# ECE 510 Lecture 2 Plotting and Fitting 1

Histogram, CDF Plot, T&T 1.1-4,7-8 Reliability Functions, T&T 2.1-6, 9

> Scott Johnson Glenn Shirley

## Looking At Data

### Looking at Data

#### Bag #1

|   | -1.26755 | 1.778466 | -1.37188 | -1.14666 | 1.437807 | -0.60299 | -1.02321 | 2.284605 |
|---|----------|----------|----------|----------|----------|----------|----------|----------|
|   | 2.145411 | 0.692451 | -1.17339 | 0.364737 | 0.724378 | -1.50313 | 0.190458 | 0.40733  |
|   | 1.650385 | 0.630984 | -0.12599 | 1.264115 | -1.84423 | -0.48658 | -0.66664 | 0.320823 |
|   | 0.316924 | -0.33161 | 0.067807 | 0.481851 | 1.18916  | 0.933333 | 1.446249 | 0.373354 |
|   | 0.480242 | -1.78896 | 0.485449 | -0.74937 | 0.688161 | -0.98282 | -0.71612 | -0.33363 |
|   | -0.36264 | -0.7888  | 0.269517 | 1.988823 | -0.43457 | 0.926149 | -0.48861 | -0.6811  |
|   | 1.838188 | -2.22009 | 0.772391 | 1.11014  | 0.01931  | -1.34591 | -0.01784 | 0.022294 |
|   | -0.86969 | 1.461931 | 0.190981 | -0.00919 | 0.077722 | 0.495746 | 1.00924  | 0.38849  |
|   | -0.5533  | -0.6787  | 0.819628 | -0.30203 | -0.44853 | 0.957826 | -0.76691 | 0.873608 |
|   | -0.32181 | -1.99142 | 0.518891 | -0.59561 | -1.78149 | -0.79414 | 1.0625   | 1.83861  |
|   | 0.626424 | 0.179701 | -1.85872 | 0.269425 | 0.858583 | 0.419005 | 1.40497  | -0.63827 |
|   | 0.976309 | 2.280774 | 2.866851 | 1.634329 | 0.990006 | -0.23951 | 0.127575 | -2.19514 |
|   | 0.44894  | 1.075119 | 1.689274 | 1.475581 | -1.03203 | -0.18468 | 0.866304 | -1.19854 |
|   | 0.558334 | -0.85079 | 0.067652 | -0.21733 | -0.27136 | -1.08395 | -0.47462 | 1.246703 |
|   | -0.65523 | -0.86594 | 1.650949 | 0.042898 | 0.893246 | 1.769013 | -0.00528 | 0.505914 |
|   | -1.26232 | 1.013604 | 1.147206 | 0.105458 | 0.590284 | -1.02945 | -0.65664 | 0.521887 |
|   | 0.902779 | 0.286925 | -0.18876 | 0.272094 | -0.39127 | 0.280675 | -2.77599 | 1.424694 |
|   | -1.17387 | 2.605709 | -0.39121 | 0.122448 | 0.43523  | 0.314019 | -0.37809 | -0.66442 |
|   | 0.726144 | -0.24025 | -0.03335 | 0.791683 | -1.231   | -1.59685 | 0.149208 | 0.455159 |
|   | 1.18528  | 0.043876 | 1.777507 | -0.30699 | -0.29853 | 0.657965 | 0.601112 | 0.803147 |
| ĺ | 1 138225 | 0 887483 | -0.52012 | 1 734477 | N 1218   | -0.46349 | 1 165336 | Π 171781 |

#### Bag #2

| 1.265675 | 0.848201 | 0.819197 | 0.189162 |
|----------|----------|----------|----------|
| 2.914639 | 0.067836 | 3.785975 | 1.267826 |
| 0.686888 | 0.098782 | 6.034544 | 0.912695 |
| 1.029218 | 4.281229 | 0.711612 | 0.958154 |
| 6.985271 | 1.921583 | 1.121907 | 0.799197 |
| 0.54227  | 1.326231 | 1.582003 | 0.999151 |
| 0.428173 | 4.567446 | 0.19616  | 4.988572 |
| 8.785572 | 3.877789 | 5.698939 | 1.455257 |
| 0.191375 | 0.721186 | 0.633513 | 3.18961  |
| 3.753661 | 8.632928 | 3.928738 | 1.61795  |
| 0.442747 | 0.78904  | 0.182824 | 1.007515 |
| 4.614461 | 6.452247 | 1.54774  | 1.167165 |
| 3.775211 | 2.233818 | 0.39789  | 0.779513 |
| 0.791782 | 1.422401 | 0.766199 | 0.372987 |
| 0.857405 | 0.095834 | 7.152579 | 0.319819 |
| 2.591271 | 0.677541 | 5.013876 | 5.268087 |
| 0.799215 | 3.002185 | 0.366671 | 7.439692 |
| 1.79157  | 0.902246 | 1.771052 | 5.918061 |
| 4.16152  | 0.35055  | 1.357161 | 2.058974 |
| 1.521754 | 0.841953 | 1.838735 | 1.537069 |

• What do you do with a bag of numbers?

### Histograms



- One way to look at data is a histogram
  - Counts number of data points per bin
  - Bin range is adjustable, depends on data
  - Lumpy approx. to the PDF (Probability Density Function)
- Useful for seeing the overall shape of the distribution

### Making a Histogram in Excel



- Instructive you must create your own bins
  - Note, "FREQUENCY" function is another method

## **Using Excel**

# **Cell Functions**

#### Excel's greatest strength is cell functions (in my opinion)

|   | DGET | •    | (= × < | ′ <i>f</i> <sub>≭</sub> =AVE | ERAGE( <mark>B2:</mark> | B4) |   |   |
|---|------|------|--------|------------------------------|-------------------------|-----|---|---|
|   | А    | В    | С      | D                            | E                       | F   | G | Н |
| 1 |      | Data |        | Average                      |                         |     |   |   |
| 2 |      | 3    |        | (B2:B4)                      |                         |     |   |   |
| 3 |      | 4    |        |                              |                         |     |   |   |
| 4 |      | 5    |        |                              |                         |     |   |   |
| 5 |      |      |        |                              |                         |     |   |   |

#### Clicking the fx button



#### ECE 510 S.C.Johnson, C.G.Shirley

# Relative Addressing, Copying Functions

|   | E2 | • | · (= | f <sub>x</sub> =SU | M(D\$2:D2) |   |
|---|----|---|------|--------------------|------------|---|
|   | А  | В | С    | D                  | E          | F |
| 1 |    |   |      | Inputs             | Sum        |   |
| 2 |    |   |      | 3                  | 3          |   |
| 3 |    |   |      | 3                  |            |   |
| 4 |    |   |      | 3                  |            |   |
| 5 |    |   |      | 3                  |            |   |
| 6 |    |   |      |                    |            |   |

Copy functions by dragging the black square

\$ means absolute address, which doesn't change while copying

|   | DGET | - | √ (□ × ✓ f <sub>x</sub> =SUM(D\$2:D4) |        |          |   |  |
|---|------|---|---------------------------------------|--------|----------|---|--|
|   | А    | В | С                                     | D      | E        | F |  |
| 1 |      |   |                                       | Inputs | Sum      |   |  |
| 2 |      |   |                                       | 3      | 3        |   |  |
| 3 |      |   |                                       | 3      | 6        |   |  |
| 4 |      |   |                                       | 3      | )\$2:D4) |   |  |
| 5 |      |   |                                       | 3      | 12       |   |  |
| 6 |      |   |                                       |        |          |   |  |

| $f_x$ |        |   |     |   |  |  |  |
|-------|--------|---|-----|---|--|--|--|
| С     | D      | D |     | F |  |  |  |
|       | Inputs |   | Sum |   |  |  |  |
|       |        | 3 | 3   |   |  |  |  |
|       |        | 3 | 6   |   |  |  |  |
|       |        | 3 | 9   |   |  |  |  |
|       |        | 3 | 12  |   |  |  |  |
|       |        |   |     |   |  |  |  |

# Style Suggestions

Strive to make your spreadsheets understandable to someone else (or to you next year)

Put inputs and outputs in tables with labels; color coding sometimes helps

|   | J6 |        | • (=   | $f_{x}$ |   |            |        |       |   |         |  |
|---|----|--------|--------|---------|---|------------|--------|-------|---|---------|--|
|   | А  | В      | С      | D       | E | F          | G      | Н     | I | J       |  |
| 1 |    |        | Inputs |         |   |            | Output |       |   | Inputs  |  |
| 2 |    | Name   | Value  | Units   |   | Name       | Value  | Units |   | Outputs |  |
| 3 |    | side A | 3      | m       |   | Hypotenuse | 5      | m     |   | Labels  |  |
| 4 |    | side B | 4      | m       |   |            |        |       |   |         |  |
| 5 |    |        |        |         |   |            |        |       |   |         |  |

Don't put input values as numbers in cells

▼ (  $X \checkmark f_x$  =SQRT(3^2 + 4^2)

Put values in other cells and reference them

|   | DGET | •      | $\checkmark (\bigcirc \times \checkmark f_x = \text{SQRT}(\text{C3^2} + \text{C4^2})$ |       |   |            |         |       |   |
|---|------|--------|---------------------------------------------------------------------------------------|-------|---|------------|---------|-------|---|
|   | А    | В      | С                                                                                     | D     | E | F          | G       | Н     | 1 |
| 1 |      |        | Inputs                                                                                |       |   |            | Output  |       |   |
| 2 |      | Name   | Value                                                                                 | Units |   | Name       | Value   | Units |   |
| 3 |      | side A | 3                                                                                     | m     |   | Hypotenuse | + C4^2) | m     |   |
| 4 |      | side B | 4                                                                                     | m     |   |            |         |       |   |
| 5 |      |        |                                                                                       |       |   |            |         |       |   |

# Graphs

#### Select data and then Insert the type of graph



## Back to data plotting

## Exercise 2.1

• Make a histogram of the data in tab "Ex 2.1".

### Histograms in JMP



#### Our Excel histogram:

### JMP makes histograms automatically:

CDF plot



### CDF Plot

- PDF (Probability Density Function)
  - Area under PDF = 1
- CDF (Cumulative Distribution Function)
  - Range of values is 0 to 1
- Related to each other:

$$CDF(x) = \int_{-\infty}^{x} PDF(x') dx'$$
$$PDF(x) = \frac{d}{dx} CDF(x)$$



## **CDF** Plot



Rank - 0.3

Count + 0.4

|    |          | . ↓      |
|----|----------|----------|
| 2  | Data     | CDF      |
| 3  | 2.476147 | 0.996507 |
| 4  | -0.93374 | 0.133234 |
| 5  | 0.126027 | 0.567365 |
| 6  | -1.71652 | 0.038423 |
| 7  | -0.14318 | 0.487525 |
| 8  | -1.20213 | 0.098303 |
| 9  | -0.75337 | 0.233034 |
| 10 | 0.057801 | 0.542415 |
| 11 | -0.43195 | 0.352794 |
| 12 | -0.15637 | 0.482535 |
| 13 | 0.35763  | 0.652196 |
| 14 | -0.2927  | 0.422655 |
| 15 | -0.30083 | 0.417665 |
| 16 | -0.38647 | 0.372754 |
| 17 | -1.26719 | 0.088323 |
| 18 | 1.812076 | 0.966567 |
| 19 | -0.53628 | 0.327844 |
| 20 | 1.553529 | 0.936627 |



• See all data points; no binning

### **Statistical Inference**



### **CDF** Counting



- Why CDF = (Rank-0.3)/(Count+0.4) ?
- Median rank gives the median location if experiment repeated many times

# Sampling a CDF

1 1 0.8 0.8 0.6 0.6 G Ë 0.4 0.2 0.2 0 0 Data -2 -1 1 2



#### Want to sample uniformly

Actually sample randomly

# Sampling a CDF



- Range of possible CDF locations for each sample
- Median rank is median of this range

# Sampling Uncertainty



• Different from measurement uncertainty

## Exercise 2.2



- Find the Median Rank Demo
- Press F9 several times to see different synthesized samples
- Observe the behavior

### To Reduce Sampling Uncertainty...



# **CDF Plot in Excel**



To remove "ties": \_=(RA

=(RANK(B6, \$B\$6:\$B\$10000, 1) + COUNTIF(\$B\$6:B6, "="&B6)-1 - 0.3) / (\$C\$4 + 0.4)

## Exercise 2.3

• Make a CDF plot of the data given in the Ex 2.3 tab

## **Exercise 2.3 Solution**



## The End