# ECE 510 Lecture 6 Confidence Limits

Scott Johnson Glenn Shirley

### Concepts

#### Statistical Inference



### Statistical Inference (Continuous)



### Statistical Inference (Discrete)



### Note: Samples Must Be Random!



Population = 55,000 DPM Sample = 204,000 DPM

- Samples must be representative of the entire population!
- Best to select samples truly randomly
  - Not the first lot available or other partly-random methods
- No statistical analysis can correct for non-random samples

#### Distributions of Statistics



- Measured statistic is not enough
- Need to add either
  - Confidence interval or limits
  - Answer to a statistically-well-posed question ("hypothesis test")
- Calculated from distributions of statistics
  - If we looked at many samples from many identical populations, what values of the statistics might we get?

200

Measured Value V

600

#### Distributions of Statistics (Continuous)

Population has one true distribution:

Different samples have different distributions:



Properties of sample distributions are *statistics*. We can calculate distributions of these statistics:





We get one value for each from our one sample.

#### Distributions of Statistics (Discrete)

Population has one true DPM:

25,000 DPM

Different samples have different DPMs:

20,000 DPM (1 fail) 40,000 DPM (2 fail)

The measured sample DPM is a *statistic*. We can calculate the distribution of this statistic:



We get one value from our one sample.



### **DPM Simulation**

### **Population Window**



Shows 10,000 units, most good, a few bad

### The Sample



You can move the sample box

### **DPM Indicator on DPM Histogram**



### Binomial Histogram



• Gives probability of getting each measurement given the true DPM

#### **Binomial Distribution**



binomdist
$$(f, N, p, false) = {N \choose f} p^f (1-p)^{N-f}$$

#### True DPM



- True DPM is adjustable
  - Not in the real world, only the simulation!

16

#### Low DPM



### High DPM



### Please put True DPM back to 5,000





### Small Sample Size



## Large Sample Size



#### **Statistical Measurement Uncertainty**

Small sample (400) = wide range



Large sample (2000) = narrow range



#### Exercise 6.1

- (A) Set sample size = 1000
- (B) Set True DPM = 1100 DPM and look for a sample with 3 fails what DPM does that represent?
- (C) Set True DPM = 6700 DPM and look for a sample with 3 fails what DPM does that represent?

### Why We Need Confidence Limits

Did you get...

a *bad* sample from a *good* population?

...or...

a *good* sample from a *bad* population?



10,000

Fail Fraction (DPM)

(True DPM bar is movable.)

(Sample box is movable.)

Good unit Bad unit

### **Confidence Limits**

### **Confidence Interval Meaning**



Confidence level = 90% = 0.9

Risk of being wrong = 1 - confidence level

$$= \alpha = 10\% = 0.1$$

• 90% of random sample means with this confidence interval include the true population mean

#### 1-Sided vs. 2-Sided



### 1-Sided UCL Meaning



• 90% of random sample means with this confidence interval include the true population mean

# **Calculating Confidence Limits**

#### Exercise 6.2

#### Monte Carlo determination of binomial CL:

- In each row, simulate 10 pass/fail samples and count the number of fails
- Make a histogram of the count of runs that got each fail%
- Add the binomial prediction for each fail%
- Plot both as a bar chart
- Calculate cumulative values for your MC and calculated distributions
- Plot those with a line plot
- Use the cum plots to find the UCL and LCL for 3 fails / 10 units
- Compare to the analytic expressions (T&T section 11.3):
- LCL = BETAINV(5%, fails, samples—fails+1)
- UCL = BETAINV(95%, fails+1, samples—fails)

### Monte Carlo Exponential CL



#### Exercise 6.3

#### Monte Carlo determination of exponential CL:

- In each row, simulate 50 exponentially distributed samples
- Determine the best lambda (exponential parameter) for each row
- Make a CDF plot of the lambda values
- Find the UCL and LCL for n=50 samples that found a lambda of 3
- Compare to the analytic expressions (T&T table 3.5):
- LCL = CHIINV(5%, 2\*n) / (2\*n)
- UCL = CHIINV(95%, 2\*n+1) / (2\*n)

### Analytic Exponential CL



- For  $f(t) = \lambda e^{-\lambda t}$ , best estimate for  $1/\lambda$  is  $\frac{1}{N}\sum t_i$  where  $t_i$  are the data
- So, what is the distribution of  $\sum t_i$  where  $t_i$  are distributed exponentially?
- Answer: a gamma or a chi-square distribution
- Confidence intervals taken from that



### The End