Reliability Experience

Bill Roesch (*Rush*) TriQuint Fellow, Reliability Science

> (503) 615-9292 broesch@tqs.com

TriQuint Conductor

Purposes:

Increase Your Reliability Knowledge Base. (Share Experience)

Answer Questions About Reliability.

<u>Outline</u>

Basics

- A little about Compound Semiconductors
- Vocabulary
- A new era for reliability
- Arrhenius methodology review

Beyond the Basics

- Learning from customers: it's a Natural
- Breaking the cycle of learning curves
- Tipping your cap
- The Black magic of current density
- Amped up on defects
- The new PC

Why GaAs Reliability?

"Reliability counts.

In almost every case integrated electronics has demonstrated high reliability."

Gordon Moore, Electronics Magazine, 1965. Cramming more components onto integrated circuits

- Volume drives reliability.
- GaAs is different than silicon.
- New compounds (GaN) have more to go.

Semiconductors and Compounds

Contrasting Improvement Methods

- 1. No significant historical improvement in lifetimes.
- 2. Moore's Law doesn't exactly apply to Compound Semiconductors.

	Performance	Reliability	Yield Focus
Si	Shrink Physical Size	New Materials	Defects
C.S.	New Materials	Don't Shrink (Good Enough)	Parametric

See for yourself – Check out the International Technology Roadmap for Semiconductors. There is an *RF for wireless communications* chapter!

Choosing Materials

"Silicon is likely to remain the basic material, although others will be of use in specific applications. For example, gallium arsenide will be important in integrated microwave functions."

> Gordon Moore, Electronics Magazine, 1965. Cramming more components onto integrated circuits

What's so great about GaAs?

Direct Gap, Low Electron Effective Mass

Perfect for LEDs & Solar Cells

Motivation – What indicates we've made it?

2011 Spending on Microchips Computerworld, February 1, 2012

9 of 50 9

Vocabulary – What is an RF Product?

There's no enigma like six sigma

4 Births per second worldwide.

47 Cell phones are being produced every second.

Reliability Vocabulary – Goals

Data: Measure degradation

- Wearout and Defects
- In search of the "special lot"
- Edges produce data
- Finding the "Flux Capacitor"
 - Goal 1: to predict future fallout
 - Goal 2: to improve reliability
 - Goal 3: to ensure reliability
- Reliability Engineer: obsessed with time
 - Measure Rates of Failure
 - Acceleration Factors: Ea, n, γ
 - Probability and Confidence Levels
 - Learning cycles and screening

Categories of Reliability Test

- Capability Testing

 When does it fail?
- 2. Success Testing
 - Is it good enough?

Time

- 3. Defect Characterization
 - Measure & reduce the minority failure populations.

History of Reliability Efforts

significant Reliability Events	Introduction of New VLSI Materials: Si, Al, SiO ₂	Major Reliability Problems: Mobile-ions, Electromigration Stress Migration, TDDB, Corrosion, Cracked-Die, Broken-Bonds, ESD, Soft-Errors	Major Reliability Physics Effort: Models Developed For: EM, Mobile- Ions, SM, TDDB, Corrosion, Temp-Cycling, Alpha-Particles, ESD/EOS	Moo Major Reliability Engineering Effort Building-In Rel With Emphasis On WLR & DIR	Major Defect- Reduction Effort: SPC, 6-Sigma, Outliers	Introduction of New ULSI Materials: Cu & Low-K,	
0						нign-к, Metal Gates, etc.	
19	75 19	80 19	985 19 Year	90 19	95 20	00 200)5 24

Historical Eras of Reliability

Era	Definition	VLSI Silicon Example	Compound Semi
1	Materials	1975 Materials: Si, AI, SiO ₂	1980 GaAs, Au, Si _x N _x
2	Mechanisms (Major Reliability Problems)	1980 Mobile-ions, E-M, S-M, TDDB, Corrosion, Cracked-Die, ESD, Soft- Errors	1985 Sinking Gates, Ohmic Contacts
3	Physics (Major Reliability Physics Effort)	1985 Models EM, Mobile-Ions, SM, TDDB, Corrosion, Temp-Cycling, Alpha Particles, EOS/ESD	1990 Models Thermal Diffusion, JEP118, Hydrogen
4	Engineering (Major Reliability Engineering Effort)	1990 Building-In Reliability, with Emphasis on WLR & DIR	1995 WLR, Passives, BIR
5	Defects (Major Defect- Reduction Effort)	1995 SPC & 6 Sigma Outliers	2000 Capacitors, Interconnects

Outline

Basics

- A little about Compound Semiconductors
- Vocabulary
- A new era for reliability
- Arrhenius methodology review

Beyond the Basics ...

- Learning from customers: it's a Natural
- Breaking the cycle of learning curves
- Tipping your cap
- The Black magic of current density
- Amped up on defects
- The new PC

How to Accelerate?

How long does reliability qualification **really** take?

Temperature Current Humidity Voltage Mech. Stress

Contaminants Radiation Electric Fields Force Power Pressure Light These are the reliability engineer's tools

Arrhenius: Godfather of Reliability

Time To Fail = exp[Ea/k(1/Temp)]

Ea = Activation Energy (in eV = "Electron Volts"), k = Boltzman's Constant

Graphical analysis using log time and 1/temperature grid to reveal thermal acceleration factor.

FET Technology Primary Wearout Mechanism

- No Gate Oxide.
- Reliable, Recessed, Schottky Gate. Not MOS!
- Less Susceptible to Surface Effects.
- No Ionic Contamination.
- Relatively Short Process Flow.

FET Degradation Distribution

245°C FET Distribution

FET Distributions

Distributions for the same population aged at five different temperatures.

FET Activation Energy

Median Lifetimes for wearout distributions measured at 245°C, 260°C, 275°C, 290°C, and 310°C

Slope / Boltzmann's Constant = Activation Energy

FET Degradation

Reference Device (time = 0 hours)

Extreme Wearout after 26 week Lifetest.

(4380 hours)

Element AE Summary

Long Term Trend for pHEMT

MEDIAN LIFE VERSUS LOT START FROM DC LIFE TEST

1/4µm STD PHEMT Plugbar FET (Channel 320°C)

Failure = 10% current degradation, All at 8 Volts

Basics Review

Basics

- Vocabulary: Reliability is the duration of quality
 - We're headed the same direction, just different words for it.
- A new era for reliability: Improvement follows a progression
 - The path to improvement is well travelled.
 - Compound Semiconductors don't obey Moore's law.
 - One man's trash is a reliability man's treasure.
- Arrhenius methodology review: Time to move beyond temperature
 - We have to stop looking where the light seems to better.
- Are we doomed to repeat history? We know where we've been.

Outline

Basics

- A little about Compound Semiconductors
- Vocabulary
- A new era for reliability
- Arrhenius methodology review

Beyond the Basics ...

- Learning from customers: it's a *Natural*
- Breaking the cycle of learning curves
- Tipping your cap
- The Black magic of current density
- Amped up on defects
- The new PC

Definition of "Natural" Failure Mechanisms

Natural Field Returns

Artificial Accelerated Qualification "Standard"

Motivation Behind Natural Mechanisms

Correct a previous misconception.

- -Customer Abuse
 - Our parts would be fine if customers would just stop abusing them.
- -Compound Semiconductors are "Special"
 - ✓ ESD Sensitivity High Frequency circuits are touchy
 - ✓ Defects don't matter it's all about parametric stuff
 - The material is brittle and not thermally conductive

What happens in the real world?

Scenarios

Levels Triggering Returns

Customer Category	RF Product Type	Volume	Claimed Trigger	Actual Trigger
Automotive	PA	Low	> zero	Every Failure
Standard Product	Various	Large	100 DPM	100-2000 DPM
Cell Phone	PA	High	100 DPM	200-2000 DPM
Cell Phone	RF	High	100 DPM	20,000 DPM
Long Haul	Digital	Medium	100 DPM	20,000 DPM
PC/LAN	LNA	High	200 DPM	20,000 DPM
Cell Phone	PA	High	40 DPM	50,000 DPM

Failure Analysis

Natural Mechanism Examples

Electrical Overstress Thermal Overstress Mechanical Overstress Assembly & Packaging ► No Fault Found Design ► Test ► Others ► Defects 11111
Evolution of Natural Failure Mechanisms

*Raw Returns Results – History & Trend

Era	Approximate Rate of Field Returns (Raw Fallout Returned)	Total Number of Devices Analyzed
1985 - 1992	~ 0.5%	228
1999 – 2004	~ 0.15% - 0.05% (500ppm)	6,213
2005 - 2006	~ 0.05% - 0.01% (100ppm)	2,941
2007 - 2009	5.4 ppm	3,535

*Returns are based upon chance and should be used for entertainment only.

TriQuint Qualification Requirements

Reliability Methods: (REL.024 & REL.021)

- Element Tests, One Wafer Per Stress, 3 Lots.
 - 275°C Bake, 168 hours.
 - 500 Temperature Cycles, -40°C to +125°C.
 - Autoclave, 121°C, Saturated Steam, 96 hours.
- Lead Product Qualification, 3 Lots, 45 or 77.
 - Moisture Sensitivity Level Testing.
 - 150°C HighTemperature Operating Life, 1000 hours.
 - Environmental: Preconditioning, Temp. Cycles (1K -40°to125°C). Autoclave (121°C, 100%RH, 96 hrs). HAST (135°C, 85%RH, 96 hrs).
 - Mechanical/Package: Thermal Shock, Physical Dimensions, Mark Permanency, Lead Integrity, Bond Pull, Bond Shear, Die Shear

ESD: HBM & CDM.

Sources of Accelerated Failures

Comparisons – A snapshot

Analyzing the Snapshot

The larger the data set, the more likely common sets will dominate. (Since the snapshot, all accelerated mechanisms have shown up naturally)

Value of Investigating Natural FMs

- Customer data is the best we can get, but it's not perfect
 - Lack of returns should not be interpreted as a lack of failures
- Findings are not static, they change over time
- Focus on exclusive mechanisms (both sides)
- *Natural* is a sanity check on accelerated
- *Natural* is reactive, but only if you react
- Breaking through the improvement cycle

Outline

Basics

- A little about Compound Semiconductors
- Vocabulary
- A new era for reliability
- Arrhenius methodology review

Beyond the Basics ...

- Learning from customers: it's a Natural
- Breaking the cycle of learning curves
- Tipping your cap
- The Black magic of current density
- Amped up on defects
- The new PC

C.I. = Early RF Product Fallout Data

Working With a Customer

Beware of the desk drawer syndrome.

Improvement with shrinking node sizes

Months (Period of initial development)

Outline

Basics

- A little about Compound Semiconductors
- Vocabulary
- A new era for reliability
- Arrhenius methodology review Beyond the Basics
- Learning from customers: it's a Natural
- Breaking the cycle of learning curves
- Tipping your cap
- The Black magic of current density
- Amped up on defects
- The new PC

Customer Experience

Identification of Customer Returns by Individual Cause Analysis of top seven causes of returns for the past 6 years

51

Capacitors

Capacitor Construction – Sources of Variation

All defects underneath and coincident with the Metal Zero layer can affect the integrity of the capacitor. These "defects" and anomalies in the dielectric layer can be considered as a variation in the dielectric thickness.

Capacitor Test Structures

1300pF/mm²

Voltage Ramp: Destructive Test

Process Variation

Measuring Capacitor Defectivity

Capacitor Breakdown By Area

Percent

Example of a Capacitor Short due to a Defect

The capacitor is crosssectioned at the solid red line

The defect is a metal filament lying on top of the capacitor bottom plate

Relative Resolution of Electrical Detection Methods

Outline

Basics

- A little about Compound Semiconductors
- Vocabulary
- A new era for reliability
- Arrhenius methodology review

Beyond the Basics ...

- Learning from customers: it's a Natural
- Breaking the cycle of learning curves
- Tipping your cap
- The Black magic of current density
- Amped up on defects
- The new PC

Current Induced Acceleration

How to get > 1 Million Amps?

Interpreting these conditions is problematic because the "standard" user environment is not easily predictable . . . and because the factors of Stress, Current, and Voltage are almost always confounded with Temperature.

J Exponent Summary

Summary of current density acceleration factors for various circuit elements.

Plated Gold Activation Energy

Outline

Basics

- A little about Compound Semiconductors
- Vocabulary
- A new era for reliability
- Arrhenius methodology review

Beyond the Basics ...

- Learning from customers: it's a Natural
- Breaking the cycle of learning curves
- Tipping your cap
- The Black magic of current density
- Amped up on defects
- The new PC

Root Causes of Field Returns

In Q1 2004, process defects became the leading cause of failure for field returns at TriQuint Oregon.

Non-thermal Acceleration Example

Time (arbitrary units)

Lift-Off Metallization

ccel: 18.44Kv Mag: 28.66Kx Hidth: 1.785 Microns Test ID: I-LINE Sample ID: I-LINE

Emitter, Base, Collector, Ohmic, Gate, NiCr, Metal 0, MIM

Lift-Off Metallization Evolution

Evaporated Metal

Original Sputtered Metal

Gap in solid rectangle. 1350um Periphery. One leakage across. Comb

Meander

Pair of folded traces "meandering"... diagonally, horizontally, & vertically. <u>30mm Periphery.</u>

Leakage between traces. Resistance of each trace.

Interdigitated Fingers. **1880um Periphery.** One leakage across.

How to "amplify" low level defects:

Comb Style Structure.

Testable Electrically: Apply Voltage, Measure Leakage

Reliability Concerns (Near Shorts)

Yield as a Function of Spacing

Looking for Voltage... found acceleration

Voltage Acceleration + Physical Amplification

Reliability as a Function of Spacing

Voltage Aging Effects – Narrow Gap

Voltage and time relationships are similar between capacitors and amplified interconnect.

Original SCALE Structure

(Spacing between interdigitated fingers in Microns) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

10K 9K 8K 7K 6K 5K 4K 3K 2K 1K (Series resistors in Ohms)

Layout of the 1.0um cell. Each of the 3 overlaps are 25um wide.

Applicability of Amplification

 Sampled meter-sized periphery to estimate for centimeters and below.

 Verified layout rules and applicability of periphery amplification.

> Found lower limits of gap amplification, not upper limits. (need more periphery)

> > •Relationships between Yield & Reliability were demonstrated.

Outline

Basics

- A little about Compound Semiconductors
- Vocabulary
- A new era for reliability
- Arrhenius methodology review

Beyond the Basics ... What's manufacturability got to do with it?

- Learning from customers: it's a *Natural*
- Breaking the cycle of learning curves
- Tipping your cap
- The Black magic of current density
- Amped up on defects
- The new PC

Finding the "right" stress

- Acceleration Factors known for Temperature, Voltage, Current.
- Experience from the field does not match wearout mechanisms.
- Causes of reliability test and field failures indicate "excursions."
- Samples: special lot available.

Thermal Excursions - Background

- "Special" Lot
- 13,000 samples per wafer
- 14 wafer lot (5 anomalous)
- 200 additional lots screened (representing 2.6 million)

>130,500 tested for one mechanism

Excursions: Methods - Tests

<u>Fest</u>	Туре	JEDEC		Range	<u>Cycles</u>
1	Infrared Reflow	JESD22-A113-B		+25ºC to +240ºC	<20
2	Thermal Shock	JESD22-A106-A Condition D		-65ºC to +150ºC	<20
3	Thermal Shock	hermal Shock JESD26A Condition C-1		-40ºC to +125ºC	<100
4	Temperature Cycle	cle JESD22-A104-A Condition G		-40ºC to +125ºC	<500
5	Thermal Shock	JESD22-A106-A Condition B		0ºC to +100ºC	<2500
<u>Tes</u>	<u>st Type</u>	Maximum Transfer <u>Time</u>	Minimu Dwell Time <u>Time</u>	m Maxii Time to <u>Temperatu</u>	mum I <u>re</u>
1	Infrared Reflow	~140 seconds	20 seconds	6 minutes	i
2	Thermal Shock	10 seconds	2 minutes	5 minutes	i
3	Thermal Shock	10 seconds	2 minutes	5 minutes	i
4	Temperature Cycle	1 minute	10 minutes	15 minute	S
5	Thermal Shock	10 seconds	2 minutes	5 minutes	i

Thermal Excursion Aging Results

Log Cycles Absolute temperature range is significant compared to various rates of change for thermal shock and temperature cycle.

Thermal Excursions: Acceleration

8 Thermal Shocks -65°C to +150°C

1 Solder Reflow

or 144 Cycles -40°C to +125°C

or 4.99 Million Cycles 0°C to +100°C

Why Excursions Work?

Gold

14.2

ppm

Coefficient of Thermal Expansion.

BCB

42

ppm

Excursions: Building on the Tool

Stresses

Structures

Rel Mask Sets Bake **PCMs** Autoclave **Products** Idea! Temp. Cycle **PDQs IR** Reflow HAST **Power Cycle** Constraints Faster

Time to Fail

Investigation: Via Chains & Power Cycling

Investigation: Preliminary Results

Ramp Cycle to Failure Plot ("TDDB" for power cycling)

Thermal Excursions - Summary

- **1. Log Distribution.**
- 2. Shock = Cycle. (-40°C to +125°C)
- 3. Rate decrease with delta.
- 4. Solder reflow: most severe stress.
- 5. Failures are <u>not</u> random.

Summary

Basics

- A little about Compound Semiconductors
- Vocabulary
- A new era for reliability
- Arrhenius methodology review

Beyond the Basics ...

- Learning from customers: it's a *Natural* Natural Failure Mechanisms
- Breaking the cycle of learning curves
 Manufacturability
- Tipping your cap Using Capacitor Voltage Example for FETs
- The Black magic of current density Black's Equation for HBTs
- Amped up on defects Amplification of Defects with spacing & V
- The new PC Power Cycling is a new acceleration option

User Perspective

DISTRIBUTIONS ACCELERATION FACTORS

MECHANISMS

ESD

DEFECTS

TEST

DESIGN

Acronym List

2DEG: Two Dimensional Electron Gas AB: Airbridge A/C: Autoclave BCB: Benzocyclobutene, Cyclotene **BD: Base Dielectric** BFET: Interdigitated FET layout approximately 300um Gate BIR: Building-In Reliability or Built-In Reliability **CS:** Compound Semiconductor **CSs: Compound Semiconductors DFET: Depletion Mode FET DPM: Defects Per Million** Ea: Activation Energy EFET: Enhancement Mode FET ELFR: Early Life Failure Rate EOS: Electrical OverStress ESD: ElectroStatic Discharge FET: Field Effect Transistor (MESFET or pHEMT) FIB: Focused Ion Beam GaAs: Gallium Arsenide HAST: Highly Accelerated Stress Test HBT: Heterojunction Bipolar Transistor HP: Hair Pin (emitter shape layout for HBTs) ILD: InterLayer Dielectric IR: InfraRed or sometimes Infrared Reflow **IRPS:** International Reliability Physics Symposium LA: Liftoff Assist, a layer to aid liftoff patterning M1: Metal One, first layer global interconnect, plated-up Gold M2: Metal Two, Second layer global interconnect, plated-up Gold MESFET: MEtal Semiconductor Field Effect Transistor

M0 or MET0: Metal Zero, the local interconnect liftoff layer MIM: Metal Insulator Metal capacitor, top plate liftoff metal of capacitors MMIC: Monolithic Microwave Integrated Circuit MTBF: Median Time Between Failures NiCr: Nickel Chromium thin film resistor P/C: Preconditioning PECVD: Plasma Enhanced Chemical Vapor Deposition pHEMT: pseudomorphic High Electron Mobility Transistor PR: PhotoResist PIN: Diode with an intrinsic region. PPM: Parts Per Million **RF: Radio Frequency RH: Relative Humidity REDC: Recombination Enhanced Defect Reaction** ROCS: Reliability Of Compound Semiconductors Workshop. Formerly known as the GaAs REL Workshop from 1985-2003. SBC: Standard Bipolar Cell SEM: Scanning Electron Microscope Si_vNi_v: Silicon Nitride SIP: System In Package (module) SOC: System On Chip (integrated solution) STEM: Scanning Transmission Electron Microscope SPC: Statistical Process Control Svia: Substrate via, interconnect through the wafer T/C: Temperature Cycle TDDB: Time Dependent Dielectric Breakdown TFR: Thin Film Resistor TQS: TriQuint Semiconductor WLR: Wafer Level Reliability

General References Implied Throughout

- W. Roesch and D. Stunkard, "Proving GaAs Reliability with IC Element Testing," US Conference on GaAs Manufacturing Technology, pp. 91-95, 1988.
- W. Roesch, T. Rubalcava, and C. Hanson, "Lifetesting GaAs MMICs Under RF Stimulus," IEEE Transactions on Microwave Theory and Techniques, Vol.40, No. 12, pp. 2452-2460, December 1992.
- W. Roesch, R. Winters, T. Rubalcava, and B Ingle, "Humidity Resistance of GaAs ICs," IEEE GaAs IC Symposium, pp.251-254, 1994.
- T. Henderson, "A Physics-Based Model for Excess Leakage Current in GaAs/AlGaAs HBTs After Bias Stress," GaAs REL Workshop, pp.2-10, 1999.
- W. Roesch, "Thermal Excursion Accelerating Factors," GaAs REL Workshop, pp.119-126, 1999.
- W. Roesch, "Reliability Basics," International Conference on Compound Semiconductor Manufacturing Technology Workshop, pp.1-60, 1999.
- W. Roesch, "Assessing Circuit Hermeticity by Electrolysis," GaAs Mantech Conference, pp.121-124, 2000.
- A. Poe, S. Brockett, and T. Rubalcava, "Failure Analysis of CDM ESD Damage in a GaAs RFIC," International Symposium for Testing and Failure Analysis, Bellevue, WA, November 2000.
- W. Roesch, Volume & Quality Impacts on Reliability: A New Game for GaAs, GaAs IC Reliability Workshop, pp. 137-146, 2000
- W. Roesch, Volume Impacts on GaAs Reliability Improvements," *Microelectronics Reliability,*" Volume 41, Number 8, pgs 1123-1127, August 2001.
- W. Roesch, "Getting to Zero Methods of Reducing Defects," GaAs IC Reliability Workshop, pp. 37-46, 2001
- W. Roesch, "Benchmarking Reliability Tests for Plastic Laminate Modules," GaAs IC Reliability Workshop, pp. 69-78, 2002
- W. Roesch, "Investigating Thermal Excursion Failure Mechanisms for Flip Chip," GaAs IC Reliability Workshop, pp. 107-116, 2003
- W. Roesch and D. Hamada, "Studying Yield and Reliability Relationships for Metal Defects," ROCS Workshop, pp. 121-133, 2004.
- W. Roesch, "MMIC Manufacturing & Packaging Reliability Issues," IRPS Tutorial #232, pp.232.1-232.36, 2004
- W. Roesch, "Outstanding Issues in Compound Semiconductor Reliability, International Conference on Compound Semiconductor Manufacturing Technology, pp.49-52, 2005.
- W. Roesch, "Reliability Of Compound Semiconductor Workshop Historical Review," ROCS Workshop, pp. 1-16, 2005.
- W. Roesch, "Compound Semiconductor Activation Energy in Humidity," *Microelectronics Reliability,*" Volume 46, pgs 1238-1246, May 2006.
- W. Roesch, "Reliability: Beyond the Basics," International Conference on Compound Semiconductor Manufacturing Technology Workshop, pp.1-60, 2006.
- W. Roesch & S. Brockett, "Field returns, a source of natural failure mechanisms," *Microelectronics Reliability,*" Volume 47, pgs 1156-1165, March 2007.
- D. Hamada & W. Roesch, "Wafer-Level Accelerated Lifetesting of Individual Devices," ROCS Workshop, pp.21-30, 2007
- W. Roesch and D. Hamada, "Measuring Liftoff Quality and Reliability with Special Test Structures," International Conference on Compound Semiconductor Manufacturing Technology Workshop, pp.199-202, 2008.
- W. Roesch, "RF Product Reliability," IRPS Tutorial #133, pp.133.1-133.41, 2008