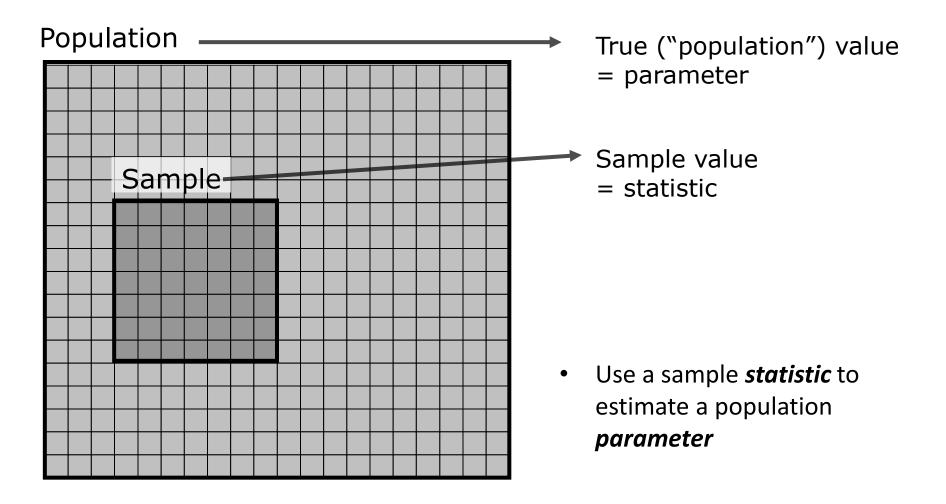
ECE 510 Lecture 6 Confidence Limits

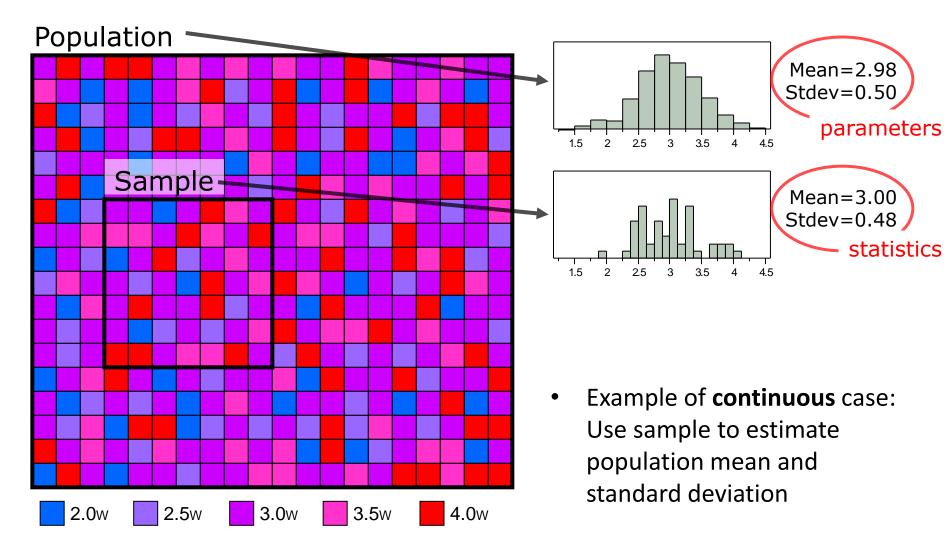
Scott Johnson Glenn Shirley

Concepts

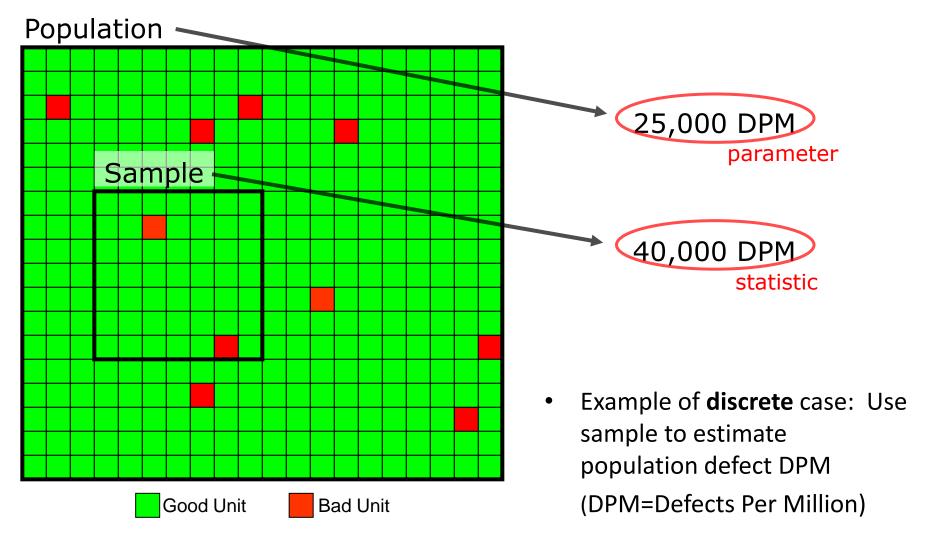
Statistical Inference



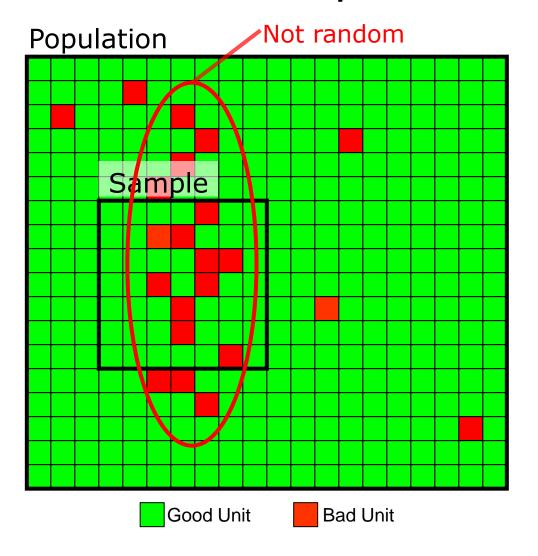
Statistical Inference (Continuous)



Statistical Inference (Discrete)



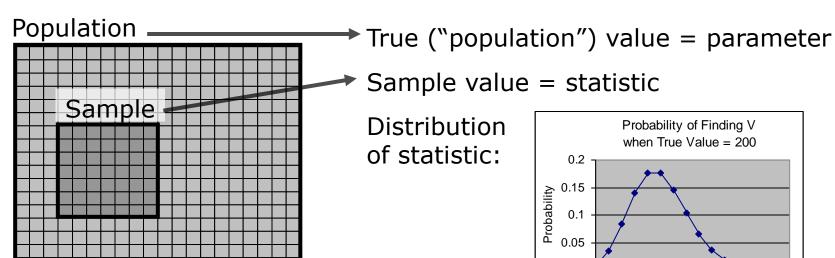
Note: Samples Must Be Random!



Population = 55,000 DPM Sample = 204,000 DPM

- Samples must be representative of the entire population!
- Best to select samples truly randomly
 - Not the first lot available or other partly-random methods
- No statistical analysis can correct for non-random samples

Distributions of Statistics



- Measured statistic is not enough
- Need to add either
 - Confidence interval or limits
 - Answer to a statistically-well-posed question ("hypothesis test")
- Calculated from distributions of statistics
 - If we looked at many samples from many identical populations, what values of the statistics might we get?

200

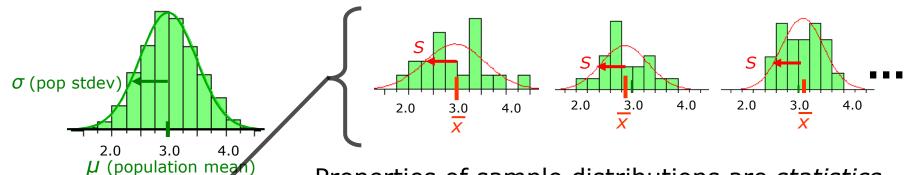
Measured Value V

600

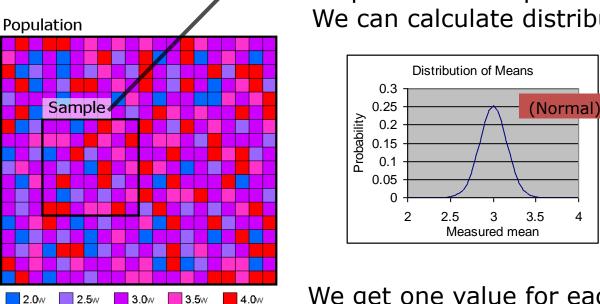
Distributions of Statistics (Continuous)

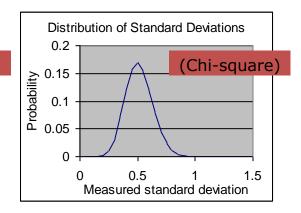
Population has one true distribution:

Different samples have different distributions:



Properties of sample distributions are *statistics*. We can calculate distributions of these statistics:





We get one value for each from our one sample.

Distributions of Statistics (Discrete)

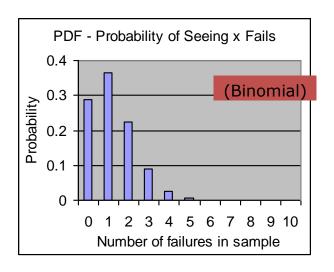
Population has one true DPM:

25,000 DPM

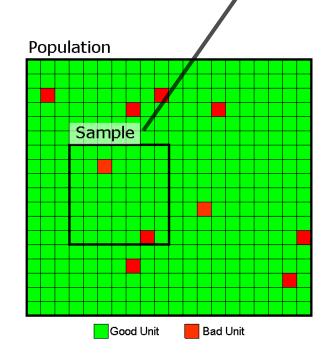
Different samples have different DPMs:

20,000 DPM (1 fail) 40,000 DPM (2 fail)

The measured sample DPM is a *statistic*. We can calculate the distribution of this statistic:

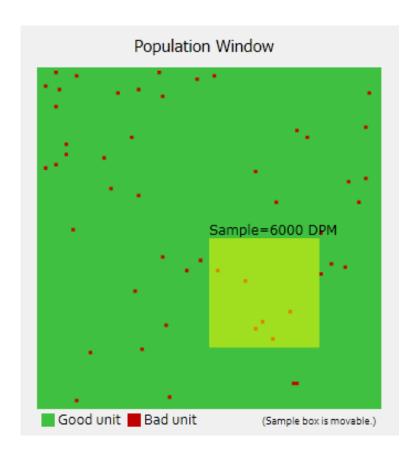


We get one value from our one sample.



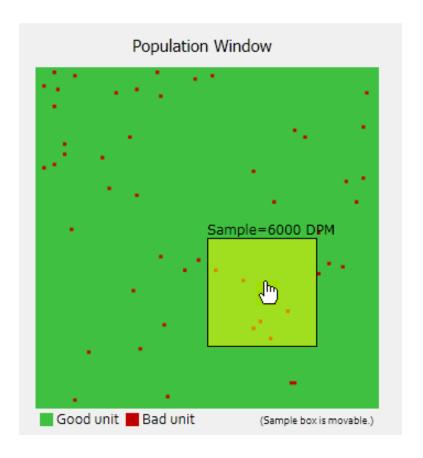
DPM Simulation

Population Window



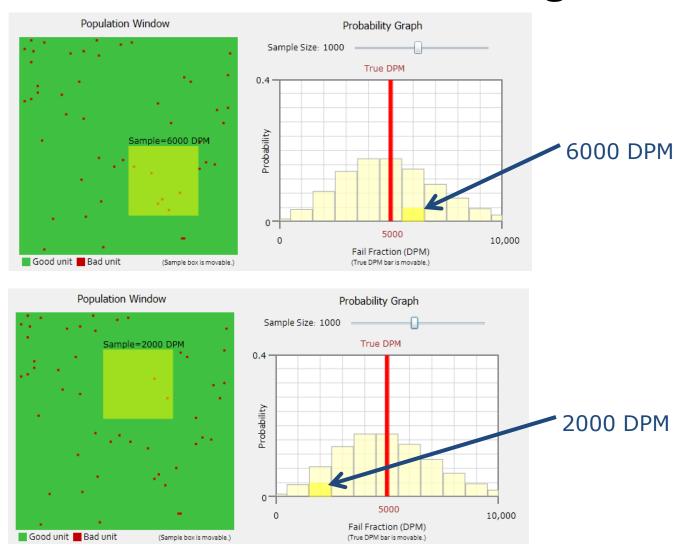
Shows 10,000 units, most good, a few bad

The Sample

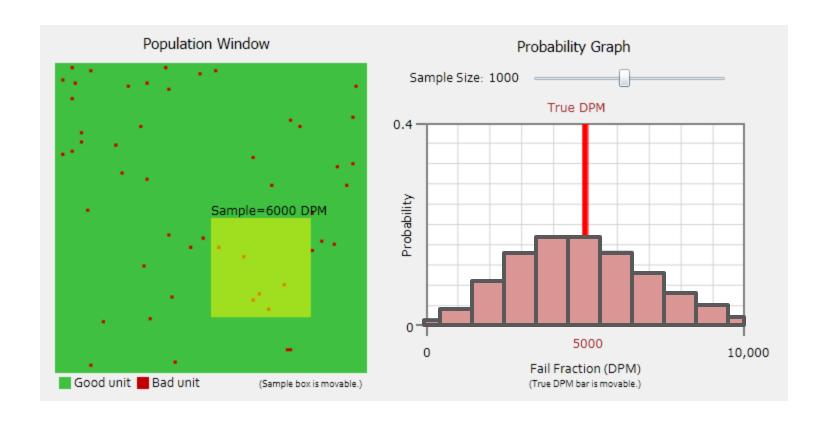


You can move the sample box

DPM Indicator on DPM Histogram

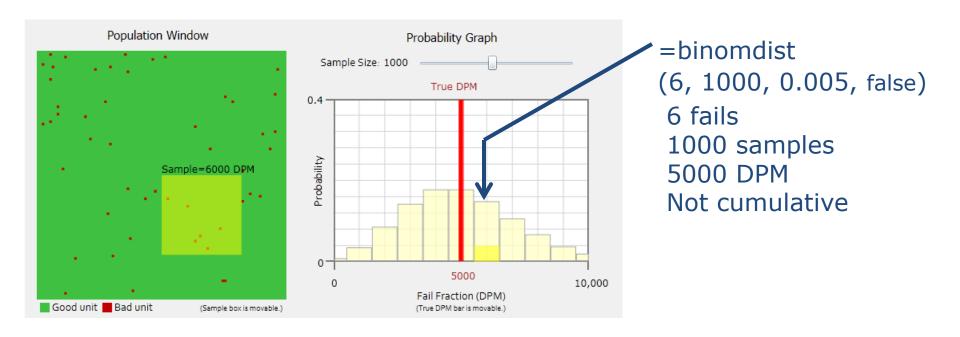


Binomial Histogram



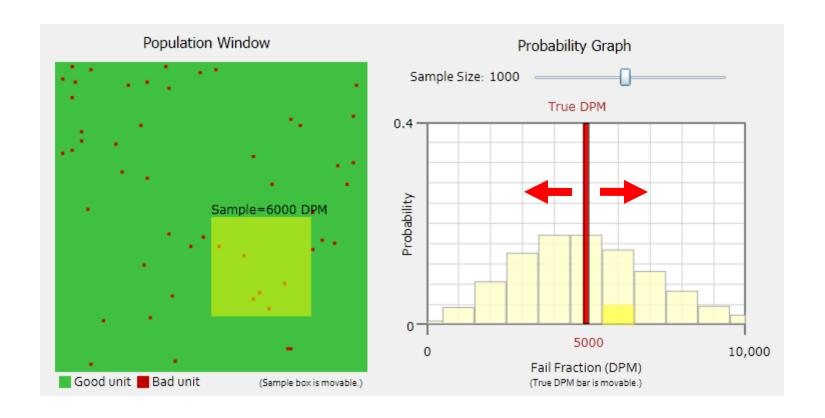
• Gives probability of getting each measurement given the true DPM

Binomial Distribution



binomdist
$$(f, N, p, false) = {N \choose f} p^f (1-p)^{N-f}$$

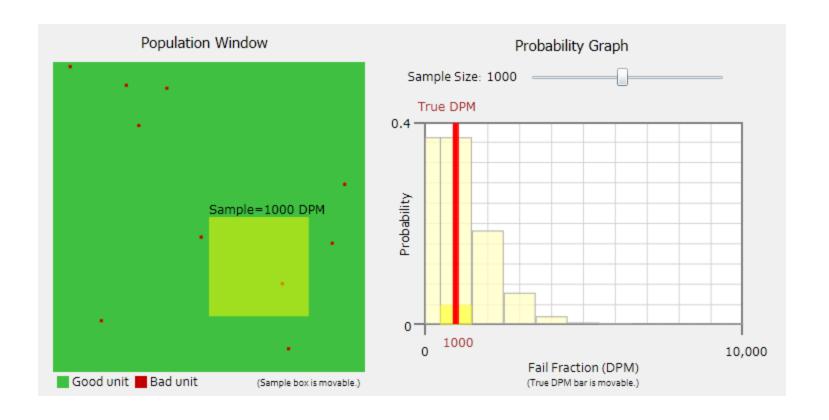
True DPM



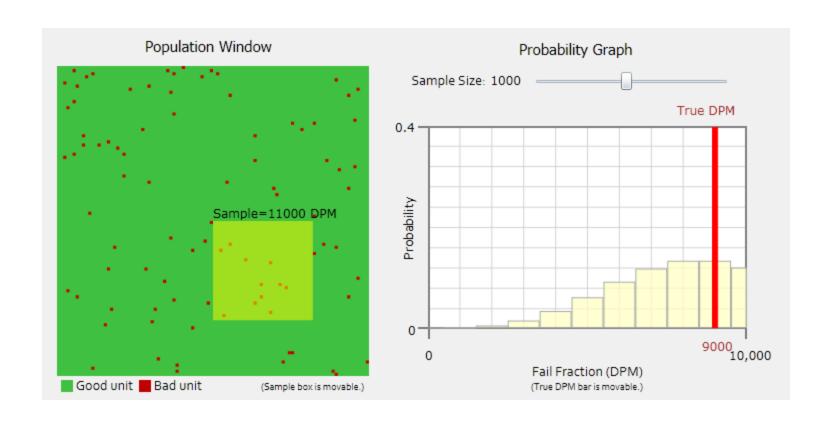
- True DPM is adjustable
 - Not in the real world, only the simulation!

16

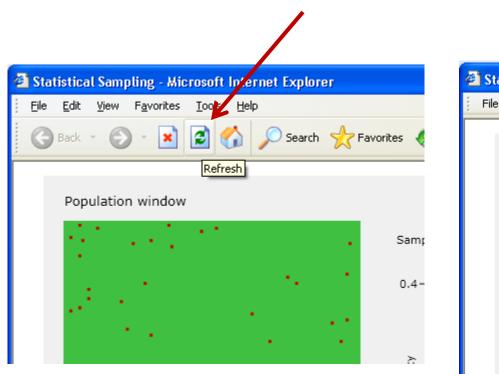
Low DPM

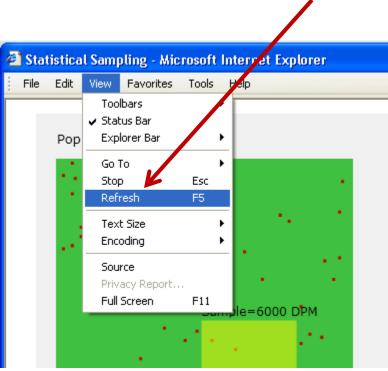


High DPM

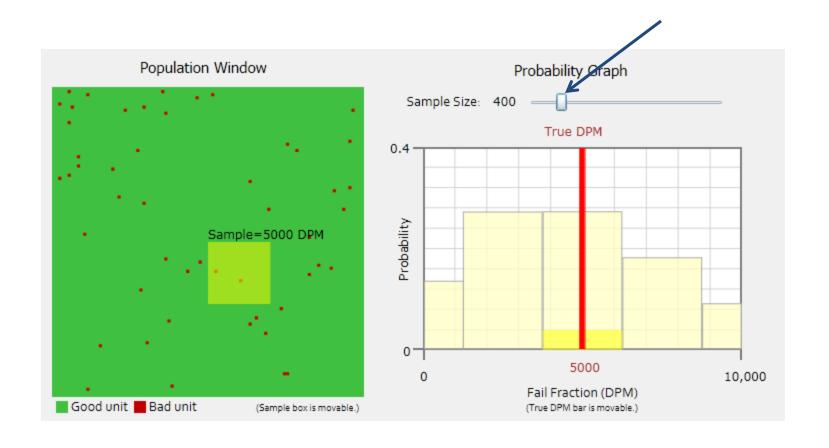


Please put True DPM back to 5,000

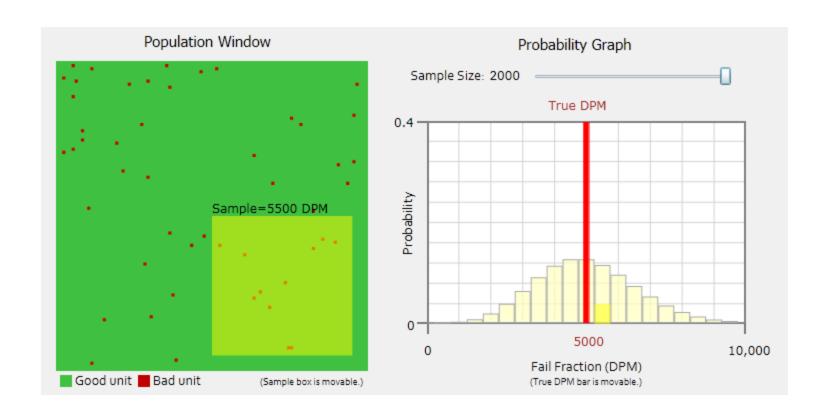




Small Sample Size

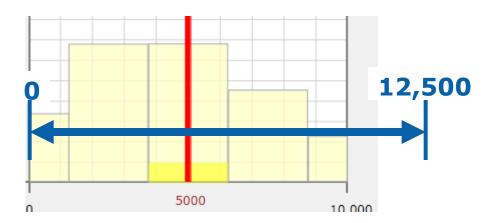


Large Sample Size

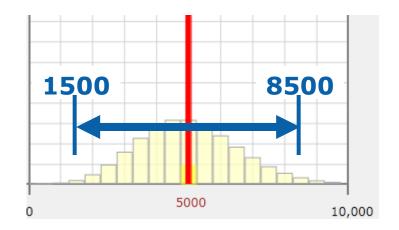


Statistical Measurement Uncertainty

Small sample (400) = wide range



Large sample (2000) = narrow range



Exercise 6.1

- (A) Set sample size = 1000
- (B) Set True DPM = 1100 DPM and look for a sample with 3 fails what DPM does that represent?
- (C) Set True DPM = 6700 DPM and look for a sample with 3 fails what DPM does that represent?

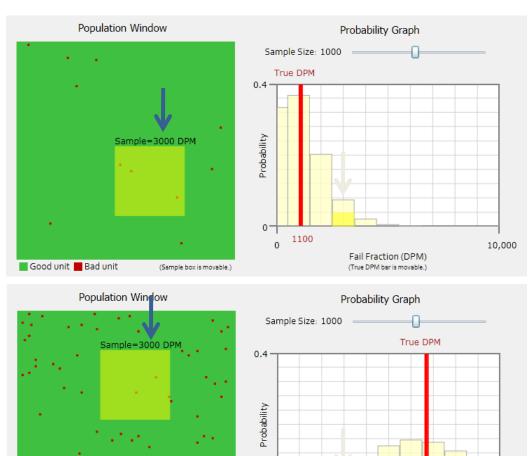
Why We Need Confidence Limits

Did you get...

a *bad* sample from a *good* population?

...or...

a *good* sample from a *bad* population?



10,000

Fail Fraction (DPM)

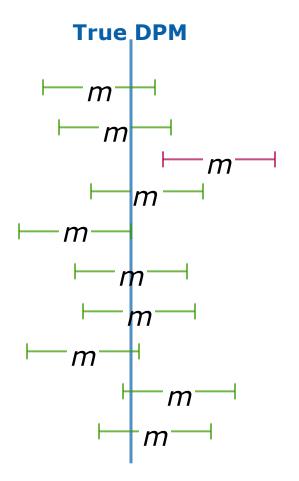
(True DPM bar is movable.)

(Sample box is movable.)

Good unit Bad unit

Confidence Limits

Confidence Interval Meaning



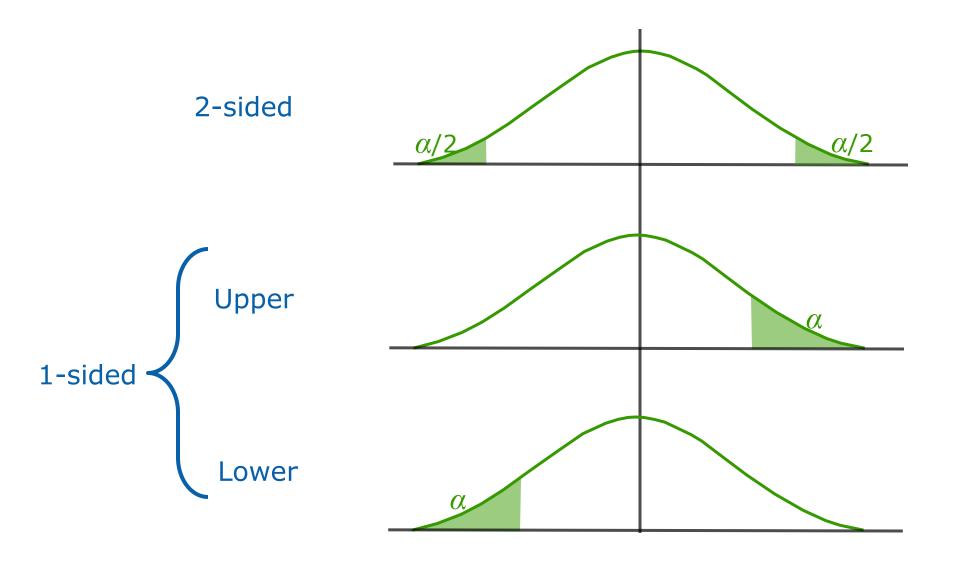
Confidence level = 90% = 0.9

Risk of being wrong = 1 - confidence level

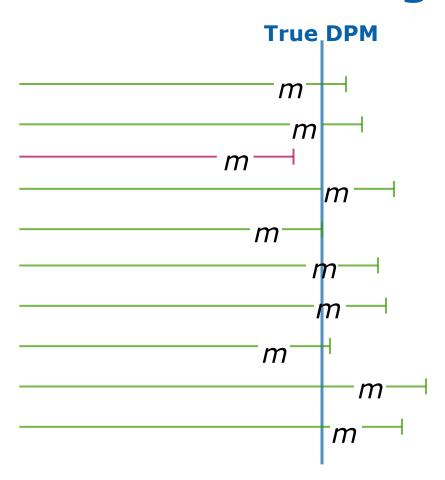
$$= \alpha = 10\% = 0.1$$

• 90% of random sample means with this confidence interval include the true population mean

1-Sided vs. 2-Sided



1-Sided UCL Meaning



• 90% of random sample means with this confidence interval include the true population mean

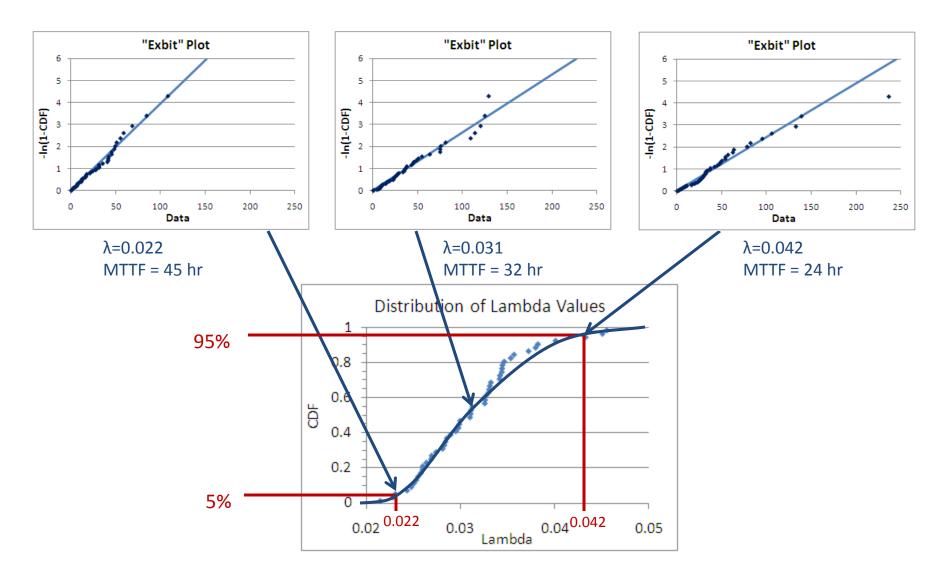
Calculating Confidence Limits

Exercise 6.2

Monte Carlo determination of binomial CL:

- In each row, simulate 10 pass/fail samples and count the number of fails
- Make a histogram of the count of runs that got each fail%
- Add the binomial prediction for each fail%
- Plot both as a bar chart
- Calculate cumulative values for your MC and calculated distributions
- Plot those with a line plot
- Use the cum plots to find the UCL and LCL for 3 fails / 10 units
- Compare to the analytic expressions (T&T section 11.3):
- LCL = BETAINV(5%, fails, samples—fails+1)
- UCL = BETAINV(95%, fails+1, samples—fails)

Monte Carlo Exponential CL

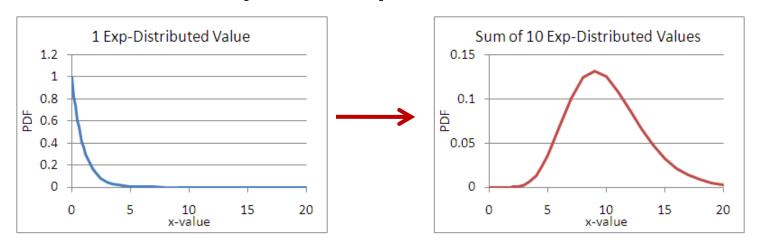


Exercise 6.3

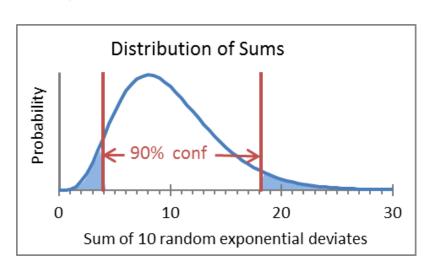
Monte Carlo determination of exponential CL:

- In each row, simulate 50 exponentially distributed samples
- Determine the best lambda (exponential parameter) for each row
- Make a CDF plot of the lambda values
- Find the UCL and LCL for n=50 samples that found a lambda of 3
- Compare to the analytic expressions (T&T table 3.5):
- LCL = CHIINV(5%, 2*n) / (2*n)
- UCL = CHIINV(95%, 2*n+1) / (2*n)

Analytic Exponential CL



- For $f(t) = \lambda e^{-\lambda t}$, best estimate for $1/\lambda$ is $\frac{1}{N}\sum t_i$ where t_i are the data
- So, what is the distribution of $\sum t_i$ where t_i are distributed exponentially?
- Answer: a gamma or a chi-square distribution
- Confidence intervals taken from that



The End