ECE 510 Quality and Reliability Engineering Lecture 1. Introduction, Monte Carlo

Scott Johnson Glenn Shirley

Today

- Introduction to the ECE 510 course
- Introduction to quality and reliability concepts
- A sample exercise showing the sort of exercise we will do most days in this class

Course Introduction

Instructor Biographies

- C. Glenn Shirley
 - PhD in Physics (ASU). 7 years at Motorola, 23 at Intel mostly in TD Q&R.
 Retired in 2007. Joined PSU ECE in the IC Design and Test Lab in 2008 as an Adjunct Prof.
- Scott C. Johnson
 - PhD in Physics (U of CA Davis). 11 years at Intel as a reliability engineer and statistician. Before that, BS in Electrical Engineering (U of IL) and 5 years at Lockheed.
- Course will be co-taught by Glenn and Scott.

Course Goals

- Provide knowledge and skills required of a QRE for integrated circuit
 - Product design
 - Product development
 - Technology development
 - Manufacturing
- Understand the essential trade-offs among
 - Cost
 - Performance
 - Quality and Reliability
 - Producer and Customer risks
- Learn how to assess risks and write qualification plans.
- Develop skills to use statistical methods and tools such as SQL and Excel to analyze data, develop models and make decisions.

Skills

- Calculate failure rates, MTTF, etc. including confidence limits.
- Design a reliability experiment and fit data to a model.
- Use the reliability model to calculate figures of merit for various design "what-ifs" and hypothetical manufacturing and use specifications.
- Use Monte-Carlo simulation to model complicated real-world scenarios which are intractable by classical statistical methods.
- Design a reliability validation plan.
- Be able to build system-level quality and reliability models from component-level models.
- Design a statistical manufacturing monitor or control chart with specified producer and customer risk levels.
- Handle large datasets using SQL and Excel, and so...
- Compute test statistics such coverage, yield, test time, customer defect level from test data.

Logistics

- 4 credits, Monday and Wednesday, 5:00pm–6:50pm, 10 weeks
- Format is lecture and in-class exercises intermingled.
- Lecture will be recorded and accessible online. But in-class activities will not be recorded.
- Presentation materials will be posted to internet right after the class in which they are presented.
- In-class exercises usually will require a computer running Microsoft Excel.
 - Other spreadsheet programs (e.g., Open Office, Google Docs) might work.
 - Later in the course we may use SQLite Expert.
- Recommended textbook is **Tobias & Trindade**, Applied Reliability, 3rd ed.
- Watch the web site for
 - Schedule changes.
 - Reading assignments, including links to extra materials.
 - Presentation materials, and lecture recording.

Grading Model

- Homework. 25% of grade.
 - 16 exercises; one per class with exceptions for exam week, etc.
 - Due by 3P on day one week following assignment.
 - All homework will be submitted electronically.
 - Unless noted, homework is expected to be an individual effort. Discussion is OK, but copying is not.
 - Best 14 of 16 will be used to determine "Homework" part of grade.
- Exams. Mid-Term, 25% of grade. Final, 40% of grade.
 - Open-book, open to slides, open Excel, but offline closed to internet.
 - Final exam will cover entire course (1/3 pre-midterm, 2/3 post-midterm).
 - Material covered in exams will be from lecturer's presentation materials, not the text unless referred to in presentation materials.
- Attendance. 10% of grade.
 - Attendance for class exercises is important for understanding.
 - Up to 2 unexcused absences with no loss of credit for attendance (18/20).

Syllabus

Date	Week	Day	Title	Owner
7-Jan	n 1 Mon Wed		Introduction and Excel Exercise	Scott & Glenn
9-Jan			Plotting and Fitting Data 1	Scott
14-Jan	2	Mon	Introduction to Quality & Reliability	Scott & Glenn
16-Jan	2	Wed	Statistics 1	Scott
21-Jan	2	Mon	Statistics 2	Scott
23-Jan	,	Wed	Plotting and Fitting Data 2	Scott
28-Jan	Л	Mon	Plotting and Fitting Data 3	Scott
30-Jan	t	Wed	Plotting and Fitting Data 4	Scott
4-Feb	5	Mon	Plotting and Fitting Data 5	Scott
6-Feb	ר	Wed	Reliability Mechanisms 1	Scott
11-Feb	6	Mon	Reliability Mechanisms 2	Glenn
13-Feb	0	Wed	Midterm Exam	
18-Feb	7	Mon	Reliability Mechanisms 3	Bill Roesch, Triquint
20-Feb	/	Wed	Seminar (Follow-on from Bill and other Mechanisms lectures)	Bill, Scott, Glenn
25-Feb	Q	Mon	Qual Methodology	Glenn
27-Feb	0	Wed	Qual Methodology	Glenn
4-Mar	٥	Mon	Test Methodology I (Description of Test)	Glenn
6-Mar	,	Wed	Test Methodology II	Glenn
11-Mar	10	Mon	Test Methodology III	Glenn
13-Mar	10	Wed	Review Session	Glenn & Scott
18-Mar	Exam	Mon	Final Exam Mon or Wed.	
20-Mar	20-Mar Week Wed			

Introduction to Quality and Reliability Engineering

Semiconductor Manufacturing

How Moore's Law Works

- Transistor density doubles every 18 months (Moore's Law).
- New products take 1.5 to 2 years from conception to manufacture.
- Technology development and product design must occur *in parallel*.

- QRE is involved at *all stages* of the Technology and Product Lifecycles.
- QRE role is control of customer quality and reliability risks.

Product Lifecycle

ECE 510 S.C.Johnson, C.G.Shirley

Technology Lifecycle

Quality

Role of the Q&R Engineer (QRE)

- The QRE is a proxy for the customer, at all stages of the Product and Technology lifecycles, and
 - *Gives Q&R Requirements.* Provide quality and reliability requirements for products, technologies, and manufacturing.
 - Assesses Risk. Assess product, technology, and manufacturing risks.
 - Writes Validation Plans. Technology Certification, Product Qualification.
 - Designs Experiments. Provides requirements to acquire needed data.
 - Builds Q&R Models. What-if models providing estimates of Q&R figures of merit to enable decision-making involving Q&R attributes of the product.
- Kinds of QRE
 - Technology Development QRE. Silicon and Package reliability models, burn-in development. Process Certification.
 - Test QRE. Fault coverage analysis and modeling. Test program requirements.
 - *Product QRE.* Responsible for specific product. Product Qualification.
 - Materials QRE. Quality control of incoming materials and vendors.
 - Manufacturing/Factory QRE. Monitors. MRB, DRB. Containment.
 - *Customer QRE.* Find customer Q&R req'ts, deal with Q&R "escapes".

Life of an Integrated Circuit

Reflow

Handling

Bend

Temperature

Cycle

Shipping Shock

Handheld

Slide by Scott C. Johnson.

ВАМ

& Vibe

User Drop

Temp, RH

7 8 9 * 0 #

Keypad

press

Physical Manufacturing/Use Flow

- The QRE must keep in mind the entire physical life of the component.
- Component Mfr and System Mfr generates failures, as does End Use.
- The failure rates are key Q&R figures of merit.
- Failures are analyzed. Feedback improves processes.

Physical units

Failed units

Quality vs Reliability

- Quality.
 - Conformance to specification at the customer, usually the System Mfr.
 - Impact: Rework at System Manufacturer. Brand image.
 - Measures of Quality (Figures of Merit)
 - How (which attributes) unit fails to meet specification.
 - Eg. Out of box experience.
 - Fraction of the population failing to meet specification.
 - Eg. 2%, 500 PPM, 300 DPPM, 300 DPM.
- Reliability
 - Conformance to specification usually at the End User, through time.
 - Impact: Warranty cost to system Mfr. Brand image of System Mfr. to End User.
 Brand image of Component Mfr to System Mfr.
 - Measures of Reliability (Figures of Merit)
 - How (which attributes) *and when* unit fails to meet specification.
 - Fraction of the population failing to meet specification in a specified time interval.
 - Eg. 1% in 7 years, 500 DPM in 30 days, 0.1% in warranty period, 10 %/kh, 100 Fits.

For discussion: What "population" do we mean?

Measures of Reliability

• Equivalent failure rate units

Fail	% per 1000 hrs	FIT
Fraction		
per Hour		
0.00001	1.0	10,000
0.000001	0.1	1,000
0.0000001	0.01	100
0.00000001	0.001	10
0.0000000	0.0001	1

- Conversion Factors
 - Fail fraction per hour x $10^5 = \%$ per Khr
 - Fail fraction per hour x 10^9 = FIT
 - % per Khr x 10^4 = FIT

FITs = "Failures in Time"

Quality Assurance

- Quality assurance is achieved by thorough test.
- Test occurs throughout the manufacturing process, not just at the end.

- Screen grossly defective and out-of-spec parts.
- Classify parts into various speed, power, etc. bins.

٠

Q&R FOMs and Targets

- Measures of quality and reliability called Figures of Merit (FOMs) are compared with "Targets" (sometimes called "Goals").
- Comparison of FOMs with Targets determines whether or not a process or product passes or fails a Process Certification or Product Qualification.
 - Targets are usually "do-not-exceed" limits for FOMs.
- Targets are set at the highest corporate level based on Cost models, Competition, Brand image.
- Some Targets are internal and highly proprietary (eg. Yield Loss).
- Other Targets are published to the customers and are highly visible anyway (eg. shipped DPM).
- Typical Targets
 - Yield Loss < 10-20%</p>
 - Class < 1-2 %</p>
 - Customer Line Fallout < 500 DPM
 - Early Life Reliability < 500 DPM, 0 30 days.
 - Warranty < 1%, within warranty.
 - End-of-Life < 3%, 0 7 years</p>

Not representative of any particular product.

Reliability Goals from ITRS 2009

http://www.itrs.net/reports.html

Table PIDS6 Reliability Technology Requirements

Year of Production	2009	2010	2011	2012	-
DRAM 1/2 Pitch (nm) (contacted)	52	45	40	36	-
MPU/ASIC Metal 1 (M1) 1/2 Pitch (nm)	54	45	38	32	-
MI O Thysical Gate Length (nm)	27	24	22	20	-
Early failures (ppm) (First 4000 operating hours) [1]	2–2000	2–2000	2–2000	2-2000	Infant Mortality
Long term reliability (FITS = failures in 1E9 hours) [2]	1-1000	1-1000	1-1000	1-1000	Wear-out
SRAM Soft error rate (FITs/MBit) [3]	11,000	11,000	11,000	11,000	Constant fail rate
Relative failure rate per transistor (normalized to 2009 value) [4]	1.000	0.71	0.50	0.35	
Relative failure rate per meter of interconnect (normalized to 2009 value) [5]	1.00	0.50	0.50	0.25	

Reliability

The Reliability Problem

- Quality fails can be handled by thorough testing
- Reliability is harder because the fails come long after we've sold the product
 - How can we tell which parts are *going to fail* in the future?

The Reliability Solution

- The answer is that we must do research and determine
 - How the parts fail (the fail *mechanisms*)
 - What *stresses* made the part fail
- Then we must
 - Design our product so that none of the fail mechanisms are activated by the stresses encountered during normal use
 - Specify those use conditions clearly
 - Test our product under *accelerated stress* conditions

Understanding Reliability: A Keyboard

- How might a keyboard key fail? (*mechanisms*)
 - Material that gives tactile "click" might fatigue and break
 - Electric contacts might corrode or become blocked with dirt
- What might cause these fails? (*stresses*)
 - Being pressed too many times (wearout)
 - Heat, humidity, dust, dirt, spills, being pressed too hard
- How can we test a key's entire life? (*stress test*)
 - Use a machine to press it 1,000,000 times
 - Before that, heat it and shake it with dirt and water
- How can we make it more reliable? (*design for rel.*)
 - Find what breaks and make that (and only that) stronger

Reliability Example: Aircraft Reliability

- De Havilland Comet was an early commercial jet
- A few crashes were initially unexplained
- Thorough research led to understanding of metal fatigue (fail mechanism) from cabin pressurization (stress)
- Great 1-hour video (TV show) about it:
 - <u>http://www.youtube.com/watch?v= 3JZ3wHlgvl</u>

Reliability Assurance

The stresses and fail mechanisms for integrated circuits are different, but the concepts are the same:

- **Stresses:** voltage, temperature, current, humidity, radiation, temperature cycling, mechanical stress
- Mechanisms: transistors (degradation), interconnects (cracking), package (corrosion, fatigue)

Reliability is assured by a qualification process, where statistical samples of products are stressed to simulate a lifetime.

A burn-in system and HAST system perform stress tests on chips

We will now give an example of the sort of exercise we will do most days in this class:

Monte Carlo Methods

What is Monte Carlo?

- Answer: A famous casino.
- Monte Carlo (MC) methods are numerical calculations using random numbers

What Can Monte Carlo Do?

- Answer: Give approximate numerical solutions to problems we can't solve exactly
- Best suited for:
 - Distributions
 - Integrals (areas under a curve)
 - when we have
 - Many parameters (= many dimensions)
 - Complicated or non-analytic functional forms
- Many simulations of the manufacturing process are ideal for MC

Finding an Area Using MC

	A	В	С	D
1	Х	Y	R	Count
2	=RAND()*2-1	=RAND()*2-1	=SQRT(A2^2+B2^2)	=COUNTIF(C2:C4001,"<=1")
3	=RAND()*2-1	=RAND()*2-1	=SQRT(A3^2+B3^2)	
4	=RAND()*2-1	=RAND()*2-1	=SQRT(A4^2+B4^2)	
	-			

	Α	В	С	D
1	Х	Y	R	Count
2	-0.529	-0.577	0.782854954	3115
3	0.3792	0.343	0.511328764	
4	0.4964	-0.315	0.587725229	
-	0.500	0.0000	0.530000000	

- Here is a MC example: find the area of a circle.
 - For 4000 random points, area=3.115
 - Actual area = π = 3.141
- Can be done using
 - Excel (shown here, formulas and results)
 - VB, C++, or any programming language
 - JMP or many other math-related software programs

Thinking Like an Integral

- Many of our simulations can be interpreted as integrals (area under a curve)
- The area under this function is $\int f \, dV = V \langle f \rangle$

Angle brackets are an average,

$$\langle f \rangle = \frac{1}{N} \sum_{i=1}^{N} f(x_i)$$

Exercise 1.1

- Do a Monte Carlo calculation of Pi as shown in the previous slide. Use 4000 samples.
- Be prepared to give your numerical answer (*x* points out of 4000 are in the circle) in class.
- Turn in your spreadsheet by email before beginning of class 1 week from today.

Exercise 1.1 Solution

	A	В	С	D
1	Х	Y	R	Count
2	=RAND()*2-1	=RAND()*2-1	=SQRT(A2^2+B2^2)	=COUNTIF(C2:C4001,"<=1")
3	=RAND()*2-1	=RAND()*2-1	=SQRT(A3^2+B3^2)	
4	=RAND()*2-1	=RAND()*2-1	=SQRT(A4^2+B4^2)	
	1 .	· · ·		

	Α	В	С	D	
1	Х	Y	R	Count	
2	-0.529	-0.577	0.782854954		3115
3	0.3792	0.343	0.511328764		
4	0.4964	-0.315	0.587725229		
_	0.500	0.0000	0.530000000		

• Already shown two slides back.

Distribution of Answers

• Collect and plot answers from everyone in class

Accuracy of MC

- Calculated precision of MC integral: $V\sqrt{\frac{\langle f^2 \rangle \langle f \rangle^2}{N}}$
- "Experimentally" verified
- Precision depends on the number of samples N
 - Accuracy of a MC simulation depends on many things
- Rule of thumb: precision is $\sim \frac{1}{\sqrt{N}}$

When to Use MC

- For 2D functions (or shapes, like this), a grid technique is better
 - No statistical uncertainty
- For high-dimensional functions (many parameters), MC is the only practical technique
 - Example: 20 parameters with a grid of 10 points per parameter
 - That is 10²⁰ calculations
 - For a fast computer, 300M calcs/sec, still take 10,000 years to evaluate
- Bottom line: Use MC when you have many parameters

The End