
Statistics with Excel Examples 



Questions 

• What is a probability density function (pdf)? 

• What is a cumulative density function (cdf)? 

• What is an inverse cdf? 

• Examples of distributions: 

 Uniform, Normal, Beta, Gamma, ChiSquare 

• Random Numbers 

 What is a uniform distribution? 

 The Excel worksheet function rand() 

• Synthesis of distributions. 

• What is an “Order Statistic”? 

 Role of Beta distribution. 

 Synthesis of order statistic distributions. 
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Synthesis of Distributions 

• Consider a cdf, F. 

 Probability as a function of some distributed variable. 

 Examples of F: BETADIST, GAMMADIST,.. 

• We want a collection of x’s, x1, x2, x3,…xi,… distributed 

according to F. 

• How to do it? 

 Generate a random number from the uniform distribution on 

[0,1] and plug into the inverse cdf. 

 Examples 

 

January 31, 2012 Statistics with Excel Examples, G. Shirley 3 

( )P F x

 1

i ix F U

x=BETAINV(rand(),Alpha,Beta) 

x=NORMSINV(rand()) Distributed normally, with mean 0, and sd = 1. 



Order Statistics 

• Sample n numbers from a distribution, F. 

• Pick the kth smallest 

 k=1 is the smallest. 

 k=n is the largest. 

• Do this many times. 

• How is the k:n distributed? 

 It is the k:n (“k of n”) order statistic of F. 

 The 1:1 order statistic is F itself. 
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Synthesis of Order Statistics 

• Mental furniture (just know it): 

 The k:n order statistic of the uniform distribution is the Beta 

distribution with Alpha = k, Beta = n+k-1. 

• To generate numbers distributed according to the k:n 

order statistic of the uniform distribution: 

 

 

 

• And for any distribution, generate its k:n order statistic by 

plugging Uk:n into the “probability” argument of its inverse 

cdf, for example: 
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x  = BETAINV(rand(), k, n+1-k) 

Alpha Beta U1:1 Uk:n 

xk:n=NORMSINV(Uk:n) Isn’t that nice! 



Normal Distribution 

• To synthesize instances distributed according to a dist’n, 

plug uniformly dist’d random numbers into the probability 

argument of the inverse cdf of the dist’n. 

• Synthesis of normally distributed data 

 Mean = m, Variance = V  (standard error = V) 
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Probability is called the "Probit"

NORMSINV rand()

x m V z z  

x m V u

x m V





    

  

  

Uniformly distributed 

Normally distributed with mean, m, and standard deviation V. 

Inverse of standard normal dist’n.  Mean = 0, variance = 1. 



Synthesis of a Multi-Normal Dist’n 

• For each sample, instead of generating one random 

number, generate one vector of random numbers. 

• And make the numbers in each vector correlated. 

• To do this, generalize 

 

to 
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x m V z  

x m R z  

1 11 12 131 1

2 21 22 232 2

3 31 32 333 3

.. ..

.. .... ..

.. .... ..

i i

i i

i i

m R R Rx z

m R R Rx z

m R R Rx z
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            

Vector of independently sampled Probits.  Instances are i = 1, 2, 3, .. 

Matrix which is the “root” of the covariance matrix. 

Vector of means. 

Desired sample vector i. 

Square root of variance! 



Covariance Matrix, and Its Root 

• The two dimensional covariance matrix is... 

 

 

 

• Since V is real-symmetric and +ve definite, V can be 

factorized such that 

• So, since.. 

 

 

• ..we have 

January 31, 2012 Statistics with Excel Examples, G. Shirley 8 

2

1 1 2

2

1 2 2

V
   

   

 
  
 

22 2

1 1 1

22 2

2 2 2

1 2 1 2 1 2

x x

x x

x x x x





  

 

 

 

V R R
Transpose of R. 

1 1 21 1 1 1

2 2 2 2
2 2 2 2 2 2 2

1 0 1 00 0 0 01

0 0 0 01 1 0 1 1 0 1
V

       

            

               
                 

                         













2

22

1

1

0




R
 The upper (or lower) triangular 

root is the “Cholesky root”. 



Covariance Matrix, and Its Root 

• Other roots differing from the Cholesky root by a rotation 

work too.. 

 

 

 

 

 

 

• So 
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2-D Example 

• What happens when  = 1,  = -1,  = 0? 

 

 

 

 

 

 

 

 

 

• U1 and U2 are independently sampled from the uniform 

distribution on [0,1]. 
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Gaussian Copula 

• Set m1 = m2 = 0, 1 = 2 = 1 

 

 

 

 

 

• x1 and x2 are normally distributed with mean = 0, var = 1 

 

 

• c1 and c2 are uniform on [0,1], so simulate any marginal 

distn’s 
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A, B are arbitrary cdfs. 

inverse! 



Gaussian Copula 

• Infamously implicated in financial disaster: 

April 20, 2011 Miscorrelation in Manufacturing Test 12 

Recipe for Disaster: 

The Formula that Killed Wall Street. 

Wired Mag. February 2009 

http://www.wired.com/techbiz/it/magazine/17-03/wp_quant/


Extension to N Dimensions 

• Gaussian copulas are easily extended to N dimensions. 

 

 

 

 

• If all marginal distributions have m = 0 and  = 1, then 

 

 

 

• Calculation of the Cholesky root of V. 

 Analytically messy for N > 2. 

 But algorithms are easily available. 
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ij = ji is the correlation coefficient 

between variables i and j. 

http://rosettacode.org/wiki/Cholesky_decomposition

