1= J exp(- A'x- x' B x)d 3i ,

82= Jxexp(- A'x - x'B x)d 3 x ,

S;= Jxxexp(- A'x-x'Bi)d 3 i

are given by

gl = 1T
3

/
2(Axx Ayy A,u:f 1/ 2 exp(C~ A~~

+C~A~;+C~A:;) ,

"8 2=- ~ i3- 1 Ag1 ,

-;3= g1( i 13- 1+ i as2 g~ 2) ,

where B is diagonalized by an orthogonal matriX,
so B=Si AS, where ]iS=T and A is diagonal
with elements A xx , etc. The vector C is given by
c= is-A.

where x 'mn ( Y Imn) is the x (y) component of u at
site (l, m, n). These expressions show that the
Cowley- Warren short-range-order parameters
{ a , mn} are the only true Fourier coefficients be
cause :y, 7', and 6' all depend on position in recip
rocal space through 11. However, 11 is often quite
slowly varying, and this dependence is weak. For
neutrons, 17 is constant because the scattering
lengths are constant and all of the Fourier coeffi
cients are "true."

Y~mn =-(7Tm Am Ba)(1] (UOx ,mn )+ (oOU,,"nXlmn») ,(Allb)

€:~n= - [27T 2/(1n A m B a2
)] (11 2 (xoYlmn)

-1] (OOx 'mn Y Imn) + 211 (ooxo Y lmn)

- (00 0fmnx'mn Y Imn) + (00 O'mnxO Y lmn) ), (AIlc)

(AlOc)

C xy (h)=-2l L E~~nsin(1J'hxl) sin (1Th:,lm )cos(1J'h.n) ,
1m"

(AIOd)

D xx (h) = L O:mn cos(1ThxI) cos(rrh y m) cos (1J'h.n ) ,
Imn (AlOe)

Dxy (h) = 0 . (AlOf)

The other elements of B, C, and jj are found by
permutation of x, Y, and z. The summations in
Eqs. (AID) are over all triplets of integers (I,m, n)
which obey one of the following conditions: (i) for
an fcc crystal I + m + n is even, or (ii) for a bee
crystal I, n~,. and n are either all even or all odd.
The precise nature of the symmetry of each of the
components of the diffuse scattering is evident in
Eqs. (AlO). The sets of Fourier coefficients {a} ,
{:Y}, {7'}, and {6} are the experimentally deter
mined quantities in a diffraction study of an alloy.

It is clear from Eq. (A4) that each component of
the diffuse scattering may be written explicitly in
terms of the correlation functions (e. g., (ij), (i J),
<iT), etc.), and when these expressions are com
pared with Eqs. (AlO), relations between the ex-

A(h)= L a,mncos(rrhxl ) cos(rr h:,lm)cos(1Th.n) ,
1m" (AIDa)

Bx(h)= LY~mn sin (1Th xl )COs(1J'h:,l1n)eos(1Th.n),
lm"

(AlOb)

h'B(h) is the size-effect scattering, and hi [C (ii)
+ i5 (h)] h contains both the thermal-diffuse scat
tering and the Huang scattering. The thermal
diffuse scattering and the Huang scattering have
the same symmetry in reciprocal space, but in the
classical harmonic theory the thermal-diffuse
scattering is proportional to the absolute tempera
ture whereas the Huang scattering is independent
of temperature provided lattice- site occupancy is
frozen. Thus thermal-diffuse scattering and
Huang scattering may be separated by measure
ment of hi [C (h) + i5(h)] h at two temperatures and
extrapolation to the absolute zero of temperature.
Fourier coefficients for each component of the
diffuse scattering are defined as follows (see Ref.
18):
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