ECE 510 Lecture 15
Manufacturing Test Methods

Glenn Shirley
Scott Johnson
Outline

- Manufacturing Test Flow
 - The “Ramp”.
 - Initial Flow.
 - High-Volume Manufacturing (HVM) Flow.
- Purpose of Various “Test Modules”.
- Monitors: Containing Risk in High-Volume Manufacturing
- What’s Inside a “Test Module”.
- Mutual Coverage of Tests and Patterns.
- Stop-on-Fail (SOF) Figures of Merit from Coverage Metrics
- Measuring Mutual Coverage with Continue-on-Fail (COF) Data
Fab and Assembly/Test

• Fab: Wafer Fabrication
 – Silicon wafers are processed through many steps.
 – The entire process is referred to as wafer fabrication.
 – The factories in which this is done are called “Fabs”.
 – At the end of fabrication, wafers are tested by “e-test” which provides the Fab with feedback at the transistor level.
 – The first product-specific test after fabrication is Sort.
 – Sort is done at the wafer level.
 – The primary measure of success of the Fab is the yield at Sort.

• Assembly/Test
 – Wafers are sent to Assembly factories where they are singulated into individual dies, put into packages and tested.
 – The primary focus of the Test Methodology lectures of the course is on the Test aspects of the Assembly/Test factory.
Several methods are needed to convert the initial manufacturing process to a high-volume process (HVM) while containing the risks:

- **RCE.** Raw Class Elimination.
- **CSE.** Cold Socket Elimination.
- **BITR.** Burn In Time Reduction.
- **TTR.** Test Time Reduction.
- **PVSE.** Platform Validation Screen Elimination.

These all depend on using data acquired during the early stages of the product ramp.
Integrated Circuit Manufacturing Test

• Initial manufacturing process
 – Low volumes, data-intensive.

• High-volume manufacturing process
 – Test steps and test content moved to monitors.

Extra content ported from Cold Class

Reduced test content.

TTR Monitor: Some units get full test content applied.

Winter 2013
Outline

• Manufacturing Test Flow

• Purpose of Various “Test Modules”.
 – Sort, Class, Burn In, Platform Validation.

• Monitors: Containing Risk in High-Volume Manufacturing

• What’s Inside a “Test Module”.

• Mutual Coverage of Tests and Patterns.

• Stop-on-Fail (SOF) Figures of Merit from Coverage Metrics

• Measuring Mutual Coverage with Continue-on-Fail (COF) Data
Sort

• Done at wafer level.
 – Signal and power environment non-optimal. So timings are loose, etc.
• Test times are several seconds.
• Gives feedback to Fab on process health.
• Screens for gross manufacturing defects.
• Screens and classifies dies for downstream manufacturing.
 – Screen: Greatly reduces number of defective dies packaged.
 – Classify: eg. Low Isb dies get mobile packages. High Isb dies have different burn in settings.
• The only cold temperature test socket remaining in the HVM test flow.
 – Cold Class removal is enabled by making Sort more effective at screening cold defects.

Winter 2013
Hot Class and Raw Class

- Guarantees product timing, voltage & thermal specifications at hot corner.
 - Dies passing at worst corner (hot, low Vcc) pass at all lower temperatures and higher voltages – except for some specific kinds of “cold” defects.
- Test times are several seconds.
- Classifies units by speed (speed binning).
- Screens defects including: assembly, hot temperature sensitive, latent reliability defects activated by B/I.
- Gives feedback to Assembly on Assembly Factory process health.
- Pre-Burn-In Class separates Assembly and Fab latent reliability defects.
- Raw Class Elimination (RCE) occurs when product has been validated to match burn in models.
 - Thereafter, defect density measured at Sort suffices.
 - ATE testers used for Raw Class are released to serve as Hot Class testers.
Burn In

- Operates units at high voltage and temperature so that latent reliability defects may be “activated” and so screened by subsequent Class tests.
- Burn in times range from about an hour to several hours.
- Many (100’s) of units are stressed in parallel in burn in ovens.
- Load/unload times are key factors in the efficiency of the process.
- Validation of the stress is important – for example ensuring that the voltage is really being applied.
- Burn-In time reduction (BITR) is driven by
 - Fab process killer defect density reduction, which also reduces LRD density.
 - Carefully(!) putting brief high voltage stresses into Sort and Class.
- Test-during-burn-in (TDBI) is a perennial idea that never works.
Cold Class

- Guarantees product timing, voltage & thermal specs at cold corner.
- Some Fab defects fail at the cold corner, rather than at the hot corner.
 - Caused by specific kinds of defects ("salicide").
- Uses expensive ATE equipment. Test times are several seconds.
- Provides two kinds of feedback:
 - Isolates cold defects for Fab, so that Fab can eliminate them.
 - Identifies tests that can be moved to Sort to screen cold defects there.
- Cold Socket Elimination (CSE) must occur before the ramp reaches half the planned volume so testers used for Cold Class can be used for Hot Class.
Platform Validation

- Closely matches end-use conditions. It is an end-use platform (eg. PC) with user-like software running.
 - Heavily engineered to work in a factory. Robot handling, make/break contact sockets, etc.
- Test times are 10’s of minutes.
- An in-factory measure of expected customer production-line failure rates.
- Finds failing patterns missing in upstream test programs.
- Provides an initial use-like screen, but test times are long (10’s of minutes) so must be quickly moved to monitor status.
Outline

• Manufacturing Test Flow
• Purpose of Various “Test Modules”.
 • Monitors: Containing Risk in High-Volume Manufacturing
 – Statistical Design of Monitors.
• What’s Inside a “Test Module”.
• Mutual Coverage of Tests and Patterns.
• Stop-on-Fail (SOF) Figures of Merit from Coverage Metrics
• Measuring Mutual Coverage with Continue-on-Fail (COF) Data
Monitors

- The HVM process requires monitors which sample the volume.
- Benefit: Greatly increased efficiency.
- Risk: Whenever a screen is replaced by a monitor there are producer and customer risks.
- Sampling plans for monitors must be designed to meet specific producer and customer risk parameters.
 - Example: What is the escape risk for a sudden increase in proportion defective?
PV Monitor to CLF Correlation

- The PV monitor provides an in-factory indicator of customer-perceived failure rates; “customer line fallout (CLF)”.
- The signal is seen about 1 week before the customer sees it.
Sample Plan: Sample size N

Fraction defective: \(p \)

\[\text{Producer} \rightarrow \text{Test} \rightarrow \text{Analysis FI/FA} \rightarrow \text{Customer} \]

Policy: Criteria
- \(p \leq \text{Goal} \) \(\rightarrow \) Pass
- \(p > \text{Goal} \) \(\rightarrow \) Fail

Use “Rule”
- Data: Failure Count \(f \)

Decide Action
- Accept
- Reject

No Action

Valid failures

Customer Oriented
- Containment, Notification

Producer Oriented
- Process Fix
For a specific hypothetical value of p (percent defective).

<table>
<thead>
<tr>
<th>Decision by Rule</th>
<th>The Truth (Known only to God)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$p \leq \text{Goal}$</td>
</tr>
<tr>
<td>Accept</td>
<td>Correct</td>
</tr>
<tr>
<td></td>
<td>Probability = $(1 - \alpha)$</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Reject</td>
<td>Producer Risk</td>
</tr>
<tr>
<td></td>
<td>Alpha Risk</td>
</tr>
</tbody>
</table>
Operating Characteristic (OC)

• Every “rule” with an “Accept” or “Reject” result has an operating characteristic (OC) curve.
• The OC curve is the probability of an “Accept” result as a function of the fraction of the population, p, that is defective.
• No matter how complicated the “rule” is, an OC curve exists.
• The OC curves for simple rules can be calculated analytically.
• More complicated rules may require Monte-Carlo simulation.
 – Calculation is simplified because the OC curve is only needed at two particular values of p (AQL and RQL, see below.)
Example Rules 1

- Minimum and “Nearly Minimum” Sample Size Rules
- A sample of size N is taken.
- Assumptions
 - Sample is small compared to total population sampled.
 - Population defect density is uniform.
- Rule 1a: Accept on 0, Reject on 1 or more.
 - Probability of the “Accept” decision is the probability of no defects
 $$P_{\text{accept}} = (1 - p)^N$$
- Rule 1b: Accept on 0 or 1, Reject on 2 or more
 - Probability of the “Accept” decision is the probability of 0 or 1 defects
 $$P_{\text{accept}} = (1 - p)^N + N \times p \times (1 - p)^N$$
Example Rule 2

• Rule for any sample size.
• A sample of size N is taken.
• Assumptions
 – Sample is small compared to total population sampled.
 – Population defect density is uniform.
• Rule
 – For $0, 1, 2, \ldots, f$ failures in the sample, the decision is “Accept”.
 – For $f + 1$ or more failures in the sample, the decision is “Reject”.
• Probability of no failures in the sample, that is, of the “Accept” decision is

\[
P_{\text{accept}} = \sum_{n=0}^{f} \frac{N!}{f!(n-f)!}(1-p)^{N-f} p^f
\]

\[= \text{BINOMIAL}(f, N, p, \text{TRUE})\]

Notes:
• This rule generalizes Rules 1.
• The OC Picker Tool” tab on the Rel Calculator Excel tool may be used to implement this rule.
Example Rule 3

- **Sequential Sampling**
 - Benefit: Sample size “adapts” to defectivity.
 - Risk: Can lead to 100% sampling.

- **Assumptions (for this example)**
 - Sample is small compared to total population.

- **Rule**
 - See diagram and equations.
 - Usually truncate when sample reaches 3x non-sequential plan.

![Graph showing sequential sampling rules](image-url)

- f, number of defective units
- n, number of units sampled
- $x_r = h_2 + sn$
- $x_a = -h_1 + sn$

$$
\begin{align*}
k &= \ln \frac{p_2(1 - p_1)}{p_1(1 - p_2)} \\
h_1 &= \left(\ln \frac{1 - \alpha}{\beta} \right) / k \\
h_2 &= \left(\ln \frac{1 - \beta}{\alpha} \right) / k \\
s &= \ln \left(\frac{1 - p_1}{1 - p_2} \right) / k
\end{align*}
$$
Producer and Customer Risks

\[\alpha \text{ Risk} \]

Probability of "Accept" \(P \)

Keep out for acceptable producer risk.

Keep out for acceptable customer risk.

\[\beta \text{ Risk} \]

Hypothetical Fraction Defective, \(p \)

AQL

RQL

Corporate Quality Goal
Producer and Customer Risks

• Producer requires..
 – Low risk α of rejecting a lot with less than some percent defective, called AQL (Acceptable Quality Level).
 • OC curve outside the green zone meets producer requirements.

• Customer requires..
 – Low risk β of accepting a lot with more than some percent defective, RQL (Rejectable Quality Level).
 • OC curve outside in the red zone meets customer requirements.

• Notes
 – AQL < RQL, unless everything is tested.
 – Lot Tolerance Percent Defective (LTPD) is RQL when $\beta = 0.1$
Recipe

• Determine Customer Risk
 – Policy owned by Q&R and Marketing.
 – Assign RQL = Corporate Quality Goal
 – Choose Beta risk = Standard value, 10%.

• Determine Producer Risk
 – Policy owned by Manufacturing.
 – Assign AQL (< RQL) = Some fraction, < 1, of RQL.
 – Choose Alpha risk = Standard value, 5%.

• Choose sampling plan that will
 – Avoid green and red zones in the OC Picker tool, but...
 – Minimizes cost by just “grazing” the red/green zones.
Example

- Only if **everything** is screened, can AQL=RQL.
 - OC curve becomes a step function as $N \rightarrow \infty$.

<table>
<thead>
<tr>
<th>AQL</th>
<th>0.009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha</td>
<td>5%</td>
</tr>
<tr>
<td>RQL</td>
<td>0.011</td>
</tr>
<tr>
<td>Beta</td>
<td>10%</td>
</tr>
</tbody>
</table>

- Accept, f (Reject on $f + 1$).
- SS

<table>
<thead>
<tr>
<th>Sample Size</th>
<th>Probability of "Accept"</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.10</td>
</tr>
<tr>
<td>100</td>
<td>0.01</td>
</tr>
<tr>
<td>1000</td>
<td>0.0001</td>
</tr>
<tr>
<td>10000</td>
<td>0.000001</td>
</tr>
<tr>
<td>100000</td>
<td>0.00000001</td>
</tr>
</tbody>
</table>
Homework 15.1

- Use the “OC Picker Tool” tab on the Rel Calculator Excel tool.
- Find the sample size for $RQL = 1\%$ and Beta risk of 10\% when the producer risk is “don’t care”. This will be the minimum sample size.
- Find a sampling plan which meets $RCL/Beta = 1\%/10\%$ and $AQL/Alpha = 0.5\%/5\%$ requirements.
- What is the probability of a “Reject” decision if the population is 1.5\% defective and the rule is: Sample 7000 units, accept on 95, reject on 96.
Outline

• Manufacturing Test Flow
• Purpose of Various “Test Modules”.
• Monitors: Containing Risk in High-Volume Manufacturing

What’s Inside a “Test Module”.
 – Modules → Tests → Patterns

• Mutual Coverage of Tests and Patterns.
• Stop-on-Fail (SOF) Figures of Merit from Coverage Metrics
• Measuring Mutual Coverage with Continue-on-Fail (COF) Data
Contents of a Test Module

• Each manufacturing test module (Sort, Class, PV) contains a sequence of tests of different kinds.
• The initial tests check for basic electrical continuity and leakage before tests that exercise logic are applied.
• Logical tests are executed by patterns which are sequences of vectors.
 – Patterns exercise the logic so that faults can be found by unexpected outputs.
 – The Sematech data describes only vectors.
• There are several kinds of logical tests
 – Stuck-At, Functional, Delay, Iddq
 – A failure occurs at a specific vector.
• Scan is a Design-for-Test feature for Stuck-At, Delay, and Iddq tests.
 – The IBM ASIC in the Sematech study has a scan DFT feature.
• Logical tests are done at several environmental conditions
 – Voltage: Nominal/Low/High (Sematech does all 3).
 – Temperature: Cold/Room/Hot (Sematech does hot Sort, RT Class).
Test Hierarchy

Sequence of Modules

- Wafer Fabric’n
 - Hot Sort
 - Assembly
 - T0 Class
 - Burn In (6h)
 - T1Class

Sequence of Tests inside a Module

- Power-Up Tests
 - Stuck-At Scan Test
 - Functional Tests
 - Delay Scan Tests
 - Iddq Tests
 - Scan Flush

Logical Sequence inside a Test

Pattern 1
- Vector 1
- Vector 2
...
Pattern 2
- Vector 1
- Vector 2
...
Pattern 3
- Vector 1
- Vector 2
...