
ECE 510, Lecture 14 Defect Models of Yield and Reliability

Glenn Shirley Scott Johnson

Outline

- Introduction
- Models of Yield
- Models of Defect Reliability
- Analysis and Synthesis of Lifetest and Burn In

KMG Fitting of Multicensored Data

• Lifetest data was acquired on an SRAM Test Vehicle as follows

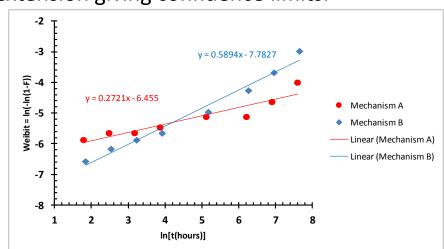
	T (C)	V
BI Condition	135	4.6
Use Condition	85	3.3

Acceleration Model Parameters

Q	0.3	eV
С	2.6	/V

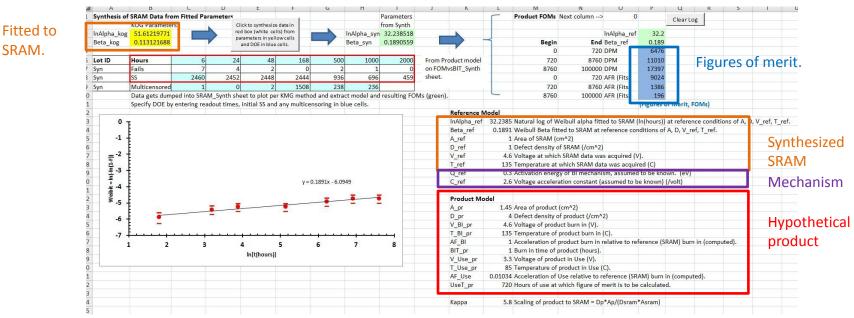
Lifetest Data at BI Condition

Hours	6	24	48	168	500	1000	2000
Fails	8	3	1	1	0	1	0
SS	2460	2451	2448	2445	936	698	461

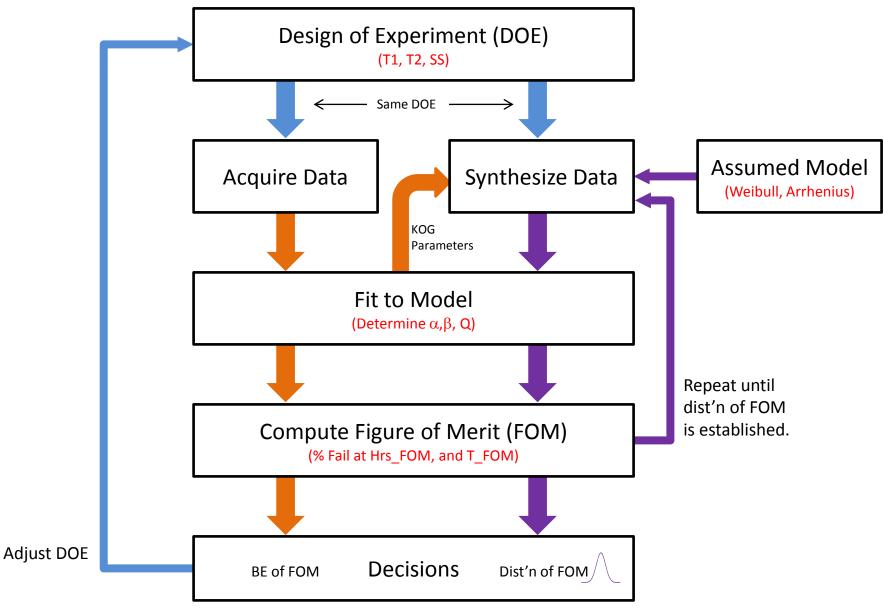

- This is multicensored data because units were removed at various readouts due to
 - Invalidated failures.
 - Units removed at 168 h to go into other stresses.
- We'll demonstrate the Kaplan-Meier-Greenwood method of extracting a model, including confidence limits.
 - Other methods such as MLE could be used too.
- Model will be scaled to product, and compared with product data.
- Watch carefully, a similar homework problem will be assigned!

Homework 14.1

• A product undergoing life test produces the following data


Hours	6	12	24	48	168	500	1000	2000
Fails Mechanism A	4	1	0	1	1	0	1	1
Fails Mechanism B	2	1	1	1	2	3	3	3
SS	1423	1417	1415	1414	573	420	268	117

- Mechanisms A and B are mutually censoring because failure by one precludes failure by the other.
- There is also censoring by removals.
- This is an example of multicensored data which may be analyzed by the Kaplan-Meier method.
 - No need to do the "Greenwood" extension giving confidence limits.
- Extract a Weibull model for each mechanism, give α and β and superimpose a plot of the model over a plot of the data..


Synthesis Demonstration

- When a model has been extracted from the SRAM data it may be used to calculate figures of merit (FOMs) for products different from the SRAM.
- Reliability FOMs include predicted DPM and failure rates for 0-30 days, 30 days to 1 year, and 1 year to 10 years.
- The extracted model may be used to re-do the experiment by simulation many times to quantify the variability of its predictions.
- The output of the tool may be examined using a tool provided: Multi Plotter Rev. 3.xlsb

ECE 510 C. G .Shirley, S. C. Johnson

Estimation of FOM CLs by Synthesis

In-Class Exercise

- Simulation for product from SRAM model.
- Demonstrations.
 - Plot distributions and correlations of FOMs. Get UCL.
 - Effect of DOE on FOM dist's vary SS.
 - Effect of Beta on failure rate.
 - Make Beta_kog <, =, > 1
 - Plot of FOMs vs BIT.
 - Effect of Q,C on BIT.
 - Effect of product defect density.
 - InAlpha vs Beta variation. (Correlated?)
- Key messages.
 - Relationship between DOE and decision-making.
 - Use model to determine DOE.
 - Low accel'n = long BIT.
 - Beta < 1: Burn In improves reliability.
 - Beta > 1: Burn In hurts reliability.