ECE 510 Lecture 3 Functions

Reliability Functions, T\&T 2.1-6, 9
Distributions, T\&T 3.1-4, 4.1-4, 5.1-3

Scott Johnson

Glenn Shirley

Reliability Functions

Reliability Functions

- Functions of time

$$
-\operatorname{CDF}(\mathrm{x}) \rightarrow \mathrm{F}(\mathrm{t})
$$

- Survival function $S(t)=1-F(t)$
- $\operatorname{PDF}(x) \rightarrow f(t)$

$$
\begin{aligned}
f(t) & =\frac{\text { fraction of ORIGINAL population that fails in } d t}{d t} \\
& =\frac{d F(t)}{d t}=-\frac{d S(t)}{d t}
\end{aligned}
$$

- Hazard function $h(t)$

$$
\begin{aligned}
h(t) & =\frac{\text { fraction of CURRENT population that fails in } d t}{d t} \\
& =\frac{f(t)}{S(t)}=-\frac{d S(t)}{d t} \frac{1}{S(t)}=-\frac{d \ln S(t)}{d t}
\end{aligned}
$$

- Cum hazard function $H(\mathrm{t})$

$$
\begin{aligned}
& H(t)=\int_{0}^{t} h(t) d t \\
& S(t)=\exp [-H(t)] \\
& F(t)=1-\exp [-H(t)]
\end{aligned}
$$

Exercise 3.1a

- Calculate $\mathrm{H}(\mathrm{t}), \mathrm{S}(\mathrm{t})$, and $\mathrm{F}(\mathrm{t})$ for the given human mortality data, and plot $h(t), S(t)$, and $F(t)$. The data is given as $h(t)$ for each age, that is, the probability of a living person dying at the given age. Use a sum to approximate the integral for $\mathrm{H}(\mathrm{t})$.

Exercise 3.1a Solution, Part 1

Human Mortality Graphs

Reliability Indicators

- Mean time to failure (MTTF)

$$
M T T F=\int_{0}^{\infty} t f(t) d t=\frac{1}{N} \sum_{j=1}^{N} t_{N}=\int_{0}^{\infty} S(t) d t
$$

- Median time to failure $\left(\mathrm{t}_{50}\right)$ is the solution of

$$
S\left(t_{50}\right)=0.5
$$

- Time at which half of the initial population fails

Exercise 3.1b

- Find the mean and median times to failure for the human mortality data set from the last exercise

Exercise 3.1b Solution

- Sum $\mathrm{S}(\mathrm{t})$ to get MTTF

Reliability Measures: DPM

- Metric designed for low fail rates
- DPM = Defects $\underline{\text { Per Million }}$

\% pass	\% fail	DPM		
99	1	10,000		
99.9	0.1	1000		
99.95	0.05	500		
99.99	0.01	100		Typical target
:---:				
at end of life				

Reliability Measures: FIT

- FIT = Failures In Time
- FIT is a fail rate, fails per billion device hours
- FIT = DPM per 1,000 hours
- DPM is a fail total, fails per million total devices
- DPM = FIT * hours $/ 1,000$

Reliability Indicators: AFR

- AFR, Average Fail Rate

$$
A F R\left(t_{1}, t_{2}\right)=\frac{\int_{t_{1}}^{t_{2}} h(t) d t}{t_{2}-t_{1}}=\frac{H\left(t_{2}\right)-H\left(t_{1}\right)}{t_{2}-t_{1}}=\frac{\ln S\left(t_{1}\right)-\ln S\left(t_{2}\right)}{t_{2}-t_{1}}
$$

- If t in hours, units are fail fraction per hour
- Multiply by 10^{9} for units of FIT

Exercise 3.1c

1. Plot the hazard function in FIT
2. Find the AFR (in FIT) for:

- The 10-year range from ages 6 to 15
- The 10-year range from ages 71 to 80
- The 10-year range from ages 91 to 100
- The entire 100-year range from ages 1 to 100

Exercise 3.1c Solution

Age Range	AFR (FIT)
$6-15$	22
$71-80$	4,311
$91-100$	24,116
$1-100$	4,270

The Bathtub Curve

\rightarrow Use Time

- Infant Mortality (IM) from latent reliability defects
-Wearout from reliability mechs like oxide wearout
- Constant from external effects like radiation
- Many versions of this graph - it is a very important concept

The End

