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This document provides detailed derivation of results given in the paper “Copula Models of Correlation: A DRAM 

Case Study” by C. Glenn Shirley and W. Robert Daasch.  References to sections in the paper and equations in the 

paper are enclosed in braces, {}. 

A Model of Test and Use 

Section {4.1} shows Eq. {15} which transforms the exchangeable copula, C, into the pseudo-copula, D, representing 

the Test/Use model defined in Eq. {14}.  The references given
1
 will guide the derivation, but a less general and more 

explicit demonstration will be easier to understand.  The strategy is to do probability logical manipulations starting 

with Eq. {14} leading to expressions like P(Ux  u, Uy  v) where Ux and Uy are independent uniform random 

variables on [0,1].  P(Ux  u, Uy  v) is then recognized as a copula (or pseudo-copula).  Some results from Nelsen’s 

book are used on the way. 

Preliminaries 

Problem 2.16 on p29 of Nelsen
2
 

Suppose random variables X and Y have copula C, and marginal distributions F and G. 

Prove that 

                                                           
1
 Jorge Navarro and Fabio Spizzichino, "On the relationships between copulas of order statistics and marginal 

distributions," Statistics and Probability Letters, vol. 80, no. 5-6, pp. 473-479, March 2010. [Online]. 

http://dx.doi.org/10.1016/j.spl.2009.11.025 
2
 Roger B. Nelsen, An Introduction to Copulas, 2

nd 
ed. New York, New York, USA: Springer, 2010. 

http://dx.doi.org/10.1016/j.spl.2009.11.025
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X  tY t

X  t and Y  t

    max , ( ), ( )P X Y t C F t G t      (S1) 

and 

     min , ( ) ( ) ( ), ( )P X Y t F t G t C F t G t    . (S2) 

Proof of Eq.(S1). 

The pairs with X  t and Y  t are the same as the pairs with max[X, Y]  t.  So 

 
      

   

1 1max , , ( ) , ( )

( ), ( ) ( ), ( )

X Y

X Y

P X Y t P X t Y t P F U t G U t

P U F t U G t C F t G t

       

   
 (S3) 

Proof of Eq. (S2) 

The event min[X,Y]  t is the same as the event that one or both of X and Y are 

less or equal to t.  These are the events covered by the two circles in the Venn 

diagram.  So, from the inclusion/exclusion principle 

 

 
        

     

min , ,

( ), ( )

P X Y t P X t P Y t P X t Y t

F t G t C F t G t

       

  
 (S4) 

Derivation of Eq. {15} 

In Use the retention time for a “good” bit will always be the minimum retention time for any bit because a bit will be 

accessed repeatedly.  Test, on the other hand, is a brief test in which either the maximum or minimum retention time 

will occur during the Test.  If s is the proportion of the time that the Test retention time is the maximum for a bit, 

then the retention time model for retention times in Use and Test is 

 

min[ , ] All the time.

max[ , ] Proportion  of the time.

min[ , ] Proportion 1-  of the time.

Use

Test

Z X Y

X Y s
Z

X Y s




 


 (S5) 

where X and Y are retention times modeled by the fitted copula, C with equal margins, F 
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 (S6) 

where p = F(u) and q = F(t). 

The distribution function of interest in models of Test and Use is 
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 (S7) 

and we seek D in terms of C.  Notice that the manipulations in Eq. (S7) depend on exchanging the order of the 

inverse cumulative distribution, F
1

, with the min and max functions.  This is only possible if the margins are equal.  

The margins of {Table 2} in the paper are equal by construction. 

Consider the term with coefficient (1  s) in the final equality of Eq. (S7): 
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z C z z z p q

 
   

 

 
 

 

  

 (S8) 

The first equality in Eq. (S8) is true because, for p  q, both min[UX, UY]  p and min[UX, UY]  q are only true when 

min[UX, UY]  p since the events {min[UX, UY]  p} are a subset of the events {min[UX, UY]  q}.   A symmetrical 

argument is made when q  p.  The second equality in Eq. (S8) is a consequence of Eq. (S4) when F = G = p or 

F = G = q. 

Now consider the term with coefficient s in the last equality of Eq. (S7).  This is the pseudo-copula giving the 

dependence of the order statistics of samples of UX and UY 

  ( , ) min[ , ] ,max[ , ]X Y X YOS p q P U U p U U q  
.
 (S9) 

Key Observation:  An expression for OS in terms of C is constructed by reflecting all probability points below the 

(0,0)/(1,1) diagonal in C to lie above the diagonal. 

Referring to the figures, the probability density in OS may therefore be written as 

 

( , ) ( , ) ( , )
( , )

( , )

( , ) ( , ) ( , ) min[ , ]

C p q C q p C p p p q
OS p q

C q q p q

C p q C q z C p z z p q

  
 



   

 (S10) 
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From Eqs. (S7), (S8), and (S10) the probability model for Test and Use is 

    ( , ) ( , ) ( , ) ( , ) (1 ) 2 ( , ) min[ , ]D p q s C p q C q z C p z s z C z z z p q        (S11) 

where p is the Use condition and q is the Test condition.  The most conservative model in which Test always “sees” 

the maximum retention time, and never the minimum, corresponds to s = 1. 

Example 

The Clayton copula C which fits the nominal DRAM data has  = 9.75.  Samples synthesized from C and 

transformed according to Eq. (S5) into D are shown in the figure.  The density of points is a measure of the 

probability density of C and of D.  A value of s = 0.7 for D is shown.  Notice that the term of Eq. (S11) with 

coefficient s corresponds to “folding” the part of C below the diagonal so that it lies above the diagonal of D, and the 

term with coefficient (1  s) gives a concentration of points lying on the diagonal of D. 
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Array Statistics from Bit Statistics 

A statistical model of individual memory bits gives the probability that a bit is a member of one of the four mutually 

exclusive categories pf, fp, ff, pp.  These bit-level probabilities are ppf, pfp, pff, and ppp = 1  ppf  pfp  pff.  The bit-

level statistical model gives the probabilities as functions of Test and Use conditions.  In this notation the letter in 

the first subscript position indicates pass or fail in Use, and in the second position the letter indicates pass or fail in 

Test.  For example, ppf is the probability that a bit would pass Use but fail Test.  It is important to keep this 

positional convention in mind in the following discussion.  This note shows how to derive probabilities for arrays 

from the probabilities of bits in the four categories as a function of three factors: 

 The number of bits in the array. 

 Fault tolerance capacity in Test and in Use. 

 Whether or not bits tolerated at Test are repaired/replaced at Test. 

The objective is to derive expressions for three figures of merit (FOMs), yield loss (YL), overkill level (OL), and 

defect level (DL) for arrays.  These FOMs are given by 

 (Fails Test) 1 (Passes Test)YL P P    (S12) 

 
(Good in Use)

(Passes Test and Good in Use)

OL P

P




 (S13) 

 

(Fails in Use|Passes Test)

1 (Good in Use|Passes Test)

(Passes Test and Good in Use)
1

(Passes Test)

DL P

P

P

P



 

 

 (S14) 

So, the objective becomes derivation of expressions for P(Passes Test), P(Good in Use), and P(Passes Test and 

Good in Use) for arrays. 

Consider an array made from n of the bits characterized in this experiment.  Assuming that the bits are statistically 

independent, the probability that the array has exactly nfp bits in category fp, npf bits in category pf, and nff bits in 

category ff is given by the multinomial theorem, 

  , , (1 ) .
, ,

pf fp ff pf fp ffn n n n n n n

pf pf fp fp ff ff pf fp ff pf fp ff

pf fp ff

n
P N n N n N n p p p p p p

n n n

   
       

 
 (S15) 

For a memory array, conditions for the Poisson limit are well-justified.  In this limit, n  , so 

max[ , , ]pp pf fp ff pf fp ffn n n n n n n n    , but ’s defined by 

 pf pf fp fp ff ffnp np np      (S16) 

remain finite.  In the Poisson limit Eq. (S15) becomes 

  
exp( ) exp( ) exp( )

, , .
! ! !

ff pf fpn n n

ff ff pf pf fp fp

pf pf fp fp ff ff

ff pf fp

P N n N n N n
n n n

       
    (S17) 
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In the following manipulations expressions for probability functions will be derived.  The probability functions are 

sums of “Poisson terms” such as Eq. (S17) taken over sets of integers {npf, nfp, nff} allowed by certain constraints.  In 

some cases the sum of the Poisson terms gives a tidy analytical expression. 

Arrays Without Fault Tolerance 

We first derive expressions for FOMs assuming no fault tolerance at Test or in Use.  In this case a single failing bit 

will cause the array to be classified as failing.  The event that an array passes Test irrespective or whether it passes 

or fails in Use is defined by 

 0pf ffn n   (S18) 

which expresses the condition that no bits fail in Test (note that the second subscript index is f in both bit count 

categories), and by 

 0         0fp ff fpn n n       (S19) 

which expresses the condition that any number of bits may fail in Use for arrays in this category (note that nff = 0 

because of Eq. (S18)).  So the probability of an array passing Test irrespective of whether the array passes or fails in 

Use is given by summing the probability in Eq. (S17) over the set of integers {npf, nfp, nff} allowed by the constraints 

of Eqs. (S18) and (S19) 

  
0

0

exp( ) exp( ) exp( )
Passes Test exp ( ) .

! ! !

ff pf fp

pf ff

fp

n n n

ff ff pf pf fp fp

ff pf

n n ff pf fp
n

P
n n n

     
 

 

 

  
       (S20) 

Similarly, the probability that an array would be good in use irrespective of Test is given by summing Eq. (S17) 

over terms allowed by 

 0, 0fp ff pfn n n      (S21) 

so 

  Good in Use exp ( )ff fpP        (S22) 

The event that an array passes Test and is good in Use is defined by nfp = npf = nff = 0, so the probability is 

  Passes Test and Good in Use exp ( )ff pf fpP          (S23) 

Substitution of the probabilities from Eqs. (S20), (S22), and (S23) into Eqs. (S12), (S13), (S14) gives figures of 

merit assuming no fault tolerance 

 

1 exp ( )

exp ( ) 1 exp( )

1 exp( ).

ff pf

ff fp pf

fp

YL

OL

DL

 

  



     

          

  

 (S24) 

Arrays With Fault Tolerance 

Fault tolerance is modeled by expanding the definition of a “good” array to include arrays with some “bad” bits.  

The effect of bad bits in arrays that are considered good is corrected by a fault tolerance scheme.  Fault tolerance 
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may be implemented by error correction of data in Test and/or in Use, or by replacing bad bits detected at Test with 

good bits.  The maximum number of bad bits which can be tolerated is a measure of the capacity of the fault 

tolerance scheme.  The following discussion supposes than an array can tolerate up to nt bits bad in Test and up to nu 

bits bad in Use.  Two ways of implementing fault tolerance will be given.  The first is fault tolerance with no repair, 

and the second is fault tolerance with repair at Test. 

Fault Tolerance Without Repair 

Consider a population of arrays each with the same number, n, of bits.  The number of bits in the mutually exclusive 

bit categories pf, fp, ff, pp will vary from instance to instance of the array, with the constraint n = npp + npf + nfp + nff.  

The condition for an array to “pass” Test is that the number of bits bad at Test is less than the fault tolerance 

capacity at Test: 0  nff + npf  nt.  And for an array to be “good” in Use: 0  nff + nfp  nu.  These criteria may be 

used to categorize arrays as shown in Table 1. 

Table 1  Array categories vs bit category counts and tolerance capacities for no-repair at Test. 

fp: Passes Test and Bad in Use 

0 ff pf t

u ff fp

n n n

n n n

  

   
 

pp: Passes Test and Good in Use 

0

0

ff pf t

ff fp u

n n n

n n n

  

  
 

ff: Fails Test and Bad in Use 

t ff pf

u ff fp

n n n

n n n

   

   
 

pf: Fails Test and Good in Use 

0

t ff pf

ff fp u

n n n

n n n

   

  
 

Examples of four arrays of the same size categorized according to Table 1 are given in Figure 1.  The number of bits 

in each bit category is shown by the vertical size of colored areas and varies from array to array.  The diagrams in 

the figure do not accurately depict the Poisson limit because in that limit the number of pp bits will be much larger 

than the number of any other category.  But this doesn’t matter since the dimension of the pp region can be 

increased without limit without affecting the discussion. Keep in mind that Table 1 and Figure 1 describe the 

categorization of the entire population of bits and arrays irrespective of whether the test manufacturing flow 

physically removes failing arrays at Test.  That is why the number of bits in various categories is unchanged 

between Test and Use in Figure 1.  The definition of figures of merit in terms of conditional probabilities describes 

the effect of physically removing failures at Test. 

The probability that an array falls into any of the four array categories is found by summing Poisson terms, Eq. 

(S17), over the set of integers {npf, nfp, nff} allowed by the criteria given in Table 1.  The probabilities of interest may 

be expressed in terms of the bivariate correlated Poisson distribution introduced by Campbell
3
.  If an array has 

exactly nu bits which are bad in Use and exactly nt bits which are bad at Test (that is, the arrays are at the limit of 

fault tolerance capacity), then the random variables Nfp, Npf and Nff may vary within the following constraints: 

 0 min[ , ]ff fp u ff pf t ff u tN N n N N n N n n       (S25) 

where the last inequality is a way of expressing the constraints Npf ≥  0 and Nfp ≥  0.  So the probability that an array 

has exactly nu bits failing in Use and exactly nt bits failing in Test is the sum of Poisson terms, Eq. (S17), over bit 

category counts allowed by Eq. (S25): 

                                                           
3
 J. T. Campbell (1934). The Poisson Correlation Function. Proceedings of the Edinburgh Mathematical Society 

(Series 2), 4 , pp 18-26 http://dx.doi.org/10.1017/S0013091500024135 

http://dx.doi.org/10.1017/S0013091500024135
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  (S26) 

which is Campbell’s bivariate Poisson distribution. 

 

Figure 1  Examples of four arrays falling into each of the four array categories by the criteria of Table 1.  The 
number of bits in each category is unchanged between Test and Use. 

For the present application the cumulative form of Campbell’s  distribution is needed to sum Poisson terms, Eq. 

(S17), for all arrays within, not just at the limit of, the fault tolerance capacity: 
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 (S27) 

where R is 

  
0

, .
!

i
x

i n

x
R x n e

i



 

   (S28) 
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The second equality in Eq. (S27) is derived in an Appendix to these supplemental notes (Derivation of Eq. {22}).  

Eq. (S27) (aka Eq. {22}) provides a way to compute the cumulative bivariate Poisson distribution in terms of a sum 

over products of the function R given by Eq. (S28).  R is a standard statistical function available, for example, in 

Excel.   The sum in the second equality in Eq. (S27) is over a small number of terms since nu and nt are usually 

small integers. 

From Table 1 and Eq. (S27) the probability that an array will be good in both Test and Use is 

    Passes Test and Good in Use Pois , ; , ,u t fp pf ffP n n     (S29) 

The probability that an array is good in Use, irrespective of its Test category, is the union of the right-hand column 

of cells in Table 1 which amounts to setting nt =  in the cumulative Poisson distribution 

      Good in Use Pois , ; , , ,u t fp pf ff fp ff uP n n R n         (S30) 

where we have used a property of Pois given in the Appendix (Eq. (S55).  Similarly, the probability that an array is 

good in Test, irrespective of its Use category, is the union of the top row of cells in Table 1 which amounts to setting 

nu =  in the cumulative Poisson distribution 

      Passes Test Pois , ; , , , .u t fp pf ff pf ff tP n n R n         (S31) 

0

0

ff pf t

fp

n n n

n

  

  
 

0

0

ff fp u

pf

n n n

n

  

  
 

0

0

ff pf t

ff fp u

n n n

n n n

  

  
 

Figure 2.  Regions of {npf, nfp, nff} space for sums over Poisson terms in no-repair probability functions.  
Shown for nu = 7 and nt = 3. 

Each of the probabilities in Eqs. (S29), (S30), and (S31) may be regarded as sums of Poisson terms, Eq. (S17), over 

bit category indexes allowed by criteria given in Table 1.   The allowed sets of integers may be visualized as regions 

in bit category count space shown in Figure 2.  The three probabilities given in Eqs. (S29), (S30), and (S31) may be 

substituted into Eqs. (S12), (S13), and (S14) to give the figures of merit. 

Fault Tolerance With Repair 

Frequently a Test step actively repairs bits that it detects as bad by replacing a bad bit with a good one.  The 

replacement may be accomplished by, for example, reconnecting decoder circuitry to a different spare column or 

block of circuitry.  The repair re-categorizes bits in the pf and ff categories as pp bits.  This has two consequences, 

first it increases the number of pp bits, and second it reduces the number of bad bits that fault tolerance mechanisms 

in Use must cover.  The effect of repair at Test on bit categories in an array at Test and at Use is illustrated in Figure 

3.  In the figure, the example arrays have the same proportions of bits in categories before Test as those in Figure 1, 

but the proportions are modified in Use because of the effect of repair at Test. 

nff

npf

nfp



nt = 3 Passes Test

nff

npf

nfp

nu = 7



Good in Use

nff

npf

nfpPasses Test and
Good in Use
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Figure 3.  Examples of four arrays falling into each of the four array categories by the criteria of Table 2.  The 
repair of bits failing at Test is represented by re-categorizing them as pp bits.  The change in bit counts in 
categories describes the effect of active repair at Test.  It is not due to screening (removal of arrays) at Test. 

The model has three assumptions: 

1. The effect of repair on a bit that fails in Test (a pf or ff bit) is to convert it to a pp bit.  This assumes that the 

reservoir of spares has only perfect bits.  Other models are possible.  For example, the spare bits, and 

therefore the repaired bits, could be assumed to have the same category proportions as in the array before 

Test.  In practice the proportion of pp bits is so much larger than the other categories that assuming that all 

repaired bits are in the pp category is an excellent approximation. 

2. If the number of pf and ff bits in an array does not exceed the fault tolerance capacity of Test, then the array 

has no pf or ff bits in Use. 

3. If the number of pf and ff bits in an array exceeds the fault tolerance capacity of Test, then the total number 

of pf and ff bits in the array in Use is npf + nff – nt.  The bits are pf and ff bits in the same proportion as in 

population of pf and ff bits before repair at Test because Test cannot “know” whether a bit that it repairs 

would have failed in Use or not. 

In this model, for a given array the number of bits in the four categories after re-categorization by repair at Test is, in 

terms of the pre-Test categories (see Derivation of Eq. (S32) in the Appendix) 
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max ,0

max ,0

pp pp pf ff t

pf

pf ff pf t

ff pf

ff

ff ff pf t

ff pf

fp fp

n n n n n

n
n n n n

n n

n
n n n n

n n

n n

     

 
         

 
         

 

 (S32) 

where post-repair category counts are shown as primed, and the ceiling and floor functions force integer values in a 

way that is conservative to the end-user. 

Figure 3 and Table 2 shows that unprimed pre-repair bit category counts are used to determine the Test pass/fail 

attribute of an array, whereas the primed bit category counts are used to determine the Use pass/fail category of an 

array. 

Table 2.  Array categories vs bit category counts, and tolerance capacities for repair at Test. 

fp: Passes Test and Bad in Use 

0 ff pf t

u ff fp

n n n

n n n

  

    
 

pp: Passes Test and Good in Use 

0

0

ff pf t

ff fp u

n n n

n n n

  

   
 

ff: Fails Test and Bad in Use 

t ff pf

u ff fp

n n n

n n n

   

    
 

pf: Fails Test and Good in Use 

0

t ff pf

ff fp u

n n n

n n n

   

   
 

Passes Test.  The union of the “Passes Test” criteria in the top row of Table 2 gives the indexes which must be 

summed over to give P(Passes Test), irrespective of Use: 

 0 , 0ff pf t ff fpn n n n n         (S33) 

which is the same as 

 0 , 0ff pf t fpn n n n       (S34) 

because pf fpn n  and because, from Eq. (S32), 0ffn   when the first condition in Eq. (S33) is satisfied.  Eq. (S34) 

is the same criterion for P(Passes Test) for the no-repair case, so 

    Passes Test , (repair).pf ff tP R n    (S35) 

Passes Test and Good in Use.  The same argument reduces the criterion in the top right cell of Table 2 to 

 0 , 0ff pf t fp un n n n n      (S36) 

which differs from the corresponding cell in the no-repair case (Table 1).  The corresponding probability when 

summed over Poisson terms is the tidy factorization (see Derivation of Eq. {29} in the Appendix) 

      Passes Test and Good in Use , , (repair)ff pf t fp uP R n R n    . (S37) 
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Good in Use.  The union of the criteria in the right-hand column of Table 2 gives the gives the indexes which must 

be summed over to give P(Good in Use), irrespective of Test. 

 0 , 0ff pf ff fp un n n n n         (S38) 

which is the same as the following constraint on unprimed bit indexes to be summed over 

 0 ,    0 ( , , )pf ff ff pf t fp un n n n n n n       (S39) 

because fp fpn n   and the first condition in Eq. (S38) can be broken into 0 ffn    and 0 pfn   , but the first 

of these is superfluous because of the tighter constraint on nff imposed by the second condition in Eq. (S39). 

The volumes in {npf, nfp, nff} space allowed by the conditions of Eqs. (S34), (S36), and (S39) are shown in Figure 4 

for example values of Test and Use tolerance criteria.  The shape of the Good in Use volume suggests dividing it 

into two parts and then adding the probability functions for each part.  The two parts are:  1) The semi-infinite prism 

which is the same as the no-repair Good in Use case leading to an analytical formula, Eq. (S30), for the probability, 

and 2) The extra “irregular volume” on top of the semi-infinite prism near the origin for which {npf, nfp, nff} points 

will be generated to sum the Poisson terms for this volume.  The finite size of the irregular volume limits the amount 

of computation necessary. 

 

0

0

ff pf t

fp

n n n

n

  

  
 

 

0

0 ( , , )

pf

ff ff pf t fp u

n

n n n n n n

  

  
 

 

0

0

ff pf t

fp u

n n n

n n

  

 
 

Figure 4  Regions of {npf, nfp, nff} space for sums over Poisson terms in the repair-at-Test probability 
functions. For nu = 7 and nt = 3. 

The {npf, nfp, nff} points satisfying the Good in Use conditions for repair at Test, Eq. (S39) will satisfy 

 

0
0

  Semi-infinite prism.  OR   0 ( , , )  Irregular volume.
0

pf

pf

ff ff pf t fp u

ff fp u

u ff fp

n
n

n n n n n n
n n n

n n n

  
    

   
      

 (S40) 

The last condition for the irregular volume in Eq. (S40) ensures that the points in the semi-infinite prism and the 

irregular volume are mutually exclusive.  Only points for which npf and nt are such that n’ff < nff  will be included in 

the irregular volume, because if n’ff = nff the second and last conditions for the irregular volume are mutually 

exclusive. 

The irregular volume criteria in Eq. (S40) can be used directly to find {npf, nfp, nff} points and accumulate a sum of 

Poisson terms, Eq. (S17), to compute the probability function of the irregular volume.  Upper bounds on each of npf, 

nfp, and nff are needed to limit the number of points that need to be tested to find points satisfying the “Irregular 

volume” criteria in Eq. (S40).  Inspection of the irregular volume criteria in Eq. (S40) and the function n’ff in Eq. 

nff

npf

nfp



nt = 3 Passes Test

nff

npf

nfp
(nu + 1)(nt – 1) = 16

Good in Use



nu = 7

nt = 3

nff

npf

nfp

Passes Test and
Good in Use
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(S32) shows that nff cannot exceed nu + nt and that nfp cannot exceed nu.  It is clear from the second of the Irregular 

volume criteria in Eq. (S40) that npf also has an upper bound but it is not obvious how to compute it.  A useful upper 

bound on npf is given in the Appendix (Derivation of Eq. (S41)) to this supplemental document 

 ( 1) .pf t ffn n n   (S41) 

So now the irregular volume criteria of Eq. (S40) may be rewritten with additional limits which do not change the 

number of points in the irregular volume, but reduce the number of points that need to be tested to find them 

 

0

0

0 ( 1)  Irregular volume.

0 ( , , )

ff u t

fp u

pf ff t

ff ff pf t fp u

u ff fp

n n n

n n

n n n

n n n n n n

n n n

   
 



   
  


  

 (S42) 

Notice that if nt = 0, then no index points can satisfy the criteria and the irregular volume is empty of Poisson terms, 

as it should be.  Also notice that the largest possible value of npf = (nt – 1)(nu + 1) occurs when nfp = 0 and 

nff = nu + 1. 

So the Good in Use probability function may be written 

      Good in Use , , , , ,ff fp pf u t ff fp uP L n n R n        (S43) 

where L is the probability function corresponding to {npf, nfp, nff} points which satisfy Eq. (S42) 

  
Irregular Volume

, , , , .
! ! !

ff ff fp fp pf pfn n n

ff fp pf

ff fp pf u t

ff fp pf

e e e
L n n

n n n

  
  

  

  

   (S44) 

Appendix 

Properties of Campbell’s Bivariate Correlated Poisson Distribution 

Suppose that Nfp, Npf, and Nff are mutually independent Poisson random variables with means fp, pf, and ff.  Now 

construct two random variables Nu and Nt as follows: 

 
u pf ff

t fp ff

N N N

N N N

 

 
 (S45) 

The probability that Nu is exactly nu and Nt is exactly nt is the correlated Poisson distribution as Campbell expressed 

it 

    
min[ , ]

( )

0

, pois , ; , , .
( )!( )! !

u ff t ff ff
u t

fp pf ff

ff

n n n n nn n
fp pf ff

u u t t u t fp pf ff

n u ff t ff ff

P N n N n e n n
n n n n n

     
  

 

  



   
 

  (S46) 

which is the sum over all terms like 

 
exp( ) exp( ) exp( )

( , , )
! ! !

fp pf ffn n n

fp fp pf pf ff ff

fp fp pf pf ff ff

fp pf ff

P N n N n N n
n n n

       
     (S47) 
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allowed by the constraints 

    and   .u fp ff t pf ffn n n n n n     (S48) 

Of particular interest in the present application is the cumulative form of the distribution of Eq. (S46): 

      
0 0

, pois , ; , , Pois , ; , , .
u tn n

u u t t fp pf ff u t fp pf ff

m n

P N n N n m n n n     
 

     (S49) 

It is useful to express the cumulative form of Campbell’s distribution in terms of the univariate cumulative Poisson 

distribution defined as: 

  
0

, .
!

i
x

i n

x
R x n e

i



 

   (S50) 

for which R(x,0) = exp(x), which vanishes for n  0, and is unity for n  .  The cumulative Poisson distribution is 

available in Excel as 

 ( , ) POISSON( , ,TRUE).R x n n x  (S51) 

Derivation of Eq. {22} 

Evaluation of the cumulative form of Campbell’s bivariate correlated Poisson distribution is facilitated by 

expressing it as a sum over products of R because only a few terms are typically needed.  We have not seen Eq. {22} 

in the litererature so a derivation is given here.  Eq. {22} is 

      
min[ , ]

0

Pois , ; , , , ,
!

ff
u t

in n
ff

u t fp pf ff fp u pf t

i

e
n n R n i R n i

i




    





    (S52) 

Notice that the following properties of the cumulative bivariate Poisson distribution can be written by inspection of  

Eq. (S52): 

 

   

   

 

Pois , 0; , , exp ( ) ,

Pois 0, ; , , exp ( ) ,

Pois 0, 0; , , exp ( )

u t fp pf ff pf ff fp u

u t fp pf ff fp ff pf u

u t fp pf ff fp pf ff

n n R n

n n R n

n n

     

     

     

     

     

       

 (S53) 

Here is the derivation of Eq. (S52) (aka Eq. {22}): 
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fp pf ff
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0
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(A)
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! ( )! ( )!
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u t

ff ff fp ff pf ff
u

u t

f

t u t

ff

ff ff fp ff pf ff
u u t

f ff ff

n n

m n

n m n n nn n n n
ff fp pf

n m nff ff ff

n m n n nn n n
ff fp pf

n f

n n

f ffm n n ffn

e e e
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e e e
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, ]

min[ , ]

0 0 0

min[ , ]

0

(C)

(D)
! ! !

, , (E)
!

t

ff ff fp pfu ff t ffu t

ff

ff
u t

n

n j kn n n nn n
ff fp pf

n j kff

in n
ff

fp u pf t

i

e e e

n j k

e
R n i R n i
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 (S54) 

Notes for manipulations in Eq. (S54): 

 Notice that 1/i! vanishes whenever i is a negative integer. 

 Keeping in mind that 0  m  nu and 0  n  nt, the upper limit in the sum over nff may be changed from 

min[m, n] to min[nu, nt] in (A) because all the additional terms will have the factorial of a negative integer 

in the denominator. 

 The changed limit of the sum over nff in (A) permits the change of summation order in (B). 

 The limits of sums over m and n in (C) are changed from (B) because the omitted terms all have the 

factorial of a negative integer in the denominator and so vanish. 

 A change of summation index in (D) brings the sums over m and n in (C) into a form recognized as the 

definition of the univariate cumulative Poisson distribution. 

 Recognition that nff is a dummy index leads to the final expression, (E). 

Derivation of Eqs. {26} and {27} 

Marginal distributions of Campbell’s bivariate correlated Poisson distribution are given in Eqs. {26} and {27} of the 

paper: 

 

 

   

   

Pois , ; , , 1

Pois , ; , , ,

Pois , ; , , ,

u t fp pf ff

u t fp pf ff fp ff u

u t fp pf ff pf ff t

n n

n n R n

n n R n

  

    

    

  

  

  

 (S55) 

Eq. (S55) is derived as follows: 
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 (S56) 

Notes for manipulations in Eq. (S56) 

 The sum over m in (F) may be extended down to zero because terms involving (m  i)! in the denominator 

will vanish for 0  m  i  1.  (Factorial of a negative integer diverges).  This enables the interchange of 

summation order in the next line. 

 The sum over i in (G) may be truncated at m rather be than continued to nu because terms involving (m  i)! 

in the denominator with m + 1  i  nu will vanish.  This enables direct invocation of the binomial theorem 

in the next line. 

Derivation of Eq. {29} 

A factorization of a sum over Poisson terms which is not expressible in terms of Campbell’s function arose in the 

theory of Test with repair. 
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0

exp( ) exp( ) exp( )
, ,

! ! !

ff pf fp

ff pf t

fp u

n n n

ff ff pf pf fp fp

ff pf t fp u

n n n ff pf fp
n n

P R n R n
n n n

     
  

  

 

  
    (S57) 

The proof proceeds by noticing that the sum over nfp gives one of the R factors, leaving the rest as a sum 

recognizable as the binomial theorem which leads to the other R factor. 
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 (S58) 
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Derivation of Eq. (S32) 

The number of bits in the pp category is increased by the action of repair converting bits in ff and pf categories to pp 

bits.  Recall that ff and pf bits fail in Test, irrespective of whether the bits are good or bad in Use.  That is, after 

repair, the number of bits in the pp category is 

 min ,pp pp ff pf tn n n n n       (S59) 

Eq. (S59) shows that if the number of bad bits at Test, nff + npf, exceeds the repair capacity, nt, then the number of pp 

bits is increased by nt.  Otherwise, the number of pp bits is increased only by the number of available bits which are 

bad at Test, nff + npf. 

Strictly, the model of Eq. (S59) is unrealistic because it assumes that Test can convert a failing bit into one that is 

certain to be good in Use.  That is, that all replacement bits will be good in Use.  A more realistic model would 

apportion min[nff + npf, nt] across other categories using some rule.  The rule might be that the repair bits are 

distributed across categories pp, pf, fp, ff in the same way as the bits in the unrepaired array.  However, the very 

large preponderance of bits in the pp category makes Eq. (S59) a very good approximation. 

The action of repair reduces the number of bits in the combined ff and pf categories by the same amount as the 

numbers in the pp category were increased: 

 
 

min ,

max ,

max ,

max ,0

ff pf ff pf ff pf t

ff pf ff pf t ff pf t

ff pf t t

ff pf t

n n n n n n n

n n n n n n n n

n n n n

n n n

        

        

    

    

 (S60) 

where we have used min[x, y] + max[x, y] = x + y. 

Because of causality, Test cannot discriminate between ff and pf bits when it repairs them, and when it does not 

repair them.  So it is reasonable to have : :ff pf ff pfn n n n  as nearly as possible, consistent with category counts 

being integers.  For integer a, x, and y the following is an identity for x + y > 0 

 
x y x y

a a a a a
x y x y x y x y

       
                    

. (S61) 

Using this, the post-repair counts of ff and fp bits may be partitioned into integer counts as follows 

 

max ,0

max ,0 max ,0 .

ff pf ff pf t

ff pf

ff pf t ff pf t

ff pf ff pf

n n n n n

n n
n n n n n n

n n n n

       

   
                     

 (S62) 

where the first term is taken to be n’ff and the second is taken to be n’pf.  This choice of one of the two possible 

partitions will over-estimate Use failure rates and so is conservative from the User’s point of view. 

Finally, notice that the number of bits in the fp category in Use is not reduced by repair at Test (because they pass at 

Test), and the number doesn’t increase in Use by action of repair at Test since it is assumed that repair at Test 

creates only pp bits.  That is, n’fp = nfp. 

Therefore the entire model for bit reclassification due to repair/replacement at Test is 
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min ,

max ,0 max ,0 .

fp fp pp pp ff pf t

ff pf

ff ff pf t pf ff pf t

ff pf ff pf

n n n n n n n

n n
n n n n n n n n

n n n n

       

   
                      

 (S63) 

Derivation of Eq. (S41) 

Points in the irregular volume must satisfy all of the following conditions
4
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0 ( , , )  Irregular volume.

pf

ff ff pf t fp u

u ff fp
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 (S64) 

where (note the “ceiling” function) 

 max ,0 .
ff

ff ff pf t

ff pf

n
n n n n

n n

 
         

 (S65) 

Inspection of Eq. (S64) and Eq. (S65) shows that npf in the irregular volume must have an upper bound because as 

npf increases, eventually n’ff = nff, making the second and last inequalities in Eq. (S64) mutually exclusive so that no 

points can satisfy all of the inequalities in Eq. (S64).  It will be computationally useful to have an expression for the 

upper bound of npf to replace the first inequality in Eq. (S64). 

For a point in the irregular volume it must be true that n’ff < nff.  Using the fact that a b    is the same as 1a b   

where b is an integer and a is any real number (not necessarily an integer) we can write n’ff < nff as 

 max ,0 1
ff

ff pf t ff

ff pf

n
n n n n

n n
      

 (S66) 

When npf becomes sufficiently large, Eq. (S66) becomes 

 
 

1
ff pf t ff

ff

ff pf

n n n n
n

n n

 
 


 (S67) 

which after some rearrangement is 

 ( 1)pf t ffn n n   (S68) 

which is the desired inequality for npf. 

                                                           
4
 Keep in mind that all of the variables are non-negative (including zero) integers. 


