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Purposes: 

 

Increase Your Reliability Knowledge Base. 
(Share Experience) 

 

Answer Questions  

About Reliability. 
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Outline 
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Basics    

• A little about Compound Semiconductors 

• Vocabulary  

• A new era for reliability 

• Arrhenius methodology review 

 

Beyond the Basics . . . 
• Learning from customers: it’s a Natural 

• Breaking the cycle of learning curves 

• Tipping your cap 

• The Black magic of current density 

• Amped up on defects 

• The new PC 
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Why GaAs Reliability? 

• Volume drives reliability. 

• GaAs is different than silicon. 

• New compounds (GaN) have more to go. 

“Reliability counts.  

     In almost every case integrated electronics  

     has demonstrated high reliability.” 

                              Gordon Moore,  Electronics Magazine,   1965.  

                                Cramming more components onto integrated circuits 
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   I     II                                                               III    IV    V   VI  VII  VIII 

T r a n s i t i o n   M e t a l s 

Semiconductors and Compounds 
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Contrasting Improvement Methods 
1. No significant historical improvement in lifetimes. 

Performance Reliability Yield Focus 

Si 
Shrink Physical 

Size 
New Materials Defects 

C.S. 
New 

Materials 
Don’t Shrink 
(Good Enough) 

Parametric 

See for yourself – Check out the International 

Technology Roadmap for Semiconductors.   

There is an RF for wireless communications chapter! 

2.   Moore’s Law doesn’t exactly apply to Compound Semiconductors.  
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Choosing Materials 

“Silicon is likely to remain the basic material, although 

others will be of use in specific applications.  For 

example, gallium arsenide will be important in 

integrated microwave functions.” 

                              Gordon Moore,  Electronics Magazine,   1965.  

                                Cramming more components onto integrated circuits 
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What’s so great about GaAs? 

Direct Gap, Low Electron 
Effective Mass 

Perfect for LEDs & Solar Cells 

High Speed Electrons 
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Motivation – What indicates we’ve made it?  

 

$58.6B
$53.7B

$128.3B

Wireless

Computers

Everything Else

2011 Spending on Microchips 
Computerworld, February 1, 2012 

Wireless Computers 

Everything Else 

9 of 50 



Vocabulary – What is an RF Product? 
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There’s no enigma like six sigma 

47 Cell phones are being produced every second. 

5.6 

4  Births per second worldwide. 
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Reliability Vocabulary – Goals 

 Data: Measure degradation 

 Finding the “Flux Capacitor” 

• In search of the “special lot” 

• Edges produce data 

• Goal 1: to predict future fallout 

• Goal 2: to improve reliability 

• Goal 3: to ensure reliability 

• Wearout and Defects 

 Reliability Engineer: obsessed with time 
• Measure Rates of Failure 

• Acceleration Factors:  Ea, n, g  

• Probability and Confidence Levels 

• Learning cycles and screening 
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Success  

Testing 

 

Categories of Reliability Test 

1. Capability Testing 

– When does it fail? 
 

Time 

Wearout 

Extrinsic 

Region 

Intrinsic 
Region 

F
a
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u

t 
 (
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n
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b
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ty
) 

 

Early 
or Infant 

Extrinsic 

Region 

1 
3 

2.   Success Testing 

– Is it good enough? 
 

 

3.   Defect Characterization 

– Measure & reduce the minority failure populations. 

2 
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Courtesy of Dr. Hans Stork 

CTO Texas Instruments 
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Historical Eras of Reliability 

Era Definition VLSI Silicon Example Compound Semi 

1 Materials 1975 Materials:  Si, Al, SiO2 1980 GaAs, Au, SixNx 

2 
Mechanisms 
(Major Reliability 

Problems) 

1980  Mobile-ions, E-M,  

S-M, TDDB, Corrosion, 

Cracked-Die, ESD, Soft-

Errors 

1985 
Sinking Gates, 

Ohmic Contacts 

3 
Physics 

(Major Reliability 

Physics Effort) 

1985  Models… 
EM, Mobile-Ions, SM, TDDB, 

Corrosion, Temp-Cycling, 

Alpha Particles, EOS/ESD  

1990 Models… 
Thermal Diffusion, 

JEP118, Hydrogen 

4 
Engineering 
(Major Reliability 

Engineering Effort) 

1990 
Building-In Reliability, with 

Emphasis on WLR & DIR  

1995 
WLR, Passives, BIR 

5 
Defects 

(Major Defect- 

Reduction Effort) 

1995 
SPC & 6 Sigma Outliers 

2000 
Capacitors, 

Interconnects 
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Outline 

Basics    

• A little about Compound Semiconductors 

• Vocabulary  

• A new era for reliability 

• Arrhenius methodology review 

Beyond the Basics . . . 

• Learning from customers: it’s a Natural 

• Breaking the cycle of learning curves 

• Tipping your cap 

• The Black magic of current density 

• Amped up on defects 

• The new PC 
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How to Accelerate? 

Temperature 
Current 
Humidity 
Voltage 

Mech. Stress 
Contaminants 

Radiation 
Electric Fields 

Force 
Power 

Pressure 
Light 

How long does reliability qualification really take? 

These  

are the 

reliability 

engineer’s 

tools 
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Arrhenius: Godfather of Reliability 

Time To Fail = exp[Ea/k(1/Temp)] 
Ea = Activation Energy (in eV = “Electron Volts”),   k = Boltzman’s Constant 

Graphical analysis using log time and 1/temperature 

grid to reveal thermal acceleration factor. 
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FET Technology Primary Wearout Mechanism 

• No Gate Oxide. 

• Reliable, Recessed, Schottky Gate. Not MOS! 

• Less Susceptible to Surface Effects. 

• No Ionic Contamination. 

• Relatively Short Process Flow. 
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FET Degradation Distribution 

12 Samples out of 24 FETs 

Actual Data: notice time to reach 20% 

reduction in channel current. 
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245ºC FET Distribution 

These are individual FET times to 

failure plotted on a lognormal grid. 
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FET Distributions 

Distributions for the same population 

aged at five different temperatures. 
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FET Activation Energy 

Median Lifetimes for wearout distributions measured at  

245ºC, 260ºC, 275ºC, 290ºC, and 310ºC  

Slope / Boltzmann’s Constant = Activation Energy  
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FET Degradation 

Reference Device (time = 0 hours) Extreme Wearout after 26 week Lifetest. 

(4380 hours) 
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Element AE Summary 

M1-M2 

Activation Energy shown for various circuit 

elements used in integrated components. 
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Long Term Trend for pHEMT 



Basics Review 
Basics    

• Vocabulary: Reliability is the duration of quality 
– We’re headed the same direction, just different words for it.   

• A new era for reliability: Improvement follows a progression 
– The path to improvement is well travelled. 

– Compound Semiconductors don’t obey Moore’s law. 

– One man’s trash is a reliability man’s treasure. 

• Arrhenius methodology review: Time to move beyond temperature 
 

 

High 

Temperature 

WEAROUT 

VOLUME 

QUALITY 

YIELD 

DEFECTS 

“I think I dropped my car 

keys over there, but let’s look 

here because the light is 

much better.” 
29 

 

– We have to stop looking where the light seems to better. 

• Are we doomed to repeat history?  We know where we’ve been. 
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Outline 

Basics    

• A little about Compound Semiconductors 

• Vocabulary  

• A new era for reliability 

• Arrhenius methodology review 

Beyond the Basics . . . 

• Learning from customers: it’s a Natural 

• Breaking the cycle of learning curves 

• Tipping your cap 

• The Black magic of current density 

• Amped up on defects 

• The new PC 
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Natural 

 Field     Returns 

 

Artificial 

Accelerated 

 Qualification 

“Standard” 

Definition of “Natural” Failure Mechanisms 
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Correct a previous misconception. 
–Customer Abuse 
Our parts would be fine if customers would just stop 

abusing them. 

–Compound Semiconductors are “Special” 
 ESD Sensitivity – High Frequency circuits are touchy 

 Defects don’t matter – it’s all about parametric stuff 

 The material is brittle and not thermally conductive 

What happens  

in the real world? 

56,640 

Delamination :  655 
Cap Short :  410 

Metal Shorts :  337 
Die Crack :  317 

ESD :  219 
Design Errors :  191 
Test Coverage :  156 

Interconnect Open :  142 
Overstress :  139 

Assembly Errors :    97 
Subcomponent Fails :    64 

6σ & 

1 Billion 

Widgets 

Motivation Behind Natural Mechanisms 
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Scenarios 
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Customer 

Category 

RF Product 

Type 
Volume 

Claimed 

Trigger 
Actual Trigger 

Automotive PA Low > zero Every Failure 

Standard 

Product 
Various Large 100 DPM 100-2000 DPM 

Cell Phone PA High 100 DPM 200-2000 DPM 

Cell Phone RF High 100 DPM 20,000 DPM 

Long Haul Digital Medium 100 DPM 20,000 DPM 

PC/LAN LNA High 200 DPM 20,000 DPM 

Cell Phone PA High 40 DPM 50,000 DPM 

Levels Triggering Returns 
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  Failure Analysis Technique Frequency of Use 

1% 2 Dimensional FIB Cross-section 

1% Backside Infrared Microscopy (through wafer) 

1% Energy Dispersive Analysis of X-Ray (EDAX) 

2% Scanning Transmission Electron Microscopy (STEM) 

2% Focused Ion Beam (FIB) Cross Section 

2% Scanning Electron Microscope (SEM) 

3% Package Bake (Dry) & Desolder 

3% Liquid Crystal Hot Spot Detection 

4% Mechanical Polish Cross Section 

4% Light Emission Fault Detection 

5% Bench Test (Engineering Test) 

5% Chemical Layer-by-layer deprocessing 

15% Internal Electrical Bias 

23% Scanning Acoustic Microscopy 

32% Production Electrical Measurement Test 

57% Internal Visual Inspection 

57% Package Decapsulation 

63% Real-time Magnified X-Ray 

93% Pin-to-Pin Curve Trace 

95% External Visual Inspection 

Frequency Analytical Method 

Return  

Received 

Datalog 

Tracking 

External Visual 

& Marking 

Pin-to-Pin 

Curve  

Tracer 

X-Ray 

Acoustic 

Microscope 

Package 

Decapsulation 

Internal 

Visual 

Internal 

Electrical 

Bias  

Analysis 

Report 

Customer 

Communication 

Fault 

Isolation 

P
ro

d
u

c
ti
o

n
 T

e
s
t 

Failure Analysis 

• Snapshot of 100 Analyses 
• 600 individual “Failures” 
• 32 Customers 
• 2% were from “Field” 
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►Electrical Overstress 

      ►Thermal Overstress 

            ►Mechanical Overstress 

                  ►Assembly & Packaging  

                        ►No Fault Found 

                              ►Design 

                                    ►Test 

                                          ►Others 

                                                ►Defects 

Natural Mechanism Examples 
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Test Issue

9%
No Fault 

Found

33%

Assembly/ 

Packaging 

Issues

13%

Fab

Process

 Defect

18%

EOS/ESD

24%

Design 

Issue

4%
Fab 

Process 

Defect

32%

Assembly/ 

Packaging 

Issues

19%

No Fault 

Found

19%

Test Issue

7%

EOS/ESD

19%

Test 

Issue

3%

Design

 Issue 4%

Untestable 3%

No Fault 

Found

20%

Application

42%

EOS/ESD

28%

1985-1992 

1999-2004 

2005-2006 

Evolution of Natural Failure Mechanisms 
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Era 

Approximate Rate  

of Field Returns 

(Raw Fallout Returned) 

Total Number 

of Devices 

Analyzed 

1985  - 1992 ~ 0.5% 228 

1999 – 2004 
 ~ 0.15% - 0.05% 

(500ppm) 
6,213 

2005 - 2006 
~ 0.05% - 0.01% 

(100ppm) 
2,941 

2007 - 2009 5.4 ppm 3,535 

*Raw Returns Results  – History & Trend 

*Returns are based upon chance and should be used for entertainment only.  
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TriQuint Qualification Requirements 

Reliability Methods:   (REL.024 & REL.021) 
– Element Tests, One Wafer Per Stress, 3 Lots. 

• 275ºC Bake, 168 hours. 

• 500 Temperature Cycles, -40ºC to +125ºC. 

• Autoclave, 121ºC, Saturated Steam, 96 hours. 

– Lead Product Qualification, 3 Lots, 45 or 77. 
• Moisture Sensitivity Level Testing. 

• 150ºC HighTemperature Operating Life, 1000 hours. 

• Environmental:  Preconditioning,  
Temp. Cycles ( 1K -40ºto125ºC).   
Autoclave (121ºC, 100%RH, 96 hrs).   
HAST (135ºC, 85%RH, 96 hrs). 

• Mechanical/Package: Thermal Shock,  
Physical Dimensions, Mark Permanency,  
Lead Integrity, Bond Pull, Bond Shear, Die Shear 

• ESD: HBM & CDM. 
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Temp. Cycle
85/85 Preconditioning

IR 

Reflow

Temp. Cycle

HAST

Data on 1,109,453 

Samples aged. 

Sources of Accelerated Failures 

Thermal Shock 
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Cap Short

15%

Metal Short

12%

Die Crack

12%

ESD

8%

Design Error

7%

Test Coverage

5%

Inteconnect 

Open

5%

Overstress

5%

Assembly Error

5%

Subcomponent 

Fails

2%

Delamination

24%

Natural 

Accelerated 

Comparisons – A snapshot 
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Natural                                                 

 

 

 

  

  

 

                                              Accelerated 

COMMON 

Delamination 
Cap Short 
Metal Short 

Design Error 
Interconnect Open 

Assembly Error 

Bin Mix 
Corrosion 

Die Crack 
ESD 

Test Coverage 
Overstress 
Subpart Fails 

Analyzing the Snapshot 

The larger the data set, the more likely common sets will dominate. 

(Since the snapshot, all accelerated mechanisms have shown up naturally) 
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• Customer data is the best we can get, but it’s not perfect 

– Lack of returns should not be interpreted as a lack of failures   

• Findings are not static, they change over time 

• Focus on exclusive mechanisms (both sides) 

• Natural is a sanity check on accelerated  

• Natural is reactive, but only if you react 

• Breaking through the improvement cycle 

Value of Investigating Natural FMs 
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Outline 

Basics    

• A little about Compound Semiconductors 

• Vocabulary  

• A new era for reliability 

• Arrhenius methodology review 

Beyond the Basics . . .  

• Learning from customers: it’s a Natural 

• Breaking the cycle of learning curves 

• Tipping your cap 

• The Black magic of current density 

• Amped up on defects 

• The new PC  
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C.I. = Early RF Product Fallout Data 

W.Roesch, “Getting to Zero, Methods of Reducing Defects,”  

GaAs REL Workshop, pp. 37-46, 2001 

1

10

100

1000

10000

100000

99Q1 99Q2 99Q3 99Q4 00Q1 00Q2 00Q3 00Q4 01Q1 01Q2

Fiscal Quarter

D
e

fe
c

ts
 P

e
r 

M
il
li

o
n

Customer-Measured Defects (DPM)

Outgoing Sample Defects (DPM)

Volume ramp on 
MESFET phone receivers. 

2 Years 
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Working With a Customer 

• We send a million parts. 

Fix Process  
Defect. 

Redesign &  
 improve ESD 
   Performance. 

Customer finds ESD Source. 

Fix Another Process Defect. 

Beware of the desk drawer syndrome. 

• They return 19. 

• We re-test, and 13 pass. 

• We perform FA on 6. 

• Find 3 process defects. 

• Result ~ 3 DPM. 

• Corrective Action. 

• Start Over. 
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Historical Product/Reliability Cycle 

2000               WorkWeek  2008 
1 

10 
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Integrated 

RF Receiver 
1st Gen 

PA Module 

2st Gen 

PA Module 

Transmit 

Module 

PA 
Switch 
Filter  
Module 

Supplier outgoing quality sample 
Customer Factory Data 
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Improvement with shrinking node sizes 

Intel Quality System Handbook, September, 2008 

Months (Period of initial development) 
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0.5um 
(3 Fabs) 

0.35um 
(3 Fabs) 0.25um 

(3 Fabs) 

130nm 
(6 Fabs) 

180nm 
(5 Fabs) 

90nm 
(3 Fabs) 
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RF 
 Outrunning 

the Bear 
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Outline 

Basics    

• A little about Compound Semiconductors 

• Vocabulary  

• A new era for reliability 

• Arrhenius methodology review 

Beyond the Basics . . .  

• Learning from customers: it’s a Natural 

• Breaking the cycle of learning curves 

• Tipping your cap 

• The Black magic of current density 

• Amped up on defects 

• The new PC  
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0% 
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ESD Capacitor 

Short 

Transistor 

Anomaly 

Cracked 

Die 

Test 

Issue 

Open 

Flip Chip 

Bump 

Module 

Delam 

2006 = 1511 returns analyzed 

2007 = 1176 returns w/FA 8,029 PPB 
2008 = 1299 returns w/FA 7,401 PPB 

2009 = 1060 returns w/FA 3,224 PPB 
2010 = 1306 returns w/FA  2,584 PPB 

  2011 =   784 returns w/FA  1,002 PPB 

1373 

1179 

874 

517 499 
482 478 

19.2% 

16.5% 

12.3% 
7.2% 6.9% 

6.7% 6.7% 

Overall, 76% of causes represented  

Customer Experience 
Identification of Customer Returns by Individual Cause 

Analysis of top seven causes of returns for the past 6 years 
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Planarizing dielectric (BCB) 

Overlaying Dielectric 

Capacitor Dielectric 

 Capacitor Construction – Sources of Variation 

All defects underneath and coincident with the Metal Zero layer 

can affect the integrity of the capacitor.  These “defects” and 

anomalies in the dielectric layer can be considered as a variation 

in the dielectric thickness. 

Underlying dielectric layers 

Capacitor Bottom Plate (Metal 0) 

Capacitor Top Plate (MIM Metal) 

Plated Gold Interconnect 

Metal 1 

Via 1 

Wafer Substrate 

Capacitors 
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Capacitor Test Structures 

10K  

μm2 

5K  

μm2 

1K  

μm2 

800K μm2 

400K μm2 200K μm2 

100Kμm2 50K  

μm2 

25K  

μm2 



54 

O
rd

e
re

d
 C

a
p

a
c
it
o

r 
D

a
ta

 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

110 
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Intrinsic capacitor 
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(Good Capacitors) 
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(Defect-driven) 

25KCap 
Capacitor Fail Voltage 
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Process Variation 

Defect Density 
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Measuring Capacitor Defectivity 

6 0 5 4 4 8 4 2 3 6 3 0 2 4 1 8 1 2 6 0 

9 9 . 9 

9 9 
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4 0 0 K C a p 

S i z e 

  

5 0 K C a p 

8 0 0 K C a p 

Capacitor Breakdown By Area 
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Example of a Capacitor Short due to a Defect 
The capacitor is cross-

sectioned at the solid red line 

MET0 – Capacitor Bottom Plate 

MIM – Top Plate 

Defect  

The defect is a metal filament lying on top 
of the capacitor bottom plate 

Capacitor 

Dielectric 

PR 

LA 
BD 

GaAs 
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Relative Resolution of Electrical Detection Methods 

       Full population  

characteristics determined    

.  by ramp-to-breakdown 

testing. 
(Black is unstressed)  

This is a 99% defective population! 

3-6V Module FT (100%) 

20V Die Sort (100%) 

       Duration 

           Duration 

Module Litmus 
Sample 20- 80 

10-3% LTPD 

Wafer Litmus  
Sample 8- 22 

30-10% LTPD 

1-12hr 

8.5min 

Breakdown Voltage (Volts) 
500Å Dielectric Cap 

Not Detectible by Low Voltage Stress 

Not Detectible by Moderate Voltage 
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                                                                              Voltage Resolution 
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Outline 

Basics    

• A little about Compound Semiconductors 

• Vocabulary  

• A new era for reliability 

• Arrhenius methodology review 

Beyond the Basics . . .  

• Learning from customers: it’s a Natural 

• Breaking the cycle of learning curves 

• Tipping your cap 

• The Black magic of current density 

• Amped up on defects 

• The new PC  
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Current Induced Acceleration 

Time To Fail = J
-n

 exp[Ea/k(1/Temp)] 
J = current density,      n = current density exponent 

Slope = n = J exponent  
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How to get > 1 Million Amps? 

 

 
  Interpreting these conditions  

is problematic because the “standard”  
user environment is not easily predictable . . . 

  and because the factors of Stress, Current, and Voltage are almost 
always confounded with Temperature. 

60 
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Summary of current density acceleration 

factors for various circuit elements. 

M0 

M1-M2 

J Exponent Summary 
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Plated Gold Activation Energy 
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Outline 

Basics    

• A little about Compound Semiconductors 

• Vocabulary  

• A new era for reliability 

• Arrhenius methodology review 

Beyond the Basics . . . 

• Learning from customers: it’s a Natural 

• Breaking the cycle of learning curves 

• Tipping your cap 

• The Black magic of current density 

• Amped up on defects 

• The new PC  



64 

In Q1 2004, 

process 

defects 

became the 

leading 

cause of 

failure for 

field returns 

at TriQuint 

Oregon. 
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Non-thermal Acceleration Example 

Early                                                                                      Wearout 

Time (arbitrary units) 

F
a
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re
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s
) 

Finding Early or Infant Failure 

Mechanisms is a challenge for 

the Reliability Engineer. 

Leakage 

Voltage 

Spacing 

Defects    Amp 

Defect Amplification 
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Lift-Off Metallization 

Emitter, Base, Collector, Ohmic, Gate, NiCr, Metal 0, MIM 

66 

Sputtered 

Evaporated 
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Evaporated Metal Original Sputtered Metal 

Original Sputtered Metal 

New Sputtered Metal 

New Sputtered Metal 

Lift-Off Metallization Evolution 



Gap 

Interdigitated Fingers. 

1880um Periphery. 

One leakage across. 

Comb 

Pair of folded traces “meandering”. . . 

diagonally, horizontally, & vertically. 

 30mm Periphery. 

Leakage between traces. 

Resistance of each trace. 

Meander 

Gap in solid 

rectangle. 

1350um 

Periphery. 

One leakage 

across. 

68 68 
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How to “amplify” low level defects: 

Comb Style Structure. 

Unknown? 

Testable Electrically: Apply Voltage, Measure Leakage 

Quality Concerns 

 (Always Shorted)  

Yield Loss 

 

Reliability 

Concerns 

(Near Shorts) 
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Yield as a Function of Spacing 

y = 3.4886x + 95.088

R
2
 = 0.9983
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Site 74, 2.0 um Gap
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Looking for Voltage… found acceleration 
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Voltage Acceleration + Physical Amplification 
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Voltage Aging Effects – Narrow Gap 
Defect Distribution Vs. Voltage with 

3600 second, 2V lifetest inserted 

Voltage and time relationships are similar between 

capacitors and amplified interconnect. 
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Layout of the 1.0um cell.  Each of the 3 overlaps are 25um wide. 

Original SCALE Structure 

Desire a compact PCM-style 

structure to measure liftoff 

quality at a single voltage 

 10K   9K   8K   7K   6K   5K    4K    3K   2K    1K 

                        (Series resistors in Ohms) 

  (Spacing between interdigitated fingers in Microns) 

 0.1  0.2   0.3   0.4  0.5   0.6  0.7  0.8   0.9   1.0 
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Scale Sensitivity Over Time  (Single V Measurement) 
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724 Ω=0.8μ 

 

10.KΩ=0.1μ 

4.8KΩ=0.2μ 

3.0KΩ=0.3μ 

2.1KΩ=0.4μ 

1.6KΩ=0.5μ 

1.2KΩ=0.6μ 

936 Ω=0.7μ 

547 Ω=0.9μ 

385 Ω=1.0μ 

2,671 Reliability Wafers Evaluated 
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Applicability of Amplification 

 ●Sampled meter-sized periphery  
   to estimate for centimeters and below. 

     ●Verified layout rules and applicability 
           of periphery amplification. 

             ●Found lower limits of gap  
                  amplification, not upper limits. 
                    (need more periphery) 

                       ●Relationships between 
                            Yield & Reliability  
                              were demonstrated. 
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Outline 

Basics    

• A little about Compound Semiconductors 

• Vocabulary  

• A new era for reliability 

• Arrhenius methodology review 

Beyond the Basics . . . What’s manufacturability got to do with it? 

• Learning from customers: it’s a Natural 

• Breaking the cycle of learning curves 

• Tipping your cap 

• The Black magic of current density 

• Amped up on defects 

• The new PC 
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Finding the “right” stress 

• Acceleration Factors known for 

Temperature, Voltage, Current. 

• Experience from the field does not 

match wearout mechanisms. 

• Causes of reliability test and field 

failures indicate “excursions.” 

• Samples: special lot available. 
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Thermal Excursions - Background 

• “Special” Lot 

• 13,000 samples per wafer 

• 14 wafer lot (5 anomalous) 

• 200 additional lots screened 

     (representing 2.6 million) 

• >130,500 tested for one mechanism 
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Excursions: Methods - Tests 

Test Type JEDEC Range Cycles
  

   1 Infrared Reflow JESD22-A113-B +25ºC to +240ºC <20
  

   2 Thermal Shock JESD22-A106-A  Condition D -65ºC to +150ºC <20
  

   3 Thermal Shock JESD26A  Condition C-1 -40ºC to +125ºC <100
  

   4 Temperature Cycle JESD22-A104-A Condition G -40ºC to +125ºC <500 
 

   5 Thermal Shock JESD22-A106-A  Condition B 0ºC to +100ºC <2500

  

 

 

  Maximum Minimum Maximum 

Test     Type Transfer Dwell Time Time to  

  Time Time Temperature  
 

1 Infrared Reflow ~140 seconds 20 seconds 6 minutes  
 

2 Thermal Shock 10 seconds 2 minutes 5 minutes  
 

3 Thermal Shock 10 seconds 2 minutes 5 minutes  
 

4 Temperature Cycle 1 minute 10 minutes 15 minutes  
 

5 Thermal Shock 10 seconds 2 minutes 5 minutes  
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T/S = Thermal Shock
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Thermal Excursion Aging Results 

Absolute temperature range is significant 
compared to various rates of change for 
thermal shock and temperature cycle. 
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Thermal Excursions: Acceleration 

1 Solder Reflow = 

8 Thermal Shocks 

-65ºC to +150ºC 

or 

144 Cycles 

-40ºC to +125ºC 

or 

4.99 Million Cycles 

 0ºC to +100ºC 
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Why Excursions Work? 

Coefficient of Thermal Expansion. 

Gold 
14.2 
 ppm  

BCB 

42 
ppm 

86 86 
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Excursions: Building on the Tool 

Structures 
 

Rel Mask Sets  
PCMs 

Products 
PDQs 

Stresses 
 

Bake 

Autoclave 

Temp. Cycle 

IR Reflow 

HAST 

Power Cycle 
Constraints 

 
Faster 

Time to Fail 
 

Idea! 
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Investigation: Via Chains & Power Cycling 

Four Via Chain 

Arrays.  Up to  

6,500 links each. 

Each Array 

Surrounded by 

NiCr “heater” 

Resistors.   
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Investigation: Preliminary Results 
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Ramp Cycle to Failure Plot (“TDDB” for power cycling) 
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Thermal Excursions - Summary 

1. Log Distribution. 

2. Shock = Cycle. (-40ºC to +125ºC) 

3. Rate decrease with delta. 

4. Solder reflow: most severe stress. 

5. Failures are not random. 
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Summary 

Basics    

• A little about Compound Semiconductors 

• Vocabulary  

• A new era for reliability 

• Arrhenius methodology review 

Beyond the Basics . . . 

• Learning from customers: it’s a Natural   Natural Failure Mechanisms 

• Breaking the cycle of learning curves      Manufacturability 

• Tipping your cap      Using Capacitor Voltage Example for FETs 

• The Black magic of current density     Black’s Equation for HBTs 

• Amped up on defects     Amplification of Defects with spacing & V 

• The new PC      Power Cycling is a new acceleration option 
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User Perspective 

WEAROUT 

MTBF 

DISTRIBUTIONS 
ACCELERATION FACTORS 

MECHANISMS 

SYSTEM 
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Acronym List  
2DEG: Two Dimensional Electron Gas 

AB: Airbridge 

A/C: Autoclave 

BCB: Benzocyclobutene, Cyclotene 

BD: Base Dielectric 

BFET: Interdigitated FET layout approximately 300um Gate  

BIR:  Building-In Reliability    or    Built-In Reliability 

CS: Compound Semiconductor 

CSs: Compound Semiconductors        

DFET: Depletion Mode FET 

DPM: Defects Per Million 

Ea: Activation Energy 

EFET: Enhancement Mode FET 

ELFR: Early Life Failure Rate 

EOS: Electrical OverStress 

ESD: ElectroStatic Discharge 

FET: Field Effect Transistor (MESFET or pHEMT) 

FIB: Focused Ion Beam 

GaAs: Gallium Arsenide 

HAST: Highly Accelerated Stress Test  

HBT: Heterojunction Bipolar Transistor 

HP: Hair Pin (emitter shape layout for HBTs) 

ILD: InterLayer Dielectric 

IR: InfraRed or sometimes Infrared Reflow 

IRPS: International Reliability Physics Symposium 

LA: Liftoff Assist, a layer to aid liftoff patterning 

M1: Metal One, first layer global interconnect, plated-up Gold 

M2: Metal Two, Second layer global interconnect, plated-up Gold 

MESFET: MEtal Semiconductor Field Effect Transistor 

M0 or MET0: Metal Zero, the local interconnect liftoff layer 

MIM: Metal Insulator Metal capacitor, top plate liftoff metal of capacitors 

MMIC: Monolithic Microwave Integrated Circuit 

MTBF: Median Time Between Failures 

NiCr: Nickel Chromium thin film resistor 

P/C: Preconditioning 

PECVD: Plasma Enhanced Chemical Vapor Deposition 

pHEMT: pseudomorphic High Electron Mobility Transistor 

PR: PhotoResist 

PIN: Diode with an intrinsic region. 

PPM: Parts Per Million 

RF: Radio Frequency 

RH: Relative Humidity 

REDC: Recombination Enhanced Defect Reaction 

ROCS: Reliability Of Compound Semiconductors Workshop.   

Formerly known as the GaAs REL Workshop from 1985-2003. 

SBC: Standard Bipolar Cell 

SEM: Scanning Electron Microscope 

SixNix: Silicon Nitride 

SIP: System In Package (module) 

SOC: System On Chip (integrated solution) 

STEM: Scanning Transmission Electron Microscope 

SPC: Statistical Process Control 

Svia: Substrate via, interconnect through the wafer 

T/C: Temperature Cycle 

TDDB: Time Dependent Dielectric Breakdown 

TFR: Thin Film Resistor 

TQS: TriQuint Semiconductor 

WLR: Wafer Level Reliability 

WSR: Wafer Scale Reliability 
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