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hence vol(r), is unknown. We have found, in fact,
that agreement with the experimental phonon spec
trum of copper is improved if the parameter y in
Eq. (37) is increased from 8.43 to 13.4. This cor
responds to increasing the magnitude of dv01/dr and
has the effect of de.epening the first minimum in
veu( r) in Fig. 3. It also moves the calculated
binding energy closer to the experimental value and
moves the fcc curve in Fig. 8 downward with re
spect to the hcp curve, although not significantly
in either case.

We finally point out that the separation of overlap
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An approximate method for obtaining the pair and higher-order correlation functions speci
fying the site-occupancy correlations in disordered substitutional binary alloys of arbitrary
composition is described. The method is easily generalized from the usual pairwise inter
action model to alloys with multi-site interactions. The value of 1/z, where z is the number
of sites interacting with a given site, is used as a parameter of smallness to obtain a set of
quasilinear equations which may be solved numerically for the correlation functions. The
long range of the interatomic interactions found in many alloys would make liz seem a good
expansion parameter. The validity of the solution is discussed. We use the method in a nu
merical analysis to investigate the effect of three-site interactions in a disordered face
centered-cubic binary alloy with a nearest-neighbor pair interaction and a "nearest-neighbor
triangle" triplet interaction. A simple analytic solution for a corresponding idealized mean
field situation is also carried'out. An enlightening result is that the mean-field solution and
the more realistic computer solution have similar general features. We also compare our
solution with others for a choice of parameters in which comparison is possible •

I. INTRODUCTION

The equilibrium arrangement of the atoms in a
substitutional binary alloy at a given temperature

.depends on the part of the Hamiltonian which
changes when the atoms of the alloy are rearranged
on the crystal lattice, which in this paper is taken
to be rigid. The most commonly used model
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Hamiltonian is the pairwise one:

H({O"}) =i L; Vii O"IO"j , (1)
H

where 0"1 is an occupation operator which specifies
the occupancy of site i:

O"i = 2mB for an A atom oil site i

The interaction energies may depend on tempera
ture and composition, but not configuration. The
extension to interactions of higher order than the
third is straightforward but tedious.

A useful formal restriction on many-site inter
actions is that an interaction is zero if two or more
of its subscripts coincide. It is easily shown that,
for example, the effect of Wilj can be lumped with
Vii and a configuration-independent term, so that
Wilj might as well be zero. This often simplifies

The respective mole fractions of A and B atoms
in the alloy are mA and mB so that mA +mB = 1.
The pairwise interaction is given by

VH = t (V1f + v~l- 2v1!) ,
in which, for example, V1jB. is the energy of inter
action between an A atom at site i and B atom at
site j. See Ref. 1 for a more detailed discussion
of the formulation of the pairwise model.

There are, however, contributions to H which
are almost certainly present in binary alloys and
which cannot be described in terms of the pairwise
model. For example, the displacement of atoms
from the average lattice sites which is due to the
size discrepancy of the two kinds of atoms (size
effect) makes the interatomic vector connecting
two atoms different from the corresponding inter
site vector by a difference vector which depends
on the environment of the sites in question. Con
sequently, one expects that the mutual potential
energy of the two sites depends not only on their
occupancy, but also on that of neighboring sites.
This is a multi -site effect. It has been shown
(see, for example, PP. 50-55 of Ref. 2) that to
second order in perturbation theory the effect of
the conduction electrons may be represented by a
contribution to the pair interaction V Ij. Higher
orders in perturbation theory contribute to higher
order (three-site, four-site, · .. ) interactions. A
third example is an alloy in which the component
atoms have a tendency to form covalently bonded
molecules; these covalent forces are often many
body in character. See Clapp3 for a review of the
validity of the central-pairwise -interaction model
of an alloy. For simplicity, our attention is con
fined to disordered binary alloys with Hamiltonian

H( {O"}) = t~ ViJO"IO"j + t L; WlJkO"IO"jO"k • (3)
il ilk

(4b)

(4c)

(4a)

where

An = 2n[mAm~ + (-1)nm1mB],

(ii) Correlation functions are invariant under
permutation of site indices, e. g., (O'iO)O"k) =(O"iO"kO"j)

(iii) Correlation functions are invariant under
translation by a lattice vector, and one site index
may always be chosen as the origin, e. g. , (O"iO"jO"k)

=(O"i+nO"j+nO"k+n) =(O"OO"j-iO"k-i).

(iv) When the following replacements are made,
mA - mlJ!, Voi - V oh WoH - - Wail' then correla
tions among an even number of sites are invariant,
and correlations among an odd number of sites
change sign but have the same magnitude, i. e. ,
(0"00",) - (O"OO"i), (O"OO"jO"i)- -(O"oO",O"j), •••• This is
easily shown by realizing that the replacement
rnA - ma is equivalent to interchanging the signs
in (2). To reobtain the same physical alloy, this
sign change must be accompanied by one in Wilk'
but not ViJ [see Eq. (3)]. Since the physical
Hamiltonian is unchanged, we must have exactly
the same arrangement of atoms, but each 0" is
changed in sign so the result follows. In the spe
cial case mA=mB and Wilk=O, this shows that all
odd-order correlations vanish, a result first shown
by Clapp. 5

So far most studies of short-range order in dis
ordered binary alloys have concentrated on the

calculations considerably. We tacitly assume this
property of th~ interactions in the remainder of
this paper. Interactions also have permutational
and translational symmetry [see properties (ii)
and (iii) below].

If one investigates an alloy by an experimental
technique which yields information about the atoms
on a microscopic scale (such as x-ray, neutron,
or electron diffraction), then the relevant param
eters with which to characterize the equilibrium
configuration of the alloy are the correlation func
tions. A correlation function is an ensemble aver
age of products of the occupation operators in (2).
Notice that (O"i) =0 for all i because the composition
is m A : m B • See Ref. 4 for the connection between
correlation functions (defined slightly differently
in this reference) and experimentally measured
x-ray or neutron scattering intensities.

The correlation functions have some important
formal properties.

(i) Whenever two or more sites in a correlation
function coincide, it may be expressed in terms of
lower-order correlations. These expressions are
called "reduction relations" and are obtained by
application of the identity

(2)= - 2mA for a B atom on site i .
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(5)

theoretical!' 6-8 and experimental9 determination of
pair correlation functions. However, the work of
Cowley4 and Cowley and Murray10 as well as the
field-ion-microscopy experiments of Gold and
Machlin11 seem to indicate that it is possible to
experimentally detect the effects of higher-order
correlations. For this reason it appears that the
inclusion of higher -order correlations into the
description of an alloy should be investigated. We
shall use only pair, triplet, and quadruplet cor
relations, because the inclusion of higher -order
correlations is a straightforward extension.

The theoretical problem with which we deal in
this paper is the statistical mechanical evaluation
of the various corre lation functions, given the
Ham.iltonian (3). We are to evaluate the ensemble
average of functions of configuration, F({a}). In
the present application F is always a product of
occupation operators. The ensemble average of
F is defined as

(F) = I) F({a })p({O"})/ I) p({O"}) •
{a} {a}

The average is taken over a grand canonical en
semble in which we admit fluctuations in composi
tion. This means that we can write (N=number
of sites in the crystal)

~=~ ~ ••• ~ ,
{a} a1SlZ a2=z aN=z

where each summation over the two possible
values of each occupation operator is done inde
pendently. The constraint on composition is ob
tained by determining the chemical potential A in
the grand canonical density operator

p({a}) = e-8H ( {a} )+~Ei a I, (6)

by the condition (ai) = O. {3= l/kT, where k is the
Boltzmann constant and T is the absolute tempera
ture. An exact solution to the problem in hand
would involve an evaluation of the sums in (5) in
the thermodynamic limit (N - 00). This is a problem
of the first magnitude even for a pairwise Hamil
tonian since it is equivalent to the unsolved Ising
theory of a three-dimensional ferromagnet in an
external magnetic field. 12 Although there is no
exact solution to the three -dimensional pairwise
alloy, there are quite a number of approximate
solutions, 1,6-S,13 the most important of which, from
our point of view, are due to Clapp and Moss1 and
Tahir-Kheli. 8 All of these solutions have been for
pairwise interactions and correlations, although
Tahir-Kheli's method yields the high-temperature
expansions of higher-order correlations as a by
product. 14 We show that Tahir-Kheli's work is
quite easily extended to higher -order interactions.
The work of Tahir-Kheli and the present paper are
related. The essential difference is that in the for-

mer, f3 is used as a parameter of smallness,
whereas in the latter 1/z is used. z is the number
of sites interacting with a given site. This follows
the spirit of Brout's work. 15,16 The characteristi
cally long-range nature of the interactions in many
alloys, principally due to the conduction-electron
contribution to the configurational Hamiltonian17- 19

would make l/z seem an excellent expansion pa
rameter for alloys. The complication which arises
in the case where an oscillatory interaction is
present is discussed" in Sec. IV.

II. SYSTEM OF EQUATIONS FOR THE CORRELATION
_. FUNCTIONS

An infinite set of equations which may be solved
for the correlation functions is obtained by what is,
in essence, an expansion of (5) in powers of (3, in
which F is successively put equal to a o, O"oah and
so on. To facilitate this we first prove a theorem
which is a simple generalization of that in the Ap
pendix of Ref. 1.

We define the following average of G({a }):

(G)I,= ~ Gp/~ p •
al,=:! ai=±

The summation is only over the possible values of
0"1, so that (G)I, depends on all a's except O"i. The
theorem is that for two functions of configuration,
F({a}) and G ({O" }),

(FG)==(F(G)i)' (7)

provided F does not have 0"1, as one of its arguments.
The proof is as follows: Using the definition (5) we
have

( F (G) 1,) ~ p = ~' L; F ( G) iP ,
{a} {a} al,=%

where the prime indicates omission of the sum over
ah i.e.,

~=~'~
{a} {a} a"i=±

Since neither F nor (G) I, depend on al,; we may write
the right-hand side as

~ 'F(G)i ~ p=~ 'F( ~ Gp/ ~ p) ~ p
{a} ai=* {a} al,=~ ai=* <11,=*

=~'F~ Gp=~FGp=(FG)~p.
{a} al,=:!: {a} {a}

For our particular purpose we consider a special
case of (7), namely G=0"0 and i = o. First we need
(0'0)0. From the definition of (G) I, and (6) we have

(0"0)0= ~ 0"0e- 8H+"A.E i ai/ I; e-8H +"A.t i a i

ao =:!: ao=z
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etc., in which

10

(0'00',0') ) = :L; Dn«{jEo)nO',O'}) (0 =# i =# j =# 0), (10c)
n=O

+ XO'o ] I L; e (••• )
ao= :i:

Eo is the effective field which an atom at a given
site sees due to the configuration of the neighboring
atoms. The special case of (7) is therefore written

(0'0 F) =([tanh(~Eo,+ x) + (mB -mA)] F) , (9)

(11a)

(lIb)

Do=tanhX - (mA -rna) ,

D =atanh(X+X)! =1 -t h2x
1 ax an ,

x=o

D_!a2[tanh(X~~1 -t h3 . tnh
2 - 2 ax2 - an i\ - a i\,

x=o
(llc)

D 3 = i (- 3 tanh4 X+4 tanh2 X- 1) , (11d)

etc. An infinite set of equations in te rms of the
correlation functions and the various interaction
energies is obtained when (8) is substituted into
(10) and the arbitrary subscripts on the left-hand
sides of (10) are allowed to range over all permitted
sites. The set of equations is linear in the correla
tion functions. The procedure is to find the solution
for (0'0)' {(0'00',)}, {(0'00',0'})}, etc., as functions of
the two parameters, tanhX and (3. For a given (j,
the solution which has the value of tanhA such that
(0'0) = 0 is the required one.

In effect, Tahir-KheliB has used the set of equa
tions, with the Eo appropriate to pairwise interac
tions only, for generating high-temperature expan
sions for correlation functions. The extension of
Tahir-Kheli's method to higher-order interactions
is simply a matter of modifying Eo [see Eq. (4. 6) in
Ref. 8] appropriately and carrying the analysis
through. 14 Although it is not central to the present
paper, we have used Tahir ... Kheli's method and
present the results to O({j2):

(8)

(lOb)

(lOa).
110

(0'0) = L; D n «f3Eo) n) ,
n=O

110

(0'00',)=:L; Dn«f3Eo)nO',)
n=O

in which all parts not containing the operator ao

have been cancelled from numerator and denomina
tor. Evaluating the sums, one finds

(0'0) 0= tanh ({jEo+ x) + (ma -mA)-,

where

Eo = - t:L; Vo/O'/ - t:L; Wo/t O'/O't •
/ /t

where F does not depend on 0'0. This is an identity.
To find the required set of equations, (9) is ex

panded in powers of {jEo and F is set successively
to 1, O'j, O',O'}, .. ;,. Therefore, the set of equations
is

+ 128m1m~:L; Wo/,Wv, + 128mlmi(mB -mA)2:L; W~/,] (32+ 0«(33)
h I

(i =# 0), (12)

(O'oO',a}) = - 64 mlm: Wo ,.} {j+ [32mlm~ (ma - mA)(Vo ' Va) + Vo.'Vo + Va} Vu ) +~28mim~ (mB -mA)2

x(vo +Vo'+ VO})Woo + 128m1m~L; (Vo/Wu/ +V}/Wov +Vi/WO}/) + 256mlmi(mB -mA)3W:o
/

(0 =# i =# j =# 0) ,(13)

(O'OO"O'}O'k) =[64n'l1m~(VOfV}k + VOl V'k + Vak ViJ) + 256(mB -mA>m1mj.(Vo' WOk + Va} WUk + Vok Wljk

(no coincidences). (14)

Our use of the set of equations differs from that
of Tahir-Kheli in that we use several criteria [~n

eluding the 0(1/z) criterion]. to truncate the system
of equations. This truncated set of equations is
then solved self-consistently. This procedure has
the advantage that, apart from the complications to

I

be discussed in Sec. IV, it yields solutions good to
a chosen order in liz for all T ~ T c , where Tc is the
characteristic disordering temperature. Apart
from this, the 0(11z) classification scheme seems
a natural and potentially useful way to classify
correlation functions in disordered alloys.
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(16a)

(16b)

III. TRUNCATION OF THE SYSTEM OF EQUATIONS

Consider a clustering alloy (i. e., Vii' W iJk < 0
formA < mB and all noncoincident i, j, k) in which z
sites interact with a given site through the energy
term Vij, and z I through Wijk. When we remem
ber the physical interpretation of (8), we see that
the average configuration energy of a site is given
by

-(aoEo) = t ~, Vo/(aoa/) + t 6 ,g WO,g(aoa,ag).

For a clustering alloy, T c occurs when the thermal
energy per site is comparable with the minimum
possible configuration energy per site. Thus, we
have

kTc ~ I (-(aoEa»miD I

=t L; I IVOl I(a :) + 1- L; It IWalt I(a~ )

=2mAmBz1J+4mAmB(mB -mA)z 12 W , (15)

where we have defined the average potentials by

t)= z·lL;, IVol I and W =(z ,)-2L;ft r Walt I .
This definition will also hold for potentials which

may oscillate in sign. Physically, it seems unlike
ly that W will have much more than comparable
strength with\J (comparable when z,2W = z1J).
Given this, the upper and lower bounds on ~ {J\J for
o< W < \J / z are of the same order, and we may
write conservatively,

t {31J ~ ..E 0 ( 1 . )
{3c .4mAmBz '

1 .<{3 ( 1 )."2 (3W ,.., r;- 0 4 2,
1-Jc mAmBz

where we have replaced z and z' by the smaller of
the two and relabeled it z. Notice that for very
dilute alloys (16) will lead to failure of the scheme
to be derived below, but this is not a severe re
striction. With the understanding that we are not
dealing with very dilute alloys we may leave out
the composition-dependent parts of (16) when using
them below.

The correlation functions may be classified ac
cording to powers of l/z. To see this, use (16) in
(12) and note that each summation contributes a
factor of z. We get, for j;/; 0, but I raj I less than
the interaction range:

(aaUJ) =4mAmS OU/z) (tl/tlc +{ 0(1) + [8(mB -mA)+ 8mAmB + (mB -mA)2/2mAmB ]O(ljz)

+ 8(mB -mA)20(1/Z2)} (tl/tlc )2+{ 0(1) + ••. } W/tlc)3 +. • •) .

The series in the large parenthesis is expected to'
have finite sum of order unity at {3 ~ {3c (cf. the
exact curve labeled FS in Fig. 6). At (3= f3c we may
therefore write (aOaj) = 4mAmBO(1/z) for j;/; 0 and
Iraj I within the interaction range. Naturally (aOaj)
can be less than this depending on temperature and
intersite separation, but the right-hand side is a
conservative upper bound for (aOaj) in the ranges
{35:. {3c and I rO} I < 00. Similarly, from Eqs. (13) and
(14) we expect that at {3= (3c, (aOaiaj) = 0(1/z 2), and
(aOaiaJak) =0(1/Z2). Given these classifications
and the fact that correlation functions decouple
when groups of sites are moved to infinity, it is
possible to find the classification of higher-order
correlations. For example, (aaaaaa)- (aa)(aa) (aa)
= 0(1/Z3). We always choose the decoupling which
gives the lowest order in l/z. A likely classifica
tion scheme at {3= (3c can, therefore, be seen to be

(17)

where

v = t[r+ 1 + ep(r+ 1»)

and

ct>(x) =1 (x odd)

=0 (x eVLn) .

The right-hand side of (17) may be interpretea
as an upper bound on all possible (r+ l)th-order
correlation functt1ns in the range f3~ f3c• In Appen
dix A we show the consistency of this scheme. It
is probably also optimal. It should be noted that
this classification depends on the property of the a
operators that (a) =O.

We can now meaningfully truncate the infinite set
of equations (10) and choose the correlation func
tions with which to characterize the alloy. The
criteria are the following.

a. The order of the solution in 1/z. In Appendix
A it is shown that an upper bound to the leading
order in 1/z of terms arising from Eqs. (10) when
(8) is substituted is given, at {3c, by

(18)
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where each site index is summed over the whole
lattice and where

w=i[r+n+2m+¢(r+n+2m)] •

For n + 2m.5 2z the equality in (18) holds. The in
equality (18) may be regarded as an upper bound

in the range f3~ f3c for terms arising from Eqs.
(10). Notice from Eq. (lOa) with (a) = 0 that Do
= 0(1/z) so that the order in 1/z of the Do terms
(n + m = 0) is greater by one than given by (18) with
n +2m = O. If we use (18) to write out Eqs. (10)
with all terms which can be at most 0(1/Z3) in the
range (3's f3c dis carded, we obtain

+ fB [34D 4~ VOf VOg VohVoz(aja,.ahaZ) , (19a)
f,.hZ

(aoai) =DO(ai) - t{3Dl(~ VOf(afai)+~ WOf,.(afagai» +i (32D2 ( ~ VofVo,(afa,.ai) + 2~ VO!WOgh(afagahai»
I II fg flh

-t~D3~ VO!VO,VOh(afa,ahai) , i*o (19b)
fgh

(aoaiajak) = - t (3Dl~ VOf(afaiajak) , 0, i, j, k noncoincident . (19d)
f

When i, j, k are allowed to range over the entire
lattice w~ see that we have an infinite dimensional
set of linear equations to solve for the correlation
fWlctions of up to the fourth order. A very con
siderable simplification of this set of equations is
obtained by use of the relation

(aOaiajak) = (aoai) (ajak) + (aOaj) (ai all)

which holds at [3c. This is proved in Appendix B.
Thus, pair and triplet correlation functions com
pletely characterize the system to 0(1/Z2) because
we can substitute (20) for quadruplet correlation
functions whenever they occur In (19). This makes
the equations nonlinear, but convergence is rapid
because (0'0') is only needed to 0(1/z) in (20),but to
0(1/z) pair correlations do not depend on qua
druplet correlations.

b. Spa tial truncation. To make the· set (19)
finite, a spatial truncation is needed so that only
a finite number of correlation functions of each
order appears in the system of equations. For
the 0(1/z~ truncation the "boundary conditions"
are simple because all pair and triplet correla
tion functions with one or more intersite vectors
exceeding a certain length are assigned the value

zero. For example, as site k moves away from
sites i and j, (atajak) - (aiaj )(ak) = O. For higher
order truncations the boundary conditions are less
simple because, for example, a possibility is that
(aiajakaZ)-(aiO'j)(akaZ) as sites k, 1 together move
away from i, j. Spatial truncation effects are ex
pected to be greatest near To, since the correla
tion range is longer there.

c. Symm etry. The number of order parameters
which one needs can be considerably reduced by
taking symmetries into account. For example,
when the pair interaction between any two sites is
the same, then we expect all pair correlation
functions except the self -correlation (a:) to have
the same value (mean-field case). When the pair
wise interaction in a pairwise model is isotropic
then each shell of sites has a distinct correlation
function. In general correlation functions with
"scaffoldings" of intersite vectors related by the
point ope rations of the lattice are symmetrically
equivalent. Correlation functions are also sym
metric under permutation of site indices, which
means that in the (N -l)(N - 2) equations (19c)
each order parameter occurs on the left-hand side
six times. The three distinct occurrences may
be combined to give one permutationally symmet
ric equation for each correlation function:

(aoaiUj) =~ Do( (ajaj) +(aoat) +(aOaj» - t {3D1{~,Vol [(a/aiaj) + (a,a-ial-i) + (a,a_jai_j >]

+ ~/' Wol, [(ala,ataj) +(a/(J,O"_iaj_i)+(a/a,O"_jO"i_j)]}
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(19c')

which occurs in

where

C-1 = (4mAmB)-1 v ,;1 Jd3k[1 + 2mAmB(3V(k)] -1 ,

in which the integration is over a Brillouin zone
of volume Vk and where

S(k) =6 I <0'0 0'1) t!'lI';i 'k. r01 0

It would seem that this is the complete 0(1/z) so
lution but the cumulative effect of higher-order
terms in (19b) makes a significant modification in
the region of T;. Brout15 shows that ·for the com
plete 0(1/z) solution (at least for mA =t) (22) is
modified to

(22)

(23)S(k) =4mAm B [x+ 2mAmB (3V(k)]_1,

where Xis determined by

-1 f 3.. [ (..)]-11=Vk dkX+2mA~B(3Vk •

This is known as the spherical-model result. 20

We have attempted to incorporate some of the
excluded-volume effects by including terms which
arise by the application of the reduction relations
to higher-order terms in (19b). Of these higher
order terms we have taken all terms which are of
0«(36) or less in the case W= 0, so that a term like

±{34D4(4B4V~i.6 Vol (O'iO'f» ,
I¢i

IV. VALIDITY OF THE SOLUTION

The derivation of Eqs. (19) assumed that all
interactions favor clustering (i. e., Voi , Woil.s 0
for all i, j and mA <m·B). Since alloys do not in
general satisfy this restriction, it is necessary
to examine the domain of validity of Eqs. (19) for
general interactions. We shall also consider the
so-called uexcluded-volume" effects which make
our classification scheme fail near Tc •

To discuss general interactions, we introduce
the notion of a conjugate alloy. The alloy conjugate
to a given alloy has every pair interaction replaced
by the negative of its absolute value (for aI11nA),
and every three -site interaction changed to the
negative of its absolute value if mA < mB or to the
positive if mA > mB. The conjugate alloy has every
interaction favoring clustering, so that it may be
discussed in the manner of Sec. III. If the conju
gate alloy has critical temperature T~. then (16)
gives t {31J ~ ({3/{3 ~ )0(1/z) and t {3w ~ ({3/{3 ~)0(1/z~.
If T c is the critical temperature of the original
alloy, then T ~2: Tco This is easily shown for the
0(1/z) truncation (see below) in which kTc = 2mAtrlB
x I V(km)1 , where V(km) is the absolute minimum
of the function

Note that Eqs. (19a), (19b), and (20) are already
,permutationally symmetric. Solution of permuta
tionally symmetric equations will automatically
yield solutions with the correct permutational
symmetry"

V( k) =61 Vol e 211'ik o
rol •

Clearly

kT~= 2mAmB~/1vall and IV(k m)!.s6/ 1 vall
so that the required inequality holds. For {3.s {3 ~

terms of high order in 1/z cannot be greater in
absolute magnitude than those of low order, but
for (3~ < ~ < {3c we have {3/f3~ > 1 so that the order of
a term in {3 becomes of importance. Thus, in the
range (3 ~ < [3 < f3c the 1/z classification is no longer
a criterion of smallness and we cannot gauge the
validity of the solution.

In the region of T ~ terms of higher order in 1/z
than have been explicitly displayed in Eqs. (19)
begin to have appreciable effect. This corresponds
to the excluded-volume effect discussed by Brout. 15

If we write down the 0(1/z) truncation of (19) we
obtain the original Clapp-Moss! equation

(O'OO'i) = - 2mAm·Bf3 6 1 Vol (O'IO'i) + CO Oi (21)

to solve. The term Coo i removes the i = 0 restric
tion. Solving by Fourier transformation we get

is classified 0({35) and is included in our solution..
These extra terms begin to matter for {3 ~ f3: .

It seems that, apart from spatial truncation ef
fects, our solution is good to the desired order in
Z-1 down to about (3~oThe failure of the 0(1/z)
criterion for {3 ~ < f3 < (3 c and the excluded-volume
effects are shortcomings of our approach which
deserve closer study. 21 The former is especial
ly so because many alloys seem to have long
range oscillating pair interactions.

V. SOLUTION OF THE SYSTEM OF EQUATIONS

To solve the set of equations (19a)- (19c) with
the relation (20) and the extra terms mentioned
in Sec. IV it is necessary to use symmetries to
pick out distinct correlation functions, and to em
ploy spatial truncation to make the set finite. We
denote the mth-distinct nth-order correlation
function by r"(m).. It is also necessary to ex
plicitly decompose correlation functions with
coincident sites in the various summations by
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FIG. 1. Plots of r 2(1) and r 3(1) for V= -1, rnA =!, and
various values of w. {3~ =0.167 is markedo
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( (Ji) == r 1 == Y1 ,

«(Jo(Ji) ==r 2 ==y2/N for i *0,
( (J0 (Ji (JJ) == r 3 == Y 3IN 2 for 0 =F i :f:. j :f:. ,0 ,

«(Jo(Ji(JJ(J,J == r 4 E y4 /N 2 no coincidences, etc.

Thus, yn =0(1) and all correlation functions of a
given order are symmetrically equivalent. For
an 0(1/N2 ) truncation this symmetry reduces
Eqs. (19) to 4 x 4 and obviates spatial truncation.
It is easy, but messy, to write out Eqs. (19) for
this mean-field case, but to simplify things we
shall truncate "each equation in (19) to leading
order in liN, rather than to 0(1/N2

). In Eq.
(19a) we truncate to 0(1/N), not 0(1), because the
condition y1 =0 makes the 0(1) parts vanish.

The set of equations (19) may be written

QY=o,

where the elements of the matrix G are

analytical "mean-field" solution. The mean-field
alloy has Voi == 1), Woij ==W for all i, j except coin
cident sites.

The Hamiltonian is

1 "\' I 1. "\' I
H = "4 1) L.J (Ji (Jj + 6 \\? L.J (J i (JJ(Jk ,

ij ijk

where the primes indicate omission of terms for
which sites coincide. Let us define

w=N2 wand v=N'1) •

By symmetry, the characteristic order parameters
are

using the reduction relations.
In the computer program described below for a

fcc binary alloy we used a spatial truncation in
which pair and triplet correlation functions with
one or more intersite vectors exceeding the tenth
neighbor distance were discarded. Thus, there
were ten distinct pair correlations and 74 distinct
triplet correlations included, so that an 85x 85
set of equations was solved. The n = 1 correlation
r 1 =«(Ji) was also included.

In the numerical solution of the truncated sys
tem of equations it is necessary to constrain r 1

to vanish. This is the composition constraint.
At a given temperature one chooses a starting
value for tanhA, obtained in general from two pre
vious solutions at slightly higher temperatures.
This defines all the Dn, so that Eqs. (19a)- (19c)
may be solved by the standard technique, modified
to account for the small· amount of nonlinearity in
troduced by (20). This gives a value for r 1 which
may be used in a regula falsi procedure to give a
better 'estimate for tanhA. The new value of tanhA
is used in another solution of the set of equations,
and the cycle is repeated until r 1 =0 to within re
quired limits. The values for the correlation
functions corresponding to r 1 = 0 are the required
solution at the given temperature. The procedure
is carried out at successive closely spaced tem
peratures starting from {:3 =0 (where tanhA=1nA

- rnB), and continuing until the determinant of the
85 x 85 matrix (without the nonlinear part) vanishes
or the solution becomes uninteresting.

The techniques of this paper are even more easi
ly applied to the Ising ferromagnet problem than
to the alloy problem because the magnetization
(analogous to r 1) is determined by the applied
magnetic field (related to A) rather than vice versa
as for an alloy.

In Figs. 1-4 we have plotted the nearest-neigh
bor pair correlation r 2 (1) and the "equilateral
nearest-neighbor-triangle" triplet correlation r 3(1)
as a function of {:3 for several choices of input
parameters (V, W, rnA) in a fcc alloy with nearest
neighbor pair interactions of strength V =± 1 and
equilateral-nearest-neighbor-triangle triplet in
teractions of strength W. When W= 0.1, it has
an effect comparable with that of V. On each of
the graphs we indicate {:3~ given by (15) with W= O.
Nonvanishing W makes little difference to 13; for
the values of W considered. This value of (:3 c is
also the value predicted by the Clapp-Moss equa
tion (22) for a clustering alloy. The lower tem
perature limit for validity of our solution is about
T;. On the graphs, a dot indicates termination
of the solution due to a vanishing determinant, and
an arrowhead indicates that the solution continues.

Some of the major features of the above solution
may be interpreted in terms of a relatively simple
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FIG. 4. Same as for Fig. 3, but with V= 1.
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r 2
(1)

(24a)

y 3(8mA m a)-1 =- [4mAmB r(3/(3efzv 1_ 3(mB - mA)(j3/(3e)2

+ 2(mB - mAl «(3/ ,Be)3] (1 - [3/ f3e)-3 ,
(24b)

1"4 (48mlm; )_1 = «(3/(3e)2(l - [3/(3e) ..2 , (24c)

where j3~l = 2mAmB Iv I, w' = w/ Iv I, and where (3
> 0 corresponds to v < 0 and [3< 0 to v> O. Notice
that the relation (20) is verified for this case.

In Fig. 5 we have plotted 1"2 and 1"3 for rnA = t
and mA = t and several values of Wi. When Iw'l
=1, then w has an effect comparable with that of
v. The expressions for 1"2 and 1"3 are expected
to typify correlation functions with all intersite
vectors lying within the interaction range. Thus
we can only compare 1"2 and ')13 with r 2(1) and r 3(1)
of the computer solution.

By comparing Figs~ 1-4 with Fig. 5 one can see

G34 = ! (3D1w - i (32D2v 2 ,

G42 =-~ (3D1A 2v

and where the elements of the vector 6 are

01 =NDo+ i 132D2A 2v 2, 52 =- ~ j3D1A2v ,

6 3 =- {3D1WA~ + t (32D2A~v2, 6 4 =o.

When eventually ')11 is set to zero, the values of
G2l and G3l become irrelevant, therefore we set
them to zero. The equations are now quite easily
solved. It is sufficient for the present order in
l/N to substitute tanh>L= mA - ma into (11) to de
termine the Dn• Also, one eliminates NDo from
G32 by using the I" 1 = 0 condition in the equation in
volving 0 1

• The solutions are

0.200.150.05

0..--.---...a....-----'-------1-----J
0.02..-----...,...-------,..------,--------,

0.02

Gu =N(l + t (3Dl v) ,

G12 = ! (3Dlw - i (32D2v 2 ,

0.12 .--------r------,...----~-----,

G13 =G23 =G24 =G41 =G43 =G14 =0,

G21 = - NDO+ t (3Dl (vB2+ 2wA2) - t (32D2A2v 2 ,

G22 = 1 + t (3Dlv= G33 = G44 ,

G31 ={3D1A2Nv - i (32D2A3v 2 ,

G32 =- NDO+ (3D1(vB2+ 2A2w) - t (32D2A2v 2 ,
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r 3 (I)
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FIG. 3. Plots of r 2(1) and r 3(1) for V= -1, rnA = 1, and
various values of w. {3~ =0.222.



VI. COMPARISON WITH OTHER SOLUTIONS

FIG. 5. Plots of ')/2 and ')/3 in the mean-field solution
for v =::1: 1, mA =!, mA =i, and various values of w'.
13<0 corresponds to v=+l and 13>0 corresponds tov=-l.

that for 1{31 ~{3c (or (3~ on Figs. 1-4)andevenlower
temperatures there is a very strong correspondence
between the mean field curves and the corre
sponding computer solutions. This would indicate
that certain aspects of the more realistic model's
behavior may be interpreted in terms of the much
simpler mean-field model.

1261

fects. By comparing the analytical solution de
rived from (22) with the numerical solution of (21)
done in the manner described in Sec. V (with the
same spatial truncation) we found that when r 2 (10)
was less than about 5% of r 2 (1), then the error in
r 2 (1) was less than about 3%. Deviations of the
curve labeled "present" in Fig. 6 can, therefore,
not be attributed mainly to spatial truncation ef
fects.

The present solution is certainly a considerable
improvement over the eM solution and the SM solu
tion in the range 0 < {3 ~ {3 ~. In the range {3 ~ ~ (3 the
excluded volume corrections begin to matter and
an improved treatment of these would probably
yield better agreement with FS in this region.
Although the TK curve gives agreement which is
nearly as good as the present treatment, the deri
vation of Eqs. (5.4) and (6.1) of Ref. 8 was hard
to justify and did not yield expressions for higher
order correlation functions, or indicate a way of
deriving them in an orderly way.

A method for determining multi-site correlations
based on an information-theory approach has re
cently been developed by Clapp24,25 and used to
calculate n-site probabilities for various alloys,
with pair interactions only, from experimental or
theoretical pair correlation functions. We have
used the pair correlations generated by our pro
gram to calculate r 3 (m) by Clapp's method for
a three-site cluster and compared them with
r 3 (m) generated by our program. The dotted
curves in Figs. 3 and 4 are Clapp's estimate of
r 3 (1). In Figs. 1 and 2 Clapp's estimate is zero
for all {3 by symmetry. In Fig. 4 the deviation of
Clapp's estimate occurs outside the range of cer
tain validity of our method, and so nothing can be
concluded. However, in Fig. 3,. at, e. g., (3= O. 16

l
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FIG. 6. Comparison of several solution methods in
the V= -1, 1nA ::::~, W=O case with the exact (FS) result.
The curves are the predictions of the Clapp-Moss approxi
mation (eM), the spherical model (8M), and the approxi
mation of Tahir-Kheli (TK), as well as r 2(1) and r 2(10)
of the present approximation (Present).

In Fig. 6 we compare the results of the above
computation with other approximate solution meth
ods by plotting r 2 (1) for a choice of input param
eters for which a comparison is possible; that is,
the equiatomic, nearest-neighbor, clustering, face
centered-cubic alloy with no three-site interac
tions. The spherical-model (SM) solution was ob
tained via (23). The prediction of Clapp and Moss l

from Eq. (22) is labeled CM. For both of these
curves the prescription of Lax22 for the functions
involved was used. The curve labeled FS was ob
tained by using Eq. (A5) of Ref. 23 which gives the
internal energy of the fcc nearest-neighbor cluster
ing alloy. The internal energy is proportional to
r 2 (1). The FS curve closely approximates the ex
act result-to within 1 or 2% at the critical point
and better elsewhere. The curve labeled TK is
the prediction of Eqs. (5.4) and (6. 1) of Ref. 8.

We have plotted r 2 (10) from our method in order
to gauge the importance of spatial truncation ef-
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m=1

o
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0.1
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the difference is 20% of our estimate of r 3 (1).
This temperature is well above T ~ and r 2 (10) is
small enough that spatial truncation effects can
be ignored. The criteria of validity of our solu
tion seem to be well satisfied so that Clapp's solu
tion is probably in error. This suggests that the
effect of varying the cluster size in Clapp's method
for determining the higher-order correlation func
tions should be investigated.

the number of summations by t - 1. A t-fold con
traction can include one (but no more) fixed site,
and when it does, t - 1 summations are eliminated.
If there are St t-fold contractions, among floating
or fixed and floating sites, then St(t - 1) summa
tions are eliminated. The total number of summa
tions is therefore q where

(A3)
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In these q summations coincidences must be
avoided, for otherwise we would be considering a
term arising from another contraction. If there
are s fixed sites among the z sites within the in
teraction range then the q summations actually
contribute a factor of (z - s)(z - s -1) · · · (z - s - q
- 1) < z q. We shall use the upper bound, z q.

Notice also that q < z - s, since for q >z - s floating .
site coincidences are unavoidable.

With ~ J3c lJ =O(l/z) and t J3c W =O(1/z 2
) an up

per bound to the lowest-order contribution from
the general term is O(z-W), where

W= P- q+ n+ 2m= t[r+n+ 2m+ ~t (t - 2) Srt- ep(u)].

In this we need a lower bound for the value of
~ t (t - 2)St. Now (t - 2)St ~ 0 so [Lt(t - 2)St]lb =o.
When this lower bound (lb) can actually occur,
Lt Stt is even, so from (A1), ¢(u) =¢(r+ n+ 2m).
For n+ 2m ~2z, the condition q < z - s coupled with
(A3) implies that this lower bound on Lt (t - 2)St
will not actually be achieved, but in any case we
may always write a lower bound on w as

which is the desired result. The lower bound on
w is attained for n + 2m i 2z.

To show the consistency of the classification
scheme (17) we compare the order in 1/z of the
left- and right-hand sides of an arbitrary equa
tion (arbitrary r) in the set of equations (10).
The left-hand side is O(z·V) where v= t[r+ 1
+ ¢(r+ 1)] and a general term on the right-hand
side is O(z·w'), where w'=~[r+n+2m+¢(r+n

+2m)]+ 02m+n,O provided that n+2m£2z. The Kron
ecker 0 is added to account for the fact that Do
=O(l/z). It is easy to show that

(A4)w=f[ r+ n+ 2m + ¢ (r+ n+ 2m)],

APPENDIX A

Consider a general term on the right-hand side
of Eqs. (10) at f3= f3c :

All the indices!, g, h are summed over (floating),
but i(l). · · i(r) are fixed and uncontracted. For
Eq. (lOa) r= 0, for (lOb) r= 1, etc. No contrac
tions can occur among indices on the same W
[e. g., O_:f:.g(s) :f:.h(s) *0]. Various special cases in
the summations corresponding to different con
tractions of indices contribute to different orders
in l/z, and we seek an upper bound on the leading
order contribution from the general term.

For our purposes it is sufficient to specify an
over-all contraction arrangement by {St}, where
St is the number of t-fold contractions. For a
given {St} the number of distinct sites in the lowest
order correlation function in the expression for the
reduced (by contraction) (r+ n + 2m)th-order corre~:

lation function appearing in the general term is

n m

(- t J3 c)m+n D m+n l::; II Vof(P) II Wog(q)hCq)
If ,g,h} p=l q=l

The number of summations in the general term
will be reduced from n + 2m by contractions. A
t-fold contraction among floating sites reduces

We have used Eqs. (4). Thus, assuming the
scheme (17), the lowest-order correlation func
tion arising from the contraction is O(z-P), where

u=r+n+2m- L;tSt.
t>2

(Al)

(A2)

v - Wi = ~[(n+ 2m - 1) + (_l)r+l ¢(n+ 2m -1)]+ 02m+n,O.

(A5)

By inspection of (A5) with r+ 1 odd or even we see
that (i) v - Wi ~ 0, (ii) there exist values of n+ 2m
(0, 1 or 2) which are less than approximately 2z
(24 for fcc) for which v - Wi =O. This means that
for each equation (10), the leading order in 1/z
of the right-hand side is the same as the left-hand
side" Therefore, the scheme (17) is consistent.

Glenn
Sticky Note
We badly needed this theorem.  I spent a sweaty time in my apartment in Lemon St. working this out.
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APPENDIXB

We w1sh to show that when no sites coincide and
{3= 13 c,

(OiOjOkOZ) =(oiOj)(akoZ) + (oio~(ajO,)

+ (OiOZ)(OjO~ + O{l/z 3) •
Proof. To 0 (1 / z 2) the function

GfjkZ =(OiOjOkOZ) - (OiOj)(OkO ,)

- (OiO~(Oj o,)!- (OiUZ)(OjOk)

satisfies

Gofjk=- ! I3Dl~ I Vol Glijk

tnoue of 0, i, j, k coincident),

because to Q{1/z 2
) ,

(OoOiOjOk) = - ~ {IDt~ / Vo/(O/OiOjO,) ,

and
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