Semiconductor Reliability

C. Glenn Shirley

Ack: Thanks to Scott C. Johnson for the prettiest slides!

Link to slides here:

http://web.cecs.pdx.edu/~cgshirl/

Reliability

Outline

Reliability, Definitions, Bathtub Curve

- Reliability Measures, Goals
- Use Conditions
- Acceleration
- Mechanisms
 - Constant Failure Rate
 - Infant Mortality
 - Wearout

What is "Reliability"?

Definition 1: (IPC-SM-785, Nov 1992) The *ability* of a product to function under given conditions and for a specified period of time without exceeding an acceptable failure level.

Definition 2: Most reliability text books.

The *probability* that an item will perform a required function <u>without failure</u> under stated conditions for a stated period of time.

- Fraction of Population failing in Use, or Failure Probability
- <u>Time in Use</u> until a given fraction has failed
 - "Use": 1) Who is the user, 2) What is the population of systems, and 3) How are they used ("Use Conditions").
- <u>Use Conditions</u>, of system, or components in system.
 - System shipping and storage is part of use.
 - System power-on, power-off. Duty cycle.
 - Conditions while "on". Constant or variable
 - » eg. Human usage patterns, software activity.

- Failure name depends on when it occurs:
 - Yield Loss: Product fails an internal test
 - Quality: Product meets specification at OEM
 - Reliability: Product functions correctly throughout use life

Component Failure

	Yield Loss	Quality	Reliability	
Affects	Producer	OEM mostly.	End User, OEM	
Pass Criterion	Functions at test conditions.	Functions per spec. (Data sheet.)	Functions in end use conditions.	
Impact	Higher manufacturing cost at producer.	Higher OEM manufacturing cost.	OEM warranty cost. Negative brand image.	
Measure	Fraction (%)	Fraction failing (PPM)	<u>Fraction</u> per unit time %/kh, FITs	

The Reliability Problem

- Quality fails can be handled by thorough testing
 - We test parts for any flaws
 - And we don't sell parts with flaws
- Reliability is harder because the fails come long after we've sold the product
 - How can we tell which parts are going to fail in the future?

Component Reliability

- The stresses and fail mechanisms for semiconductor components are
 - Stresses: voltage, temperature, current, humidity, radiation, temperature cycling, mechanical stress
 - Mechanisms: transistors (degradation, oxide breakdown), interconnects (electromigration, cracking), package (metal migration, corrosion, fatigue)
- Let's explore another example that is more familiar..

Human Mortality Example

- Data from Census bureau.
- For a specific population.
- Y-axis is the proportion of the population at year y-1 dying by year y.
- Contains all data needed to compute:
 - Life expectancy at a given age.
 - Probability of death at a given age.
 - Number of deaths between given ages.
 - Etc.

Human Mortality Data

Age	Mortality Rate							
1	0.00706	26	0.00095	51	0.00439	76	0.03824	
2	0.00053	27	0.00095	52	0.00473	77	0.04145	
3	0.00036	28	0.00096	53	0.00512	78	0.04502	
4	0.00027	29	0.00098	54	0.00557	79	0.04914	
5	0.00022	30	0.00102	55	0.0061	80	0.05395	
6	0.0002	31	0.00106	56	0.00673	81	0.0595	
7	0.00019	32	0.00111	57	0.00742 82		0.06578	
8	0.00018	33	0.00117	58	58 0.00816 83		0.07287	
9	0.00016	34	0.00124	59	0.00892	84	0.08066	
10	0.00014	35	0.00133	60	0.00971	85	0.08913	
11	0.00013	36	0.00142	61	0.01058	86	0.09777	
12	0.00013	37	0.00151	62	0.01157	87	0.107	
13	0.00017	38	0.00161	63	0.01265	88	0.11683	
14	0.00026	39	0.00173	64	0.01383	89	0.12725	
15	0.00038	40	0.00187	65	0.01509	90	0.13827	
16	0.00051	41	0.00201	66	0.01641	91	0.14989	
17	0.00063	42	0.00217	67	0.01782	92	0.1621	
18	0.00073	43	0.00234	68	0.01941	93	0.17489	
19	0.00079	44	0.00253	69	0.02123	94	0.18824	
20	0.00084	45	0.00274	70	0.02323	95	0.20212	
21	0.00088	46	0.00299	71	0.02528	96	0.21651	
22	0.00092	47	0.00325	72	0.02739	97	0.23138	
23	0.00096	48	0.00353	73	0.0297	98	0.24668	
24	0.00097	49	0.00381	74	0.03229	99	0.26237	
25	0.00096	50	0.00409	75	0.03518	100	0.27839	

Human Mortality Data, ct'd

Human Mortality Data, ct'd

United States Total Population Mortality Rate 1999

Reliability Measure

- Reliability is measured by a failure rate.
- A failure rate is the fraction of a population failing per unit time in a time interval at a given stress condition.

Failure Rate = $\frac{\text{Number of failures in }\Delta t}{\text{Population size at beginning of }\Delta t} \times \frac{1}{\Delta t}$

Number of failures in Δt

Device hours accumulated in Δt

- This is the average failure rate in the interval t to t + Δ t.
- Eg. 100 units are stressed for 1000 hours, failures occur at 100 hours, 400 hours, 700 hours. What is the average failure rate?

$$\lambda_{BE} = \frac{3}{100 + 400 + 700 + 97000} = 0.00003055 = 3.055 \ \%/\text{Kh}$$

Failure Rate Units

• Equivalent Failure Rate Units

Fail	% per 1000 hrs	FIT
Fraction	-	
<u>per Hour</u>		
0.00001	1.0	10,000
0.000001	0.1	1,000
0.0000001	0.01	100
0.00000001	0.001	10
0.000000001	0.0001	1

• Conversion Factors

- Fail fraction per hour x $10^5 = \%$ per Khr
- Fail fraction per hour x 10^9 = FIT
- -% per Khr x $10^4 = FIT$

Human Mortality - Examples

- Of 1000 people alive at 80..
 - How many are dead at 81?
 - » 1000*0.0595 = 60
 - How many are dead at 82?
 - > 59.5 + (1000 59.5) + 0.06578 = 121
- What is the "failure rate" of 80 year olds?
 - 10⁵×0.054/(24*365) = 0.62 %/kh = 6159 FITs
- What is the "failure rate" of 20 year olds?
 - 10⁹×0.0008/(24*365) = 91 FITs
- Typical failure rates of ICs in Use: < 1000 FITs

Failure rate depends on age. It is not a constant, independent of age. This is true of human mortality, and of integrated circuits.

Examples

• For a constant failure rate of 200 FITs, how long will it take for 1 failure to occur in 1000 devices?

 $\frac{\text{Number of Fails}}{\text{Number of Devices} \times \Delta t \text{ (hours)}} = 200 \text{ FITs} \times 10^{-9}$ $\Delta t = \frac{1}{1000 \times 200 \times 10^{-9}} = 5000 \text{ hr} = \frac{5000 \text{ hr}}{168 \text{ hrs/week}} = 30 \text{ weeks}$

 How big a sample is needed to see at least one failure in 30 days for an average failure rate of 1000 FITs?

Number of Devices = $\frac{1 \text{ failure}}{1000 \times 10^{-9} \text{ (per hr)} \times 30 \times 24 \text{ (hr)}} = 1389$

Bathtub Curve

- Defects: Infant Mortality. Declining fail rate, early life.
- Radiation, Software (random): Constant fail rate.
- Materials, Design: Wearout. Increasing fail rate, late life.

Customer-Perceived Bathtub Curve

• Use Infant Mortality Control (eg. Burn In) to reshape the bathtub fail rate curve as perceived by customers.

Portland State

17

Outline

- Reliability, Definitions, Bathtub Curve
 Reliability Measures, Goals
- Use Conditions
- Acceleration
- Mechanisms
 - Constant Failure Rate
 - Infant Mortality
 - Wearout

Reliability Goals

 How are Goals used? Results of experiments or models (Figures of Merit) are compared to Goals to make Pass/Fail decisions.

$FOM \Leftrightarrow Goal \Rightarrow Pass/Fail$

- Reliability goals involve fraction fail and time. (eg. FITs)
- Goals are always stated in relation to some stress condition, or usage model.

Examples:

- Goal for 85/85 is < 1% failing at 1000 hours.
- Product in use: < 1% fails after 7 years of power on provided the product does not exceed data sheet limits.

Reliability Goals (ITRS, 2007)

Year of Production	2007	2008	2009	2010	2011	2012	2013	2014	2015
DRAM ¹ / ₂ Pitch (nm) (contacted)	65	57	50	45	40	36	32	28	25
MPU/ASIC Metal 1 (M1) ½ Pitch (nm)(contacted)	68	59	52	45	40	36	32	28	25
MPU Physical Gate Length (nm)	25	22	20	18	16	14	13	11	10
Early failures (ppm) (First 4000 operating hours) [1]	50- 2000	50- 2000	50- 2000	50- 2000	50- 2000	50– 2000	IM	50- 2000	50- 2000
Long term reliability (FITS = failures in 1E9 hours) [2]	50- 2000	50- 2000	50- 2000	50 2000	50- 2000	50– 2000	Wearout		50- 2000
SRAM Soft error rate (FITs/MBit)	1000- 2000	1000- 2000	1000- 2000	1000- 2000	1000- 2000	1000- 2000	Constant fr		1000- 2000
Kelative failure rate per transistor (normalized to 2007 value) [3]	1.00	0.83	0.71	0.66	0.57	0.51	0.46	0.40	0.37
Relative failure rate per m of interconnect	1.00	0.50	0.50	0.50	0.25	0.25	0.25	0.12	0.12

Table PIDS7a Reliability Technology Requirements—Near-term Years

ERROR!

Manufacturable solutions exist, and are being optimized

Manufacturable solutions are known

Interim solutions are known

Manufacturable solutions are NOT known

Notes:

- Given a range, the upper limit is the requirement. ⊗
- FITs is NOT "Failures in 1E9 hours". ⊗
- Early fails in "operating hours" but long term could be "calendar hours"! ⊗

Outline

- Reliability, Definitions, Bathtub Curve
- Reliability Measures, Goals
 - Use Conditions
- Acceleration
- Mechanisms
 - Constant Failure Rate
 - Infant Mortality
 - Wearout

Use Conditions: Life of an IC

Use Conditions Depend on Application Shipping Intel **Storage OEM/ODM** End-user Assembly Assembly environment Temp $\Delta T'$ Shipping Shock Bend Reflow Handling Temp, RH Power Cycle Temperature Cvcle Bent Pins, Singulation Desktop Tem ΔT Shipping Shock Bend Reflow Handling Temp, RH User Drop Power Cycle Temperature & Vibe Cycle Mobile PC Bent Pins, Singulation 1 2 3 ΛΤ 415161 7 8 9 *0# BAM Reflow Temp, RH Shipping Shock Bend Handling Keypad Temperature User Drop press Cycle Handheld & Vibe Winter 2017

End-Use Conditions Vary Widely...

• CPU usage busy during non-business hours

Winter 2017

Portland State

24

Use Conditions – Temperature

- Die temperature is determined by
 - The effectiveness of the cooling system (heat sink and fans)
 - The ambient temperature (Tamb)

Use Condition Data and Model Sources

- Platform (eg PC "box")
 - Lab electrical and thermal measurements on instrumented systems.
- End Use
 - Population and marketing statistics vs location.
 - Ambient vs location (eg. NOAA).
 - Industry standards (ASHRAE)
 - Human activity monitoring.
 Software activity, in-situ data logging.
 - <u>Surveys</u> of end users (poor source)

Outline

- Reliability, Definitions, Bathtub Curve
- Reliability Measures, Goals
- Use Conditions
 - Acceleration
- Mechanisms
 - Constant Failure Rate
 - Infant Mortality
 - Wearout

Stress and Failure

- How long is our product going to last?
 - We can't wait until it fails to see
 - that takes too long!
- We need to identify the stresses that cause it to fail
 - ...and then apply them harder to make our parts fail in a reasonable amount of time
- Our stresses include
 - Voltage
 - Temperature
 - Current
 - Humidity
 - Mechanical stress
 - ...and others

Accelerated Test

- The most powerful tool (and concept) in the reliability engineer's toolbox.
- Accelerated test increases one or more conditions (e.g., T, V, etc.) to reduce times to failure Life Test (years) → Accelerated Test (hours)
- Intention is to accelerate a mechanism without inducing new mechanisms

- An acceleration factor describes how much a particular stress accelerates degradation or failure.
- An acceleration factor is a <u>ratio of times</u>.
 - NOT fail fractions.
- The "times" are times to have the "same effect".
 - Example of "same effect": The same fraction fails by the same mechanism.

Acceleration Concept

• Distributions at both conditions must match (same slope) for acceleration concept to make sense

Acceleration Example

A temperature acceleration experiment showing the same distribution shape (slope) at each stress temp

Reliability

Moisture and Temperature Fails

• Result is predicted TTF distribution at use condition

Distributions of Times To Fail for Various Conditions

Accelerated Stress Testing

Special-purpose equipment accelerates various fail mechanisms

An LCBI burn-in system gives V and T stress to accelerate Si fail mechanisms

A HAST system gives pressure and humidity along with V and T to accelerate package fail mechanisms

Reliability

Life Test Accelerates Use

Reliability

Outline

- Reliability, Definitions, Bathtub Curve
- Reliability Measures, Goals
- Use Conditions
- Acceleration
 - Mechanisms
 - Constant Failure Rate
 - Infant Mortality Decreasing Failure Rate
 - Wearout Increasing Failure Rate

Mechanisms

- Constant failure rate.
 - Controlled by fault tolerant design.
 - Eg. Cosmic rays charge upset uncorrelated to age of device.
- Infant Mortality
 - Controlled by yield improvement and by burn in.
 - Decreasing failure rate makes burn in possible.
 - Caused by defects.
- Wearout
 - Controlled by design rules.
 - Increasing failure rate limits the life of the IC.
 - Electromigration
 - Oxide Wearout
 - Transistor Degradation

Constant Failure Rate: Soft Errors

- Circuit upset due to ionizing radiation.
 - Bits can flip, but no permanent damage.

Events are uncorrelated to device age!

- Caused by
 - Radioactivity in package materials (Pb, ceramics). Under control today.
 - Cosmic rays. Constant neutron flux triggers nuclear reactions in Si, B¹⁰.
- No permanent damage.
 - Mitigate by fault tolerant design.

- Fmax caused by a speed path delay fault
 - Chip fails when some calculation is not ready in time
- Delays caused by
 - Transistor switching (higher V speeds them up)
 - Signal propagation

Background: Fmax V and T Sensitivity

- Low temperature, high voltage maximizes Fmax.
- Momentary (millisecond) thermal and supply excursion while executing critical pattern \Rightarrow blue screen

Constant Failure Rate: Software

Mechanisms

- Constant failure rate.
 - Controlled by fault tolerant design.
 - Random failure uncorrelated to age of device.
 - Infant Mortality
 - Controlled by yield improvement and by burn in.
 - Decreasing failure rate makes burn in possible.
 - Caused by defects.
- Wearout
 - Controlled by design rules.
 - Increasing failure rate limits the life of the IC.
 - Electromigration
 - Oxide Wearout
 - Transistor Degradation

Defect Yield and Reliability

- Defects are inescapable.
 - The same kinds of defects that cause yield loss perceived by the manufacturer, cause "infant mortality" perceived by end users.
- Yield is measured at Sort initial wafer-level testing.
- Infant Mortality is measured by life-test, and controlled by burn in.
 - Life test is an extended burn in designed to acquire detailed reliability data.
 - Burn in is a stress preceding final test which activates latent reliability defects (LRDs) so that they may be screened out at final test (Class).
- Defect models of reliability describe only the left part of the bathtub curve; they don't describe wearout.

tbi = 0.01 h

Reliability

tbi = 2 h

Reliability

tbi = 4 h

Reliability

tbi = 8 h

Winter 2017

Reliability

tbi = 16 h

Winter 2017

Reliability

Killer vs Latent Reliability Defects

When defect is within δ of line, failure is not immediate but will occur within the specified life of the device. Winter 2017

- Circuit design determines
 - Pattern pitch and space.
 - Different functional blocks have different characteristic pitch/spaces.
- Fab process determines
 - Spatial density of defects, D (defects/cm2)
 - Variation of spatial defect density.
 - Size distribution of defects.
- Ckt design plus size dist'n segregates defects into "killer" and latent reliability defects (LRD).
 - OK, never a yield or reliability defect (1).
 - Sometimes a latent reliability defect (2), sometimes OK (3).
 - Sometimes a killer defect (4), sometimes a latent reliability defect (5), sometimes OK(6).
 - Always a killer defect (7).

Reliability

Killer vs Latent Reliability Defects

- Defects much smaller or larger than circuit geometry are not latent reliability defects (LRD).
- Some defects with size commensurate with circuit geometry are latent reliability defects.
- Typically $\sim 1\%$ of defects are latent reliability defects.

Killer vs Latent Reliability Defects

- Defects may be classified as "killer" defects which affect yield or LRD defects which affect reliability.
- Defects of either kind may be clustered. Described by defect density and defect density variance.
- Killer defects and LRDs are from the same source, so Yield and Reliability defect densities are proportional:

- Drel/Dyield \approx constant (typically \sim 1%).

 Dyield is MUCH easier to measure and monitor in manufacturing than Drel.

Portland State

51

So much for pretty models.. ..now for ugly reality..

Winter 2017

Reliability

Activated LRDs, Mainly Shorts

STI Particle

Salicide Encroachment

Salicide Stringer

Residual Ti

Tungsten Particle

Copper Extrusion

Reliability

Activated LRDs, Mainly Opens

Incomplete filled Via2

Isolated Via3 by Metal Voiding

Silicon Abnormality

Mechanisms

- Constant failure rate.
 - Controlled by fault tolerant design.
 - Eg. Cosmic rays charge upset uncorrelated to age of device.
- Infant Mortality
 - Controlled by yield improvement and by burn in.
 - Decreasing failure rate makes burn in possible.
 - Caused by defects.
 - Wearout
 - Controlled by design rules.
 - Increasing failure rate limits the life of the IC.
 - Electromigration (EM)
 - Oxide Wearout
 - Transistor Degradation

Electromigration Atomic Mechanism

- "Electron wind" from conduction current gradually pushes ions "down wind" into new positions in the lattice
- Good heat sinking of thin film metal permits current densities high enough (~10⁶ A/cm²) for the phenomenon to occur. Isolated wires would melt at this current density.

EM Causes Voids and Extrusions

- Electron wind pushes metal enough to cause voids on one end and extrusions on the other end
- Design rule which keeps J < $1-2 \times 10^5$ A/cm² (1-2 mA/µ) will protect from significant EM wearout damage.

Reliability

EM-Induced Voids and Extrusions

Example of a void

Example of extrusions

- Voids cause a rise in resistance
 - Dominant fail mode; reliable and easy to characterize
- Extrusions might cause shorts
 - Inconsistent and random

Test Structure to Characterize EM

Measuring Voids Electrically

- As voids form, resistance increases
- A threshold is chosen to define a fail

Electromigration Model

- Test structure data is used to calculate a max current (Imax) for which <0.1% fail at 7 yrs worst-case use
- This results in a design rule for I_{max} = J_{max}×Area (x-section), for all products using this technology.
 - Typical J_{max} < 1-2 \times 10⁵ A/cm² (1-2 mA/µ).

Reliability

Mechanisms

- Constant failure rate.
 - Controlled by fault tolerant design.
 - Eg. Cosmic rays charge upset uncorrelated to age of device.
- Infant Mortality
 - Controlled by yield improvement and by burn in.
 - Caused by defects.
- Wearout
 - Controlled by design rules.
 - Electromigration
 - Oxide Wearout
 - Transistor Degradation

Gate Oxide

- Gate oxide is thin and critical
- Thinner oxide allows less charge on the gate to control the channel, and less charge means faster switching

Transistor Scaling Trends

- Oxide thickness has leveled off around 20Å
 - Due to leakage and reliability
- Channel length continues to shrink

Oxide Degradation

- Oxide degrades with time as
 - Impurities diffuse into it
 - Bonds change

Oxide Degradation

• Electrons can tunnel ("hop") from defect to defect more easily than across the whole gate oxide layer

Oxide Breakdown

Thick oxide, more difficult to get percolation paths

• Oxide leakage will go up dramatically when a fully connected percolation path forms

Soft Breakdown

- The full percolation path makes a "soft" breakdown
 - Soft breakdown is considered a fail
- High current in the percolation path can change it to a "hard" breakdown

Mechanisms

- Constant failure rate.
 - Controlled by fault tolerant design.
 - Eg. Cosmic rays charge upset uncorrelated to age of device.
- Infant Mortality
 - Controlled by yield improvement and by burn in.
 - Caused by defects.
- Wearout
 - Controlled by design rules.
 - Electromigration
 - Oxide Wearout
 - Transistor Degradation

PMOS Bias Temperature Instability

- PMOS negative bias / temperature instability
 - PBT or NBTI
 - Primarily affects PMOS transistors
 - Degrades device performance
- Primarily manifests in slower switching leading to Fmax degradation

Fmax Wearout

- Low Tj, high Vcc maximizes Fmax (overclockers do this!)
- But high Vcc slowly degrades Fmax, lowering the surface.
- When Fmax < operating frequency \Rightarrow blue screen

Reliability

Fmax Degrades Over Time

- Fmax decreases by 0 to ~5% over the life of a part
- Roughly follows a power law

Instructor Biography

- C. Glenn Shirley
 - MSc in Physics (University of Melbourne, Australia)
 - PhD in Physics (Arizona State University)
 - 3 years post-doc at Carnegie-Mellon (Pittsburgh, PA)
 - 1 year at US Steel
 - 7 years at Motorola
 - 23 at Intel mostly in TD Q&R, retired in 2007.
 - » Package reliability, silicon reliability, Test Q&R
 - Joined PSU ECE in the IC Design and Test Lab in 2008 as a Research Prof.
- Contact information
 - cshirley@pdx.edu

