ECE 510 Lecture 6 Confidence Limits

Scott Johnson
Glenn Shirley

Concepts

Statistical Inference

Population

True ("population") value = parameter

Sample value = statistic

- Use a sample statistic to estimate a population parameter

Statistical Inference (Continuous)

Population

- Example of continuous case: Use sample to estimate population mean and standard deviation

Statistical Inference (Discrete)

- Example of discrete case: Use sample to estimate population defect DPM (DPM=Defects Per Million)

Note: Samples Must Be Random!

Population

Population $=55,000$ DPM

 Sample $=204,000$ DPM- Samples must be representative of the entire population!
- Best to select samples truly randomly
- Not the first lot available or other partly-random methods
- No statistical analysis can correct for non-random samples

Distributions of Statistics

Population

True ("population") value = parameter
Sample value $=$ statistic
Distribution of statistic:

- Measured statistic is not enough
- Need to add either
- Confidence interval or limits
- Answer to a statistically-well-posed question ("hypothesis test")
- Calculated from distributions of statistics
- If we looked at many samples from many identical populations, what values of the statistics might we get?

Distributions of Statistics (Continuous)

Population has one true distribution:

Different samples have different distributions:

Properties of sample distributions are statistics. We can calculate distributions of these statistics:

We get one value for each from our one sample.

Distributions of Statistics (Discrete)

true DPM:
25,000 DPM
Population

\square Good Unit

Different samples have different DPMs:

$$
\begin{array}{lr}
20,000 \text { DPM (1 fail) } & 0 \text { DPM (0 fail) } \\
\text { 40,000 DPM (2 fail) } & 60,000 \text { DPM (3 fail) } \\
\text { 20,000 DPM (1 fail) } & 40,000 \text { DPM (2 fail) }
\end{array}
$$

The measured sample DPM is a statistic. We can calculate the distribution of this statistic:

We get one value from our one sample.

DPM Simulation

Population Window

Population Window

- Shows 10,000 units, most good, a few bad

The Sample

- You can move the sample box

DPM Indicator on DPM Histogram

Population Window

Good unit Bad unit
(Sample boxis movable)

Population Window

Probability Graph

Probability Graph

Binomial Histogram

- Gives probability of getting each measurement given the true DPM

Binomial Distribution

Population Window

True DPM

- True DPM is adjustable
- Not in the real world, only the simulation!

Low DPM

Population Window

Good unit \square Bad unit

Probability Graph
Sample Size: 1000

High DPM

Please put True DPM back to 5,000

Small Sample Size

Large Sample Size

Statistical Measurement Uncertainty

Small sample (400)
= wide range

Large sample (2000)
= narrow range

Exercise 6.1

- (A) Set sample size $=1000$
- (B) Set True DPM = 1100 DPM and look for a sample with 3 fails - what DPM does that represent?
- (C) Set True DPM $=6700$ DPM and look for a sample with 3 fails - what DPM does that represent?

Why We Need Confidence Limits

Did you get...
a bad sample from a good population?
...or...
a good sample from a bad population?

Population Window

Population Window

Probability Graph

Probability Graph

Confidence Limits

Confidence Interval Meaning

- 90% of random sample means with this confidence interval include the true population mean

1-Sided vs. 2-Sided

1-Sided UCL Meaning

- 90% of random sample means with this confidence interval include the true population mean

Calculating Confidence Limits

Exercise 6.2

Monte Carlo determination of binomial CL:

- In each row, simulate 10 pass/fail samples and count the number of fails
- Make a histogram of the count of runs that got each fail\%
- Add the binomial prediction for each fail\%
- Plot both as a bar chart
- Calculate cumulative values for your MC and calculated distributions
- Plot those with a line plot
- Use the cum plots to find the UCL and LCL for 3 fails / 10 units
- Compare to the analytic expressions (T\&T section 11.3):
- LCL = BETAINV(5\%, fails, samples-fails+1)
- UCL = BETAINV(95\%, fails+1, samples-fails)

Monte Carlo Exponential CL

Exercise 6.3

Monte Carlo determination of exponential CL:

- In each row, simulate 50 exponentially distributed samples
- Determine the best lambda (exponential parameter) for each row
- Make a CDF plot of the lambda values
- Find the UCL and LCL for $n=50$ samples that found a lambda of 3
- Compare to the analytic expressions (T\&T table 3.5):
- LCL $=\operatorname{CHIINV}(5 \%, 2 * n) /(2 * n)$
- $\operatorname{UCL}=\operatorname{CHIINV}(95 \%, 2 * n+1) /(2 * n)$

Analytic Exponential CL

- For $f(t)=\lambda e^{-\lambda t}$, best estimate for $1 / \lambda$ is $\frac{1}{N} \sum t_{i}$ where t_{i} are the data
- So, what is the distribution of $\sum t_{i}$ where t_{i} are distributed exponentially?
- Answer: a gamma or a chi-square distribution
- Confidence intervals taken from that

The End

