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Abstract
1
 

Variable bit retention time observed in a 65 nm DRAM 

case study will cause miscorrelation between retention 

times occurring in Test and Use.  Conventional 

multivariate normal statistics cannot adequately model 

this miscorrelation.  A more general copula-based 

modeling approach, widely used in financial and actuarial 

modeling, solves this problem.  The DRAM case study 

shows by example how to use copula models in test 

applications.  The method includes acquiring data using a 

test vehicle, fitting the data to a copula-based statistical 

model and then using the model to compute producer- and 

customer-oriented figures of merit of a product, different 

from the test vehicle.  Different array size, fault tolerance 

schemes, test coverage, end-use (datasheet), and test 

condition specifications of the product are modeled. 

1. Introduction 

Each bit of a dynamic random access memory (DRAM) 

retains its information as stored charge on a capacitor.  

After the bit has been written to, the charge leaks away so 

that valid data has a characteristic retention time.  To 

retain the information, the bit must be read and refreshed 

with a specified time interval between refreshes.  DRAM 

memory cells in every technology node can have a defect 

which causes a some bits to have a variable retention time 

(VRT), while most bits have stable retention times (SRT) 

[1][2][3].  The VRT behavior is an example of random 

telegraph noise (RTN) in gate-induced leakage (GIDL) 

current caused by a trap in gate oxide [4] or a defect in 

silicon [5] at the near-surface drain-gate boundary of the 

transistor in the DRAM cell.  At any time the defect can 

transition reversibly between two states.  One of the states 

is associated with a higher leakage current and shorter 

retention time.  tmax and tmin are time constants of 

exponential distributions of duration of the maximum and 

minimum dwell times of a bit in the maximum and 

minimum retention time states.  The states are maintained 

for many minutes [5], so retention times are manifested at 

the test process step in manufacturing (“Test”) differently 

from how they are manifested in end-use (“Use”).  Test, 

being brief, may “see” a VRT bit in either the high or low 

leakage state.  The probability that Test will find a bit in 

the maximum retention time state is max max min/ ( )s t t t  .  

On the other hand, since Use has an indefinite duration, a 

VRT bit’s high leakage state (worst-case) will certainly 
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occur in Use.  If a VRT bit passes a Test screen in a low-

leakage state, and the high leakage state causes the 

retention time in Use to be shorter than the specified 

refresh time, then the VRT bit will fail in Use. 

The proportion of VRT bits can be controlled in the silicon 

fabrication process by reducing the density or passivating 

RTN-inducing defect, or by reducing the mechanical stress 

which activates the defect [6].  But Test screens and fault-

tolerant array design are still needed to meet yield and 

quality targets for a product array of bits.  Data with VRT 

bits which fail in Use are not suited to correction by ECC 

schemes used for soft errors (for example, due to cosmic 

rays) because of the performance impact of repeated error 

correction of a bit stuck in a failing state for many 

minutes.  Run-time-repair schemes suited to “hard” bit 

failures [7] can be used. 

The performance and quality requirements of a memory 

product may be met in different ways with possibly 

different costs.  For example, the fraction of arrays with 

VRT bits escaping to Use, and failing, can be reduced by 

setting the Test retention time much longer than the 

refresh time in Use.  This has a high cost of rejecting many 

good arrays (overkill) or repairing many “innocent” bits at 

Test.  On the other hand, if a run-time-repair scheme is 

employed, the Test condition may be set closer to the Use 

condition and overkill may be reduced at the cost of design 

complexity.  Tradeoffs like this occur at all stages of the 

product lifecycle, from product definition to 

manufacturing.  Decision-making requires a statistical 

model of the memory product which adds considerations 

of array size, array repair capacity, Test conditions and 

datasheet (Use) specifications to the bit-level instability 

characteristics measured in recent studies [8].  This paper 

describes a new approach to the statistical modeling. 

The paper breaks new ground in two aspects of statistical 

modeling: 1) Model-fitting involves selection of the 

mathematical forms of distributions to be used, and 

determination of goodness-of-fit of data to the models.  2) 

Inference involves “what-if” transformation of the fitted 

mathematical models to conditions different from the data 

(different array sizes, fault tolerance, different Test and 

Use conditions), and definition of the rules of decision-

making.  Decision-making rules use carefully-defined 

figures of merit closely related to cost models, such as 

yield loss (YL), overkill loss (OL), and customer-perceived 

defect level (DL).   
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Model-fitting for semiconductor products usually involves 

fitting a multivariate normal (Gaussian) distribution to the 

data.  But when a bivariate normal model was fitted to 

DRAM bit retention time data acquired at PSU’s ICDT lab 

(in Section 2.2 below) it was found that the model did not 

properly characterize the deep tail of thedata.  Unlike the 

data, the correlation in the Gaussian model fades away as 

one moves deeper into the bivariate tail.  Actuarial and 

financial applications have also encountered this problem 

[9].  Inadequacy of multivariate normal models for 

financial and actuarial applications has motivated rapid 

development over the past decade of copula-based 

modeling methods because copulas provide a completely 

general approach to modeling multivariate dependency2.  

Nelsen [10], and Trivedi and Zimmer [11] give good 

introductions to copulas.  This study finds that the Clayton 

copula, which differs fundamentally from the usual 

bivariate normal Gaussian model, is needed to describe the 

underlying dependency (correlation) structure of DRAM 

VRT behavior, and the way it is manifested in Test and in 

Use. 

Statistical inference based on copula models has been 

developed for financial, actuarial and other applications, 

but not for semiconductor product applications.  

Semiconductor product applications require unique 

methods to handle scaling to various array sizes, for 

handling fault tolerance, for modeling Test and Use 

conditions, and for computing and using figures of merit 

closely related to product cost and quality models.  This 

paper develops the necessary statistical machinery to do all 

of this for the DRAM application.  The methods are, 

however, quite general and may be applied to any 

semiconductor product for which miscorrelation between 

Test and Use or among Test operations needs to be 

modeled. 

The plan of the paper is as follows: In Section 3 copula 

models are extracted from the DRAM data described in 

Section 2.  The central problem of model extraction is 

choice of the copula used to fit the data.  Section 3 shows 

the shortcomings of the Gaussian copula, which mirrors 

the problem of multivariate normal models, and uses the 

“Clayton” copula which is well-suited to the DRAM data.  

Section 4 covers the inferential aspects of the application 

of copulas to test.  These include: 

 Modeling how Test and Use are manifested. 

 Scaling from bit-level to array level. 

 Modeling single bit fault tolerance. 

 Modeling active repair at test. 

 Definition of figures of merit (FOMs). 

                                                 
2 In the statistical literature “dependency” is a more 

general term than “correlation”.  Here the terms will be 

used interchangeably. 

Section 5 describes where statistical copula-based 

modeling method fits in a wider context, and Section 6 

indicates future directions. 

2. DRAM Case Study 

2.1. Experimental Design 

The experiment follows a design similar in principle to 

that of Kim et. al [8] except that only the retention time 

minimum and maximum for each bit was determined.  The 

experiment did not determine the time constants tmax and 

tmin of the maximum and minimum retention time states. 

Test chips with four identical DRAM arrays on each chip 

were fabricated in a 65 nm process.  Each of the four 

arrays on a test chip has 1,218,750 bits.  Test chips were 

packaged in ball grid array packages and 10 test chips, 

prescreened for gross failures, were selected for the 

experiment. 

The arrays were tested in PSU’s ICDT Lab on a Credence 

Quartet tester with temperature controlled by a Silicon 

Thermal Powercool LB300-i controller.  Temperature was 

measured by a calibrated sensor on the silicon die.  

Pass/fail at 12 retention times for each bit in the array was 

determined at 18 environmental conditions, and the 

physical x,y location and retention time of each failing bit 

in the array was recorded.  The environmental conditions 

were: 

 Three temperatures: 105 ºC, 115 ºC, 125 ºC. 

 Three values of supply voltage, Vd: 0.8, 1.0, 1.2 volts. 

 Two values of substrate bias, Vp: 0.4, 0.45 volts. 

For each bit, 60 retention times in five groups of 12 were 

measured as follows: 

 12 retention times, r, were tested, increasing from 60 

au to 604 au in steps of 49.5 au:  r = 10 + i × 49.5 au, 

i = 1 to 12, with pass/fail determined at each test stop, 

i.  Retention times are given in arbitrary units (au), 

related to the true retention times by a numerical ratio. 

 Each group of 12 retention times was repeated five 

times. Groups were separated by variable durations, 

typically many hours. 

Figure 1 shows how the maximum observed retention time 

index imax and the minimum observed retention time index 

imin were extracted from the pass/fail pattern.  If imax – imin 

 2 the bit is classified as VRT, otherwise it is SRT.  A 

difference of 2 eliminates tester quantization effects which 

might misclassify SRT bits as VRT bits, at the risk of 

classifying some less variable VRT bits as SRT bits.  If the 

leftmost retention time index in any group is 1 (fail) the bit 

is “dead” and is excluded from the study. 
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Figure 1.  Example of the pass/fail pattern of a VRT bit and 
extraction of imax and imin.  Pass/Fail is indicated by 0/1. 

2.2. Experimental Results 

Table I summarizes failing bit counts sampled from 49 Mb 

across all environmental conditions.  Six bits were found 

to be dead and were excluded from analysis.  At each 

environmental condition “live” bits passing at least the 

first test stop and with r < 604 au are classified as SRT or 

VRT.  A given bit may be classified differently in different 

environmental conditions.  For example, 1610 failing bits 

showed only SRT behavior, and 288 bits showed SRT 

behavior in at least one environmental condition and VRT 

behavior in at least one environmental condition.  The total 

number of bits with r < 604 au observed to fail in the 

sample of 48,750,000 bits (minus 6 dead bits) was 

A+B+C = 1962. 

Table I  Categories of bits with retention times  604 au failing 
in at least one of the 18 environmental conditions. 

SRT-only SRT, but not VRT A 1610 

VRT 
VRT and SRT B 288 

VRT, but not SRT C 64 

 Total bits N 48750000 

 SRT PPM A/N 33 

 VRT PPM (B+C)/N 7 

 

 

Figure 2.  VRT and SRT counts vs. environmental condition 

sampled from 1041,218,750 = 48,750,000 bits. 

Figure 2 shows bit categories by environmental condition 

and Figure 3 gives a spatial map of the xy location of 

failing bits.  Important observations are 

 At the highest stress, retention times < 604 au were 

observed for only a small fraction (40 PPM) of the 

population of bits.  At less stressful environmental 

conditions, the fraction is smaller.  These bits are 

representative of the “tail distribution” of retention 

times observed by White et al [12]. 

 Yield loss for a 1 Mb array with 1.2 PPM of bits 

defective, corresponding to the lowest environmental 

condition in the experiment, is 72%.  Since array sizes 

of 1Mb and larger are generally used in applications, 

this shows that fault tolerance is required for any 

product array. 

 18% of the bits with r < 604 au, (B+C)/(A+B+C), 

show VRT behavior.  This shows that VRT behavior 

must be included in any statistical model of DRAM 

retention time. 

 Statistical analysis of the spatial distribution of failing 

bits in Figure 3 shows no evidence of clustering.  The 

distribution of bit failures from die to die and array-to-

array within dies is also indistinguishable from 

random.  So the experiment may be regarded as 

sampling 10 x 4 x 1218750 = 48,750,000 (49 Mb) 

individual bits. 

 

Figure 3  Map of spatial xy locations of all bits with r < 604 au 
from 4 arrays on 10 chips, sampling 49 Mb.  VRT bits are 
circled in red. 

Each failing bit has a minimum and a maximum retention 

time.  For stable bits, these retention times are equal.  The 

fraction of time that an unstable bit is in the maximum 

versus minimum retention time state could not be 

empirically determined because the DRAM arrays in the 

test chips were indirectly accessed through a BIST 

controller which gives only pass/fail for a given refresh 

time.  So, to construct a model of Test/Use correlation 

from the data it is necessary to additionally specify how 

retention time is manifested in Test and in Use.  The 

manifestation will be different in Test and Use because in 

Use a given bit will be accessed an indefinite number of 

times and the minimum retention time will almost 

certainly occur, whereas Test is a single brief measurement 

for which the maximum or minimum retention time occurs 

with probability depending on the fraction of time-in-state. 

Model-fitting is simplified by displaying the retention time 

data in a way that is different from any plausible Test/Use 

model with the understanding that, for decision-making, 

the data or fitted model will be transformed later into a 

plausible Test/Use model.  The data display in Table II is 
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constructed by assigning (rmax, rmin) to (r1, r2) or (r2, r1) 

with equal probability.  Similar tables were generated for 

the 17 other environmental conditions.  Several 

observations can be made: 1) The display of r1 and r2 in 

Table II does not represent a plausible Test/Use scenario of 

sequentially observed retention times because it does not 

include the possibilities of (r1, r2) = (rmin, rmin) and 

(r1, r2) = (rmax, rmax).  2) Fitting a model to the data in Table 

II is greatly simplified because only exchangeable copulas 

(symmetrical about r1 = r2) and a single marginal 

distribution (the same for r1 and r2) need to be fitted due to 

symmetry of the data.  3) The data in Table II and any 

model fitted to it will be transformed later into a plausible 

Test/Use model via Eq. (14) and (15).  

 

Table II  Maximum and minimum retention times at the highest environmental condition (rightmost bars in Figure 2) binned into 
cells using a “symmetrical” method of displaying the data. 

 

 

The marginal empirical cumulative distributions (F as a 

function of r1 and r2) given in Table II were fitted to a 

single Weibull distribution following Lieneweg et al.[13] 

and White et al. [12] as shown in Figure 4.  The slope and 

intercept of the fitted lines give the shape, , and scale, , 

parameters of the Weibull distribution of retention time: 

( ) 1 exp .
r

F r





  
    

   
 (1) 

Fits like Figure 4 were done for every environmental 

condition.  The shape parameter  was always nearly 2, so 

the model was simplified by forcing  to 2.   = 2 results 

in a small under-estimate of the retention time at short 

retention times, which is conservative.  Arrhenius 

temperature and exponential voltage dependence gave an 

excellent fit (Figure 5) to the scale parameters,  for 

 = 2, extracted from all environmental conditions: 

0 0 0

0

1 1
ln ln ( ) ( )p p d d

B

Q
a V V b V V

k T T
 

 
       

 
 (2) 

The good fit shown in Figure 5 means that the single 

parameter ln α computed from Eq. (2) may be used as a 

measure of the combined effect of Vd, Vp, and T.  This 

simplifies the display of the environmental dependencies 

observed in this study.  The leftmost point in Figure 5 

(smallest ) corresponds to Figure 4 and Table II.  A 

practical benefit of the good fit is that a given value of 

ln α defines a surface (nearly a plane) of “equivalent test 

set points” in (Vp, Vd, T) space.  This gives useful 

flexibility when integrating different kinds of test into a 

test program. 

r
 (

au
)

604 0 0 0 0 1 0 1 1 1 1 18 69 N/A

33.6 1639 273 555 0 0 0 0 0 0 0 0 1 14 104 95 59
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5.8 285 109 258 0 0 0 0 15 71 20 2 1 0 0 0 0
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Figure 4.  Weibull fit of marginal distributions at the highest 
environmental condition, from Table II. 

 

Figure 5.  Extracted vs. model-fitted, Eq. (2), scale parameter 

 for all 18 environmental conditions. 

The distribution of data across r1 and r2 cells in Table II, 

and at 17 other environmental conditions was 

characterized by Kendall’s tau.  Suppose the retention 

times, r1 and r2, are known exactly for each of n measured 

bits so that every bit may be ranked by r1 and by r2 

without ties.  The number of bit-pairs, n(n-1)/2 comprises 

k “concordant” pairs and d “discordant” pairs.  For a 

concordant pair, the relative ranks of r1 for a bit pair is the 

same as the relative ranks of r2 of the bit pair.  For a 

discordant pair the relative ranks are different.  Kendall’s 

tau for the sample (indicated by the prime) is 

’ = (k  d)/(k + d). 

Test correlation data is typically binned into cells as in 

Table II so that Kendall’s tau must be calculated for data 

with many ties.  The definition of tau has been extended 

[14] to take ties into account.  The sample tau for data 

with ties is 

1 1
2 2

1 1
2 2

( 1) ( 1)

( 1), ( 1)

k d

n n U n n V

U u u V v v




 
   

    

 (3) 

where any bit pairs that are tied in r1 or r2 are not counted 

in k or d and where, in U, u is the number of tied r1 values 

in each set.  V is defined in the same way, but for r2 

values.  Code to compute ’ from data with ties is 

available in many statistical software packages.  Sample 

taus for the data in Table II, and 17 other environmental 

conditions were computed by Eq. (3) and plotted in 

Figure 6.  Also plotted in Figure 6 is the fraction of the 

population sampled at each environmental condition, 

ranging from 35 PPM at the highest stress (smallest ) to 

1.2 PPM at the lowest stress.  A remarkably constant 

value of ’ = 0.828, independent of environmental 

condition, is observed.  If only the diagonal cells in Table 

II were populated, the value of the sample tau would be 

unity. 

 

Figure 6.  Sample tau is independent of sample fraction and 

environmental conditions (ln ). 

Extracted parameters of the marginal distribution model, 

Eq. (2), are given in Table III along with parameters 

describing the correlation (aka “Dependence”) including 

copula parameters described in the following Section. 

Table III  Parameters of extracted marginal and dependence 
models for the symmetrical coverage model. 

Margin 

 2.0 

ln[α0 (au)] 11.57 

a (V
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) -5.79 

b (V
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3. Modeling Dependence Using Copulas 

3.1. Copula Background 

If the cell-counts in Table II are divided by the sample 

size to give the probability mass in the cell, then the table 

is an empirical 2-dimensional probability density function 

(pdf) sampling a population pdf h(r1,r2).  The 

corresponding bivariate cumulative distribution function 

(cdf) is 

1 2

1 2

0 0

( , ) ( , ).

r r

H r r dx dyh x y    (4) 

For marginal distributions F(r1) = H(r1,), and 

G(r2) = H(,r2) (in the present application F = G), the 

definition of a copula C is given by H written as a 

function of the marginal distributions 

 1 2 1 2( , ) ( ), ( )H r r C F r G r  (5) 

or 

1 1( , ) ( ), ( ) .C u v H F u G v      (6) 

A two-dimensional copula is a function on the unit square 

domain with range [0,1], which: 

 Is grounded.        ,0 0 0, .C u C v   

 Is normalized.   1,1 1.C   

 Has uniform marginal distributions. 

                           ,1 and 1, .C u u C v v   

 Is 2-increasing, so that for every u1, u2, v1, v2 in [0,1] 

such that u1 ≤  u2 and v1 ≤  v2 the probability mass in 

the rectangular area defined by (u1, v1) and (u2, v2) is 

positive definite 

 
       2 2 2 1 1 2 1 1, , , , 0.C u v C u v C u v C u v     

The definitions have generalizations to more than two 

dimensions. 

Sklar showed that for a given H, the copula C is unique. 

And Schweizer and Wolff showed that C is invariant 

under monotonic transformations of F and G.  This 

history, and more, is covered by Nelsen [10].  These 

results are profound because they imply that C contains 

all of the rank-dependency information in any 

multivariate cdf, and that the study and modeling of this 

dependency can be completely decoupled from details of 

the marginal distributions. 

Two copulas are especially important: 

 min , Perfect correlation
( , )

Independence

u v
C u v

uv


 


 (7) 

Also important is the definition of tail dependency in the 

low tail 

0

( , )
lim
u

C u u
LT

u 
 . (8) 

Notice that LT for perfect correlation is unity, whereas for 

independence LT vanishes. 

Kendall’s tau may be calculated analytically from a 

copula by 

1 1 2

0 0

( , )
4 ( , ) 1

C u v
C u v dudv

u v



 

   .
 (9) 

For perfect correlation  = 1, for perfect anti-correlation 

 = 1, and for independence  = 0.  Eq. (9) can be 

generalized to compute  for truncated regions of the 

copula [15]. 

Copulas come in families spanned by adjustable 

parameters and Eqs. (8) and (9) provide a way to fit the 

model parameters to data.  For example, if the empirical 

value of  is known from Eq. (3), then the value of the 

parameter of a single-parameter copula may be 

determined by comparison with the model  determined 

by an integral like Eq. (9) integrated over a truncated 

region of the copula corresponding to the data sample. 

Copulas give a complete generalization of the usual 

multivariate normal approach for modeling statistical 

dependency.  But this leads to the main problem of copula 

modeling; choosing the appropriate copula.  The universe 

of possible functions even in two dimensions is vast, so 

some application-specific guidance is needed.  In the 

course of this work several kinds of copula were tried for 

the DRAM; the Gaussian copula, geometrical copulas, 

various kinds of Archimedean copulas, the Marshall-

Olkin copula, and convex combinations of various 

copulas [10].  Just two of the fitting attempts are 

described in the following;  the Gaussian copula, and the 

Clayton copula (an Archimedean copula).  The Gaussian 

copula is described because it is the conventional 

multivariate normal  modeling approach in copula guise 

and therefore shows the problem with conventional 

multivariate normal modeling.  The Clayton copula is 

shown because it is the best model found, and was used in 

subsequent application of the model. 

3.2. The Gaussian Copula 

In two dimensions, the Gaussian copula is 

 

 

  1 1
2 2

22

, ;

1 2
exp

2 12 1

u v

C u v

x xy y
dydx





 

  

 



  
 

   
 

(10) 

where  is the standard normal distribution.  Numerical 

methods to compute bi-variate and tri-variate integrals 

like Eq. (10) are available [16].  The Gaussian copula was 
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fitted to the data of Table II by finding  which minimizes 

the sum of squares: 

 
2 2( ) ( )ij ij ij

i j i j

SSQ N C n n       (11) 

where i and j are cell indexes in Table II and 

1, , 1 1, 1.ij ij i j i j i jC C C C C         (12) 

Cij is the probability mass in cell ij with Cij computed via 

Eq. (10) at each cell ij, nij is the count in a cell, and 

N = 48,750,000.  This was repeated for each of the 18 

environmental conditions and the fitted values of 1   

were plotted vs environmental condition in Figure 7. 

The value of  must be forced to within a few parts in 

10,000 of unity to fit the observed data which are the deep 

tail (1.2 to 35 PPM) of the bit population.  The tiny value 

of 1   shows a key problem with multivariate normal 

modeling and with the Gaussian copula which has been 

recognized in other fields [9].  As one moves from the 

bulk of the population into the tails the correlation in the 

Gaussian copula fades away unless  is exactly unity.  

That is, for the Gaussian copula, LT = 0 except when 

  1.  The Gaussian copula’s tail dependency may be 

valid for intrinsic properties of devices, but for defect-

related mechanisms such as the retention time 

mechanisms of the DRAM one would expect that 

dependency would be maintained no matter how far into 

the tail the sample is taken.  That is, one would prefer a 

copula for which LT  0.  The significant scatter in 1   

as a function of environmental conditions in Figure 7 also 

shows that the Gaussian copula is not a “natural” fit to the 

data.  The average of 1    across environmental 

conditions is given in Table III above. 

 

Figure 7.  Values of 1   for the Gaussian copula fitted by 
least squares to data like Table II, as a function of 
environmental condition. 

3.3. The Clayton Copula 

The Clayton copula (see [10], p118) for the range of  of 

interest is 

 
1/

( , ; ) 1 (0 )C u v u v


  


        (13) 

where   0 corresponds to independence, and    

corresponds to perfect correlation.  The probability 

density map corresponding to Eq. (13) for the parameter 

value  = 9.74 which fits the DRAM data is reflected in 

the density of (u, v) points in Figure 8 synthesized by 

standard methods described in [11] (Appendix) and [17]. 

 

Figure 8.  Probability density map for Clayton copula with  = 
9.74, and example rectangular truncation. 

Properties of the Clayton copula include the low-tail 

dependence, LT = 2-1/. and Kendall’s tau for the entire 

probability space,  = /(+2) derived using Eqs. (8) and 

(9), respectively, with Eq. (13).  Recently Oakes [15] 

showed that the Clayton copula is the only absolutely 

continuous copula with a remarkable “truncation-

invariance” property:  If the probability map of any 

rectangular truncation of the copula with one corner 

pinned at (0,0) as shown in Figure 8 is re-mapped to the 

entire copula space, [0, 1]2, then the same Clayton copula 

(same ) is recovered.  A consequence of this is that tau 

computed from any rectangular truncation of the 

probability density map with one corner pinned at (0,0) is 

always /(+2). 

Figure 6 shows that the Kendall’s tau for the failing bits 

remains constant as a larger and larger sample of the 

49 Mb population is exposed by increasing the test 

environmental condition (reducing ln α).  The samples 

correspond to square truncations of the empirical copula 

with one corner fixed at (0,0), and the opposite corner at 

(x,x), where x varies with the environmental condition.  

Tau for the Clayton copula is also invariant as data is 

truncated by rectangles (and, a fortiori, squares) like the 

one shown in Figure 8.  So the Clayton copula is a 

plausible model for the observed dependency behavior.  

Occam’s razor was used to choose the Clayton copula 

over others with small but non-vanishing truncation 

variation of .  Figure 9 shows  for the Clayton copula 

fitted at each of the 18 environmental conditions the same 

least squares method used for the Gaussian copula.  

Figure 9 also shows  determined from Figure 6 using the 

inverse of the relation between  and  for the Clayton 

copula:  = 2/(1  ). 
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Figure 9.  Values of  vs environmental condition (ln ) for 
the Clayton copula fitted by least squares to data like Table II, 

and by  = 2 /(1  ) from ’ in Figure 6. 

Monte-Carlo synthesis of random vectors (ui, vi) from a 

copula is often needed to “play back” a model to validate 

it, or to do numerical calculations when analytical 

calculations are intractable.  The Clayton copula has a 

very useful property for Monte-Carlo simulation 

stemming from the truncation invariance.  It is possible to 

synthesize points in a truncated region of the copula 

shown in Figure 8 without rejection.  This feature of the 

Clayton copula and of certain other copulas is very 

important for efficient simulation because only the 

extreme tail of the distribution (40 PPM in the current 

example – a tiny area near the origin in Figure 8) is of 

practical interest and needs to be synthesized.  The 

Gaussian copula does not have this feature and requires 

extensive rejection to generate tail samples.  This is 

another significant disadvantage of the conventional 

multivariate normal approach. 

4. Application 

4.1. Model of Test and Use 

The symmetrically displayed bit data in Table II were 

fitted to an exchangeable copula (symmetrical in its argu-

ments, C(u,v) = C(v,u)).  Although the fitted exchangeable 

copula is not a plausible model of Test and Use, the 

exchangeable copula may be transformed into a pseudo-

copula (having properties of a copula except for non-

uniform margins) which is a plausible model of the way 

Test and Use are manifested.  An advantage of this 

approach is that different Test/Use scenarios may be 

explored by varying the transformation of the fitted 

copula. 

A plausible model of Test and Use manifestation is one in 

which the maximum retention time of a given bit is 

exhibited at Test with probability s = tmax/(tmax + tmin) (and 

minimum retention time is exhibited at Test with 

probability 1 – s) while the minimum retention time for 

the bit is always exhibited in Use.  If r1 and r2 are 

retention times sampled from the symmetrically displayed 

data of Table II or sampled by Monte-Carlo from the 

fitted symmetrical model (the Clayton copula) then the 

plausible Test/Use model is 

1 2 min

1 2 max

1 2 min

min[ , ] All the time.

max[ , ] Proportion  of the time.

min[ , ] Proportion 1-  of the time.

Use

Test

r r r r

r r r s
r

r r r s

 


 



 (14) 

The probability density map obtained by using Eq. (14) 

with s = 0.8 to transform the symmetrical model Clayton 

copula density map in Figure 8 is shown in Figure 10. 

Association of minimum retention time of a bit with Use 

is realistic because a bit will be accessed an indefinite 

number of times making it certain the minimum retention 

time will occur eventually.  Test, however is a single brief 

event so association of the maximum or minimum 

retention time with Test depends on the probability, s, that 

the bit happens to be in the maximum retention time state 

when tested.  The assumption that the bit is always in the 

maximum retention time state at Test (s = 1) is 

conservative from the customer perspective because a 

model based on this will over-estimate DPPM in Use, and 

thereby lead to customer-conservative Test and Use 

specifications. 

Using methods of Nelsen (problem 2.16 on p26 of [10]), 

and Navarro and Spizzichino [18], it can be shown that 

since the marginal distributions for r1 and r2 are the same 

in the symmetrical model by construction, the 

transformation of Eq. (14) may be written as a 

transformation of the fitted exchangeable copula C into 

the pseudo-copula D: 

 

 

( , ) ( , ) ( , ) ( , )

(1 ) 2 ( , )

min[ , ]

D u v s C u v C v z C u z

s z C z z

z u v

  

  



 (15) 

Figure 10 shows the density map of D when C is the 

Clayton copula with  = 9.74 and s = 0.8. 

4.2. Test Set Points and Datasheet Specifications 

Test set points and datasheet specifications (Use 

conditions) are expressed in terms of environmental 

conditions (Vp, Vd, T) and retention time, r.  These four 

parameters at Test and at Use are usually set so that the 

Test set point is more “stressful” (causes more failures) 

than the Use condition.  The environmental conditions 

(Vp, Vd, T) are mapped into Test in Test and Use in Use 

by Eq. (2).  So a single parameter, u, depending on both 

the environmental condition via Use and retention time 

limit rUse in the datasheet defines the datasheet 

specification (Use condition), and a single parameter, v, 

defines the Test set point: 

Use Test

Use Test

1 exp 1 exp .
r r

u v

 

 

      
           
         

 (16) 
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Figure 10.  Test and Use conditions divide the bit pseudo-

copula D (with  = 9.74, s = 0.8) into four categories labeled 
by fp, pf, ff, pp, where the first character refers to Use and the 
second to Test. 

When the Test set point and datasheet specifications u and 

v are superimposed on the bit pseudo-copula, D, as in 

Figure 10, the probability masses associated with each of 

the four regions are given by 

( ,1) ( , ) (1, ) ( , )

( , ) 1

fp pf

ff pp fp pf ff

p D u D u v p D v D u v

p D u v p p p p

   

    
 (17) 

where, for example, pfp is the fraction of bits failing in 

Use and passing in Test. 

4.3. Array Statistics and Fault Tolerance 

The random spatial distribution of bit failures (Figure 3), 

the large sample size of bits (49 Mb), and the small 

probability of failure (1 to 40 PPM, depending on 

environmental condition) easily justifies use of the 

Poisson approximation to model the statistics of arrays of 

bits.  Consider an array of n bits. The probability that the 

array has exactly nfp, npf, and nff  bits in the mutually 

exclusive categories defined in Figure 10 is 

( , , )

exp( ) exp( ) exp( )

! ! !

fp pf ff

fp fp pf pf ff ff

n n n

fp fp pf pf ff ff

fp pf ff

P N n N n N n

n n n

     

  

  


 (18) 

where  

, , .fp fp pf pf ff ffnp np np      (19) 

Fault tolerance is modeled by expanding the definition of 

a “good” array to include arrays with some “bad” bits.  

Bad bits in arrays that are considered good are taken to be 

covered by a fault tolerance scheme.  The maximum 

number of bad bits which can be tolerated is a measure of 

the capacity of the fault tolerance scheme.  Suppose an 

array can tolerate up to nt bits bad in Test and up to nu bits 

bad in Use.  Also suppose that the bits tolerated in Test 

are not repaired, but are included in the bad bits tolerated 

in Use.  Then the probability that the array “Passes Test” 

is the sum of Eq. (18) over sets of integers nfp, npf and nff 

allowed by the constraint nff + npf  nt (nfp is 

unconstrained).  And the probability the array is “Good in 

Use” is a sum constrained by nff + nfp  nu (npf is 

unconstrained).  The probability that an array “Passes 

Test and is Good in Use” is a sum over values of nfp, npf 

and nff which satisfy both nff + npf  nt and nff + nfp  nu.  A 

geometrical interpretation of the regions of bit category 

index space corresponding to three array categories is 

shown in Figure 11. 

Analytical expressions for the sums over terms like Eq. 

(18) corresponding to the zones in Figure 11 are 

expressible in terms of the bi-variate correlated Poisson 

distribution introduced by Campbell [19], derived as 

follows:  If an array has exactly nu bits which are bad in 

Use and exactly nt bits which are bad at Test, then nfp, npf 

and nff may vary within the following constraints: 

0 min[ , ]u ff fp t ff pf ff u tn n n n n n n n n       (20) 

where the last inequality is a way of expressing the 

constraints npf ≥ 0 and nfp ≥ 0. 

 

Figure 11.  Zones of bit category space corresponding to 
three array category probabilities for bad bits tolerated but 
not repaired at Test, and tolerated in Use. For nu = 7 and 
nt = 3. 

So if Nu and Nt are random variables giving the number of 

failing bits in Use and Test respectively, the probability 

that an array has exactly nu bits failing in Use and exactly 

nt bits failing in Test is the sum of Eq. (18) over values of 

nff allowed by Eq. (20): 

 

 

min[ , ]
( )

0

,

( )!( )! !

pois , ; , , .

u ff t ff ff
u t

fp pf ff

ff

u u t t

n n n n nn n
fp pf ff

n u ff t ff ff

u t fp pf ff

P N n N n

e
n n n n n

n n

     

  

 

  



 


 



  (21) 

The cumulative form of this distribution is 
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 

 

   

 

0 0

min[ , ]

0

,

pois , ; , ,

, ,
!

Pois , ; , ,

u t

ff
u t

u u t t

n n

fp pf ff

m n

in n
ff

fp u pf t

i

u t fp pf ff

P N n N n

m n

e
R n i R n i

i

n n



  


 

  

 





 



  







(22) 

where R is the univariate cumulative Poisson distribution 

available in many software packages: 

 
0

,
!

i
x

i n

x
R x n e

i



 

   (23) 

which vanishes when n < 0.  nu and nt are usually small 

integers so calculation of the cumulative bivariate Poisson 

distribution using the second equality in Eq. (22) is easy.  

Eqs. (21) and (22) are Campbell’s [19] bivariate 

correlated Poisson distribution.  Johnson, Kotz, and 

Balakrishnan [20] point out that Eq. (21) is the 

distribution of 

u fp ff t pf ffN N N N N N     (24) 

where Nfp, Npf, and Nff are mutually independent Poisson 

random variables with means fp, pf, and ff.  On the 

margins (that is, with nt =  or nu = ),  Nu and Nt have 

Poisson distributions with means ff + fp and ff + pf, 

respectively. 

The mapping of proportions of three Test/Use categories 

of bits into proportions of three Test/Use categories of 

arrays with specified fault tolerance is given by 

Campbell’s correlated Poisson distribution, Eq. (22).  If 

an array can tolerate up to nu bad bits in Use and up to nt 

bad bits in Test then the probability that the array “Passes 

Test and is Good in Use” corresponds to sums over bit 

category indexes in the intersection of the two infinite 

prisms along the npf and nfp axes in Figure 11, and is 

 

(Passes Test and Good in Use)

Pois , ; , , .u t fp pf ff

P

n n   
 (25) 

The probability that the array tolerates nu bits in Use, 

irrespective of the number of bad bits in Test the sum of 

Eq. (18) over bit category indexes in the prism running 

down the npf axis in Figure 11 and is 

 

 

(Good in Use) Pois , ; , ,

, .

u t fp pf ff

ff fp u

P n n

R n

  

 

  

 
 (26) 

The probability that the array tolerates nt bits in Test, 

irrespective of the number of bad bits in Use corresponds 

to a sum of Eq. (18) over bit category indexes in the 

prism running down the nfp axis in Figure 11 and is 

 

 

(Passes Test) Pois , ; , ,

, .

u t fp pf ff

ff pf t

P n n

R n

  

 

  

 
 (27) 

In practice these expressions would be applied when the 

fault tolerance mechanism on the chip is enabled in both 

Test and Use (nt = nu > 0). 

When the tester actively repairs the bits that it tolerates, 

the constraints on the integers nfp, npf and nff allowed in 

the sums over terms like Eq. (18) are changed from the 

constraints shown in Figure 11 to the constraints shown in 

Figure 12.  Repair of bits tolerated at Test causes the 

tolerance mechanisms in Use to have fewer ff category 

bits to tolerate. So, more tolerance capacity is available in 

Use for test escape bits (fp category bits) and ff bits 

exceeding the repair capacity of Test. The effect is seen in 

Figure 12 as an extra volume of bit category index space 

on top of the “Good in Use” volume shown for the no-

repair-at-Test case in Figure 11.  As before, the “Passes 

Test and Good in Use” volume is the intersection of the 

“Good in Use” and the “Passes Test” volumes, so its 

probability sum changes too.  The “Passes Test” volume 

is the same as for the no-repair-in-test case. 

 

Figure 12.  Zones of bit category space corresponding to 
three array category probabilities for bad bits tolerated and 
repaired at Test, and tolerated in Use. For nu = 7 and nt = 3. 

The probability expressions corresponding to the volumes 

in Figure 12 are 

 

 

(Good in Use) , , , ,

,

ff fp pf u t

ff fp u

P L n n

R n

  

 



 
 (28) 

where L is the sum of terms like Eq. (18) over the “extra” 

volume of “Good-in-Use” bit category space in Figure 12.  

L does not have a tidy analytical expression, but it is 

easily evaluated because the the number of terms in the 

“extra” volume is finite and small.  The “Passes Test and 

Good in Use” volume in Figure 12 is a simpler truncated 

prism than the corresponding shape in Figure 11, giving 

nff

npf

nfp



nt = 3 Passes Test

nu = 7



Good in Use

npf = 17

Good in Use
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   

(Passes Test and Good in Use)

, , .fp u ff pf t

P

R n R n   
 (29) 

Finally, the “Passes Test” probability for active repair is 

the same as Eq. (27) for no-repair-at-test, as it must be 

because this proportion will be agnostic to the repair 

status of Test-tolerated bits. 

4.4. Figures of Merit and Decision-Making 

Manufacturing and quality figures of merit (FOMs) can be 

expressed in terms of the three array probabilities, 

P(Passes Test), P(Good in Use), and P(Passes Test and 

Good in Use) derived in Section 4.3. The FOMs are 

required to meet target values to determine fault tolerance, 

test specifications, and datasheet specifications of the 

product.  The FOMs are yield loss (YL), overkill loss 

(OL), and end-use defect level (DL).  YL and OL are 

producer-oriented cost-related FOMs, and DL is a 

customer-oriented quality FOM.  Figure 13 shows how 

these FOMs are related to the probabilities derived in 

Section 4.3. 

 

Figure 13.  Relationship of figures of merit (italic) to 
population category probabilities. 

Yield Loss given by 

(Fails Test) 1 (Passes Test)YL P P    (30) 

is the fraction of manufactured arrays rejected by Test.  

YL is a primary manufacturing indicator since it directly 

affects producer costs. 

Overkill Loss given by 

(Good in Use)

(Passes Test and Good in Use)

OL P

P




 (31) 

is the fraction of manufactured arrays (a subset of YL) 

invalidly rejected by Test.  Overkill affects the 

manufacturing cost charged to Test. 

End Use Defect Level given by 

(Fails in Use|Passes Test)

1 (Good in Use|Passes Test)

(Passes Test and Good in Use)
1

(Passes Test)

DL P

P

P

P



 

 

 (32) 

is the customer-perceived proportion of defective arrays.  

It is the fraction of units classified as failing in Use, given 

that they have passed Test (a conditional probability).  DL 

is a quality indicator since it affects the customer. 

For business decision-making FOMs corresponding to 

hypothetical Test, Use (datasheet), and fault tolerance 

specifications are compared with targets.  Only 

specifications meeting all three targets are acceptable.  

The FOMs defined here are designed to lie in the range 

[0,1] such that a larger value is less desirable.  Therefore 

“target” values are regarded as the maximum acceptable 

values of the FOMs.  Arbitrarily chosen typical targets for 

the product example shown below are YL ≤  20%, OL ≤  

2%, and DL ≤  200 PPM. 

Equations (2), (13), (15), (16), (17), (19), (25) or (29), 

(26) or (28), (27), (30), (31), and (32) provide a fully 

deterministic analytical model readily implemented in, 

say, Excel to do “what-if” calculations of FOMs as a 

function of array size, fault tolerance, Test, and datasheet 

(Use) specifications.  The sensitivity to models of 

Test/Use manifestation may be explored by adjusting 

parameters of the transformation, Eq. (15), of the fitted 

copula C into the pseudo-copula D embodying these 

models.  Since the experiment did not give the fraction of 

time a VRT bit is in the long retention time state, the 

customer-conservative assumption used in examples 

described next is that at Test VRT bits are in the long 

retention time state all of the time (s = 1). 

As an example, suppose the n-bit array has an internal 

mechanism, which can tolerate up to m bad bits, enabled 

in both Test and Use (m = nu = nt).  Figure 14 and Figure 

15 show FOMs computed using the model for a 1 Mb (220 

bits) array at the maximum environmental condition of 

the experiment (Vp = 0.45 V, Vd = 1.2 V, T = 125C) for 

both Test and Use, with a datasheet (Use) refresh time 

specification of 110 au.  The FOMs are plotted as a 

function of the Test retention time setting which is swept 

past the datasheet refresh time specification (“Use 

Condition”). 

 

Figure 14.  Figures of merit vs. Test retention time set point 
for a 1 Mb array with no fault tolerance m = 0, assuming s = 1.  
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There is no Test retention time setting for which all three 
FOM targets are met.  Arrows show set point ranges which 
meet targets. 

 

Figure 15. Figures of merit vs. Test retention time set point 
for a 1 Mb array which can tolerate m = 4 bad bits, assuming 
s = 1.  All FOM targets can be met for Test retention time 
settings between 130 and 138 au.  Arrows show set point 
ranges which meet targets. 

The design of the FOMs allows all of the FOMs to be 

plotted together and to be compared with their target 

values.  Figure 14 shows that there is no setting for which 

a 1 Mb array with no fault tolerance (m = 0) can meet all 

targets.  The minimum fault tolerance capacity for which 

targets can all be met is m = 4 bits, and Figure 15 shows 

this case.  Notice the greatly improved yield loss in Figure 

15 compared to Figure 14. 

5. Discussion 

When the rank statistics of the DRAM VRT effect is 

separated from complicated details of environmental 

dependence and shapes of marginal (Weibull) 

distributions an unexpected, yet simple, picture emerges.  

Unexpected because the usual method of fitting a 

bivariate normal distribution (or equivalently, Gaussian 

copula) cannot represent the invariance of tau under 

sample truncation as shown in Figure 6.  Simple, because 

a single parameter Clayton copula with a single value for 

the parameter can represent this across all environmental 

conditions.  More broadly, the DRAM case study shows 

the necessity of using copula methods to generalize the 

usual multivariate normal methods of statistical modeling 

of miscorrelation in semiconductor applications.  The 

main challenge of copula methods is the need to choose a 

particular copula from the vast number of possibilities.  

For the DRAM the number of possibilities is greatly 

reduced because not many copulas have truncation 

invariance to a degree sufficient to match the data, and 

only the Clayton copula has complete truncation 

invariance. 

Copula methods offer considerable practical convenience.  

The fitting of marginal models and copula models is 

decoupled, and can be done in any order.  Moreover, 

many copulas are well-suited to synthesizing data in 

limited parts of the population without rejection of 

Monte-Carlo-generated samples.  The Clayton copula is 

an example of such a copula.  The Gaussian copula (and 

therefore the multivariate normal distribution) cannot be 

synthesized in a limited part of the population without 

rejection.  Rejectionless tail simulation makes Monte-

Carlo simulation of the small but critical tail regions of 

interest in semiconductor applications highly efficient. 

Key decisions at various stages of the product lifecycle 

require statistical models connecting device-level (bit-

level for DRAM) to product-level cost and quality 

models.  This paper provides all the machinery needed to 

do copula-based “what-if” analyses of effects of scaling 

of array size, fault tolerance (including active repair at 

test), datasheet (Use) specifications, and Test 

specifications.  The statistical model may be “played 

forward” from bit-level to product-level to make product 

decisions based on computed figures of merit.  But it may 

also be “played backwards” to discover data requirements 

at the device level (bit-level for DRAM) or silicon 

process level actually needed for product decision-

making.  This is important because device-level and 

process level characterizations can be expensive or, more 

significantly, time-consuming.  For example, one may 

wish to understand the benefit of extraction of models of 

the RTN “duty cycle” time constants tmax and tmin.  In the 

example of Figure 15 s = 1 was used as a customer-

conservative assumption to determine FOMs.  Figure 16 

shows the effect of relaxing the assumption that Test 

always finds the bit in the maximum retention time state, 

that is, of allowing s to be less than unity.  Yield loss and 

overkill figures of merit are shown for s < 1 at test 

settings for which all FOMs satisfy targets.  The test 

settings which satisfy targets all have  DL = 200 DPPM at 

the left-hand edge of the zone shown in Figure 15 as the 

limiting constraint. 

 

Figure 16.  Yield-loss and overkill at DL = 200 DPPM for the 
conditions of Figure 15 as a function of hypothetical VRT 
duty cycle, s.  Values shown by X at s = 1 correspond to X’s 
in Figure 15. 

Figure 16 shows that precise knowledge of s has no 

beneficial effect (reduction) on the overkill component of 

yield loss except for s < 0.3.  But Kim et al [21] found 

values of s varying from bit-to-bit within a memory array, 

ranging from ~ 0.1 to nearly unity.  And Kim et al [8] 

found s  0.55, weakly dependent on voltage and 

temperature (tmax and tmin individually depend more 
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strongly on temperature).  Unless s < 0.3 for all bits and 

all environmental conditions covered in Test and Use, 

there is no downside to setting s = 1 for all model 

calculations.  One would conclude that detailed 

knowledge of VRT duty cycle is probably not needed for 

product cost and quality decision-making for the 

examples of this paper. 

An essential part of the method, not discussed in detail, is 

estimation of risks due to, a), sampling error and, b), 

model selection.  Sampling error may be estimated using 

standard bootstrap methods.  The semi-analytical form of 

the model facilitates the use of bootstrap methods [22].  

When bootstrap methods are “played forward” confidence 

levels at which FOMs meet targets may be computed.  

And when “played backwards”, aspects of the design-of-

experiments for bit-level data acquisition (such as sample 

size) required to meet targets at specific confidence levels 

may be determined. 

Model selection risk estimation requires evaluation of 

FOMs using copulas of various kinds fitted to the data.  

The decoupling of copula models from the marginal 

models makes it easy to “plug in” different copulas, 

recompute FOMs, and thereby quantify the risk of copula 

selection.  For the DRAM example, truncation invariance 

was used to select the Clayton copula.  But although the 

Clayton copula has absolute truncation invariance, 

another “geometrical” copula (not shown) which had 

truncation invariance to a degree sufficient to fit the data 

nearly as well was constructed.  The shape of the FOM 

characteristics such as Figure 14 and Figure 15 is 

sensitive to whether the Clayton or the geometrical copula 

is chosen.  The Clayton copula gave the more customer-

conservative (larger value of rTest) Test setting. 

An often-overlooked requirement to balance producer and 

customer risk in integrated circuit test manufacturing is 

careful design of a complete set of FOMs and targets.  

Traditional fault tolerance modeling [23] assumes perfect 

correlation between Test and Use and focuses on only 

yield loss (YL) and sometimes the customer-perceived 

defectivity (DL).  But miscorrelation introduces another 

degree of freedom so that the three FOMs (YL, DL, OL) 

discussed in this paper are needed for decision-making.  

It’s also useful to design FOMs to cover [0,1] and map to 

“good = 0 and bad = 1” for the stakeholder most 

interested in the FOM.  The problem is more complicated 

but same approach works for multiple test steps. 

The DRAM VRT phenomenon does not fall neatly into 

classical notions of “hard” and “soft” reliability 

mechanisms.  Since VRT bits can be stuck in a state for 

many minutes, or even hours, VRT bit errors are “soft” as 

far as Test is concerned, but “hard” as far as fault 

tolerance in Use is concerned.  VRT is soft in Test 

because Test, being brief, cannot detect some bits which 

may fail in Use.  But VRT is “hard” in Use because of the 

unacceptable performance effect of soft data correction of 

bits stuck in a failing state for extended durations.  The 

VRT mechanism is very different from the classical [24] 

picture of foreign material particles causing clusters of 

bad bits which are either hard failures or latent reliability 

defects causing infant mortality that can be made to fail 

(permanently) and be screened by burn-in.  The VRT 

phenomenon is also different from classical cosmic-ray 

soft-error mechanisms which cause only a momentary 

upset in Use.  But the VRT mechanism is similar to RTN 

instabilities observed in other devices, such as SRAMs 

[25], [26].  Key characteristics of RTN-based mechanisms 

are random spatial distributions (Figure 3 and [26]) and 

lack of memory in normal operation.  However, stress can 

alter the properties of defects, changing the marginal 

distributions [12] (reducing  in our model) and 

increasing the miscorrelation [27] (reducing  in our 

model). 

6. Conclusions 

There are several ways to extend the method described in 

this paper without introducing new concepts.  First, more 

than one Test step increases the dimensionality of the 

copula and the multivariate mathematical manipulations.  

The increased dimensionality exacerbates the “copula 

choice” problem.  Second, the method may be extended to 

multiple kinds of sub-elements (instead of bits) with 

differing critical areas, and multiple kinds of defects. 

Another extension is when the marginal variables are 

different, including different environmental dependence, 

such as Isb and Fmax.  Yet another extension is to replace 

the Poisson model in Eq. (18) by a negative binomial 

model to describe “large-area” wafer-to-wafer, or lot-to-

lot probability density variation [28]. 

An extension of the method which does require new 

concepts is exploration of principles governing the form 

of copulas in the semiconductor context in order to guide 

copula model selection.  This is important because error 

associated with copula model selection is hard to gauge.  

A hint of the conceptual framework needed is seen in the 

way the copula model depends on how Test and Use are 

manifested, Eq. (15).  And, one may ask, what is behind 

the remarkable truncation invariance seen in the DRAM 

data?  The history of the development of the Clayton 

copula may provide a clue (see [15]). 
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