The Clayton Copula

The Clayton copula is

\[
C(u, v) = \max\left[(u^{-\theta} + v^{-\theta} - 1)^{-1/\theta}, 0\right] \quad [-1, \infty) \setminus 0
\]

(1)

For our applications \(0 < \theta < \infty\) so this can be simplified to

\[
C(u, v) = \left(u^{-\theta} + v^{-\theta} - 1\right)^{-1/\theta} \quad (0, \infty)
\]

(2)

Truncation-Invariance

The Clayton copula has a remarkable invariance under truncation (Oakes, 2005\(^1\)). To show this, suppose the copula in Eq. (2) is defined on the unit square \(u \in [0,1]\) and \(v \in [0,1]\). Let’s construct the copula on the sub-area \(u \in [0,a]\) and \(v \in [0,b]\). Define \(x = u/a\) and \(v = v/b\) so that \(x \in [0,1]\) and \(y \in [0,1]\) spans the sub-area.

\[
A(x, y) = \frac{[(xa)^{-\theta} + (yb)^{-\theta} - 1]^{-1/\theta}}{[a^{-\theta} + b^{-\theta} - 1]^{-1/\theta}}
\]

(3)

is the probability mass of the copula of Eq. (2) contained in the sub-regions of the sub-area, normalized by the total probability mass of the sub-area. Eq. (3) has all the properties of a copula on \([x, y] \in [0,1]^2\) (normalized, grounded, 2-increasing) except that the margins (for \(x = 1\), and \(y = 1\) separately) are not uniform. Setting \(y = 1\), the marginal \(x\) distribution may be written

\[p(x) = \frac{[(xa)^\theta + b^\theta - 1]^{1/\theta}}{[a^\theta + b^\theta - 1]^{1/\theta}} \]

(4)

and a similar expression may be written for the marginal \(y \) distribution, \(q \), by setting \(x = 1 \). Note that \(p(0) = 0 \), and \(p(1) = 1 \), but \(p(x) \neq x \). Partially solving Eq. (4),

\[
\begin{align*}
(xa)^\theta &= (a^\theta + b^\theta - 1)p^\theta + 1 - b^\theta \\
(yb)^\theta &= (a^\theta + b^\theta - 1)q^\theta + 1 - a^\theta
\end{align*}
\]

(5)

The copula on the sub-region is \(A \), expressed in terms of uniform marginal distributions. That is,

\[
C(p,q) = A(x(p), y(q))
\]

\[
= \frac{1}{(a^\theta + b^\theta - 1)^{1/\theta}} \left[(a^\theta + b^\theta - 1)p^\theta + 1 - b^\theta + (a^\theta + b^\theta - 1)q^\theta + 1 - a^\theta - 1 \right]^{1/\theta}
\]

(6)

which is the same as the copula for the entire area!

Monte-Carlo Synthesis

The general prescription is to set \(w(u,v) = \partial C(u,v)/\partial u \) and solve for \(v(u,w) \). Then draw iid samples \(u_i \) and \(w_i \) from a uniform distribution on \([0,1]\), and evaluate \(v_i \). \(u_i \) and \(v_i \) are the desired pair. For the Clayton copula

\[
w = \frac{\partial C(u,v)}{\partial u} = u^{-(\theta+1)} \left(u^{-\theta} + v^{-\theta} + 1 \right)^{-\theta\over\theta+1}
\]

(7)

Solving Eq. (7) for \(v \)

\[v = [(w^{\theta+1} - 1)u^{-\theta} - 1]^{-1/\theta} \]

(8)

The truncation-invariance property makes it possible to synthesize points in a sub-region sample of a Clayton copula, with one corner at \((0,0)\), without rejection. If \(p \) and \(q \) are sampled for the copula of the sub-region (also a Clayton copula with parameter \(\theta' \)) by the method of Eqs. (7) and (8) then, using Eq. (5), the corresponding values of \(u \) and \(v \) for the sampled copula are

\[
\begin{align*}
\hat{u} &= \left((a^\theta + b^\theta - 1)p^\theta + 1 - b^\theta \right)^{1/\theta} \\
\hat{v} &= \left((a^\theta + b^\theta - 1)q^\theta + 1 - a^\theta \right)^{1/\theta}
\end{align*}
\]

(9)
Probability Density

The probability density of the Clayton copula is

\[c(u,v) = \frac{\partial^2 C(u,v)}{\partial u \partial v} = (\theta + 1)(uv)^{-\theta+1}(u^{-\theta} + v^{-\theta} - 1) \frac{2\theta+1}{\theta} \]

(10)

Low-tail Dependence

\[LT = \lim_{u \to 0^+} \frac{C(u,u)}{u} = \lim_{u \to 0^+} \frac{(2u^{-\theta} - 1)^{-1/\theta}}{u} = 2^{-1/\theta} \]

(11)

because the second term in brackets can be ignored when \(u \) is small.

Tau

\[\tau = \frac{\theta}{\theta + 2} \]

(12)

and

\[\theta = \frac{2\tau}{1 - \tau} \]

(13)

Oakes showed that, because of the truncation invariance, this value of tau obtains for any truncation of the copula.