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Plastic-Encapsulated Microcircuits 

• Molding compound (MC) in PEMs comes in direct 
contact with the die and chip connections. 
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Plastic-Encapsulated Microcircuits 

• Die is mounted on a lead frame (A42 or Cu). 

• Bonds are made by. 

– Wirebond: Au, moving to Cu in early 2000’s. 

– TAB: Tape-Automated Bonding. 

– C4: Controlled Collapse Chip Connect. 

• Assembly is encapsulated in molding compound. 

– Molding compound is in direct contact with die, wire 
bonds, etc. 

• External leads are trimmed and solder plated. 
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Alloy 42  
Fe 58% Ni 42% alloy 
with CTE matching Si. 

https://nepp.nasa.gov/files/26611/2015-370-Rutkowski-Final-Paper-NEPPweb-Copper-Wire-Bonds-TN26444.pdf
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Molding Compounds 

• MC is thermoset (curing) epoxy, typically novolac. 

– Cures at ~ 170-180C. 

– Silica “filler” controls CTE and increases thermal 
conductivity. 

– MCs are (now) free of ionic contaminants. 

• Glass Transition ~ 140C. 

• Moisture properties of MC: 

– Permeable to moisture. 

– Absorbs moisture.  “Hygroscopic.” 
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Note distinction between thermoset and thermoplastic. 



© C. Glenn Shirley 

Molding Compound Properties  

• At the glass transition (> 140 C).. 
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MC strength decreases CTE increases 

L. T. Manzione “Plastic Packaging of Microelectronic Devices,” Van Nostrand Reinhold 1990. 
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Molding Compound Properties, ct’d 

• Molding compound strongly absorbs water. 

– Saturation uptake is proportional to RH, and independent 
of temperature. 

– Rate of uptake depends strongly on temperature. 
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L. T. Manzione “Plastic Packaging of Microelectronic 
Devices,” Van Nostrand Reinhold 1990. 
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Material Thermal Coeffic’t 

of Expansion 

(ppm/°C) 

Young's 

Modulus 

(GPa) 

Thermal 

Conductivity 

(W/m °C) 

Copper 

Alloy 42 

Silicon 

Molding Compound 

Alumina 

17 

5 

3 

21 

6.5 

119 

145 

131 

18 

25 

15 

157 

0.6 

25 

398 

PC Board 15-17 11 25 

Key Material Properties 

• Material properties which drive temperature cycling-
induced failure mechanisms. 
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Match! Low! 

“TCE” 



© C. Glenn Shirley 

Outline 

• Plastic Package Technology 

• Stress and Test Flows 

• Mechanisms 
– Moisture-mechanical 

– Moisture 

– Thermal 

– Thermo-mechanical 

December 3, 2015 Plastic Package Reliability 9 



© C. Glenn Shirley 

Life of an Integrated Circuit 
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End-user  Environment Assembly Shipping Storage 
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Source: Eric Monroe, 2003 
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Slide by Scott C. Johnson. 

http://www.dell.com/us/en/biz/products/model_dimen_dimen_2200.htm
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Stress/Test Flow 
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Simulate shipping, storing, and 
OEM board mounting process. 

Simulate in-service end use 
conditions. 

Determine pass/fail.  Diagnose 
failures. 

From: JEP150 “Stress-Test-Driven Qualification of and 
Failure Mechanisms Associated with Assembled Solid 
State Surface-Mount Components” (JEDEC) 

Preconditioning 

Environmental Stress 

Electrical Test, Failure 
Analysis 
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Industry Reliability Standards 

• International 

– ISO International Standard Organization 

– IEC International Electrotechnical Commission 

• Europe 

– CEN, CENELEC Comite Européen de Normalisation 
Électrotechnique 

• Japan 

– JIS Japanese Industrial Standard, EIAJ 

• US 

– MIL (US Department of Defense), EIA/JEDEC 

December 3, 2015 Plastic Package Reliability 12 

For US commercial products JEDEC standards have mostly superseded MIL standards. 
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Preconditioning 

• Preconditioning simulates board assembly. 

• Specified by 

– JESD22-A113F Preconditioning of Nonhermetic Surface 
Mount Devices Prior to Reliability Testing. 

– IPC/JEDEC J-STD-020D.01 Moisture/Reflow Sensitivity 
Classification for Nonhermetic Solid State Surface Mount 
Devices 
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Free downloads, registration required. 

http://www.jedec.org/ 

Preconditioning

Environmental Stress

Electrical Test, Failure 
Analysis

http://www.jedec.org/
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Preconditioning Flow 
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JESD22-A113F IPC/JEDEC J-STD-020D.01  

Preconditioning

Environmental Stress

Electrical Test, Failure 
Analysis

Slide 50 
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Environmental Test 

• Stress-based testing (traditional). 

– Standards: JESD47, MIL-STD-883. 

– Pro: 
• Well-established standards.  Lots of historical data. Good for 

comparisons. 

• Little information about mechanism or use is required. 

– Con: 
• Overstress: May foreclose a technology. 

• Understress:  Misses a mechanism. 

– May not accurately reflect a use environment. 

• Knowledge-based testing. 

– Risk assessment of Use and Mechanism guides test. 
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Preconditioning

Environmental Stress

Electrical Test, Failure 
Analysis

To keep things simple, we’ll 
follow this approach. 
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JESD47 Example 
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Preconditioning

Environmental Stress

Electrical Test, Failure 
Analysis

Note: TS (JESD22-A106) and AC (Steam) (JESD22-A102) 
are not recommended.  Very different from use. 
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Knowledge-Based Test 

• Knowledge-Based Testing 
– Stress depends on knowledge of 

 use conditions and mechanisms. 

– Risk assessment, using methods 
• JEDEC: JESD94, JEP143, JEP148 

• Sematech: “Understanding and Developing Knowledge-based 
Qualifications of Silicon Devices”  #04024492A-TR 

– Pro: 
• Stresses fit the product and its use.  May make a product feasible. 

– Con: 
• Easy to miss mechanisms in new technologies and overlook use 

conditions in new applications. 

• Tempting to misapply to “uprate” devices, relax requirements. 
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Mechanism Use Condition 

Risk Assessment 

Stresses 

Preconditioning

Environmental Stress

Electrical Test, Failure 
Analysis

http://sematech.org/docubase/document/4492atr.pdf
http://sematech.org/docubase/document/4492atr.pdf
http://sematech.org/docubase/document/4492atr.pdf
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Focus of this talk. 

Example Stress Flow 
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ELFR 

HTOL THB or HAST HTSL (Bake) TC 

PC 

1000 hrs 
JESD22-A103 

1000 hrs (85/85) 
JESD22-A101 
96 hrs (130/85) 
JESD22-A110 

700 cycles 
3 cycles/hr 
233 hrs 
JESD22-A104 

Condition B or G 
(C is too severe) 

Early life failure rate. 
168 hrs 
JESD22-A108 

High temperature 
operating life. 
168 -1000 hrs 
JESD22-A108 

Preconditioning. 
JESD22-A113 

3 x 77 3 x 25 3 x 25 3 x 25 

Assumptions 
168 h is equivalent to early life requirement 
SS computed from goal.  eg. 3x611 = 1833 

(Lots x Units) 
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Popcorn Mechanism 
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ELFR 

HTOL THB or HAST HTSL (Bake) TC 

PC 

1000 hrs 
JESD22-A103 

1000 hrs (85/85) 
JESD22-A101 
96 hrs (130/85) 
JESD22-A110 

700 cycles 
3 cycles/hr 
233 hrs 
JESD22-A104 

Condition B or G 
(C is too severe) 

Early life failure rate. 
168 hrs 
JESD22-A108 

High temperature 
operating life. 
168 -1000 hrs 
JESD22-A108 

Preconditioning. 
JESD22-A113 
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Popcorn Mechanism 
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Moisture Absorbtion

Moisture Vaporization 

a t

Delamination Void
Pressure in Void = P

Plastic Stress Fracture

Collapsed Voids

Bond Damage

During Storage

During Solder

Pressure Dome

Package Crack

Plastic package cracking due to “popcorn” effect during solder reflow 
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Popcorn Damage 
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Plastic package cracking due to “popcorn” effect during solder reflow 
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A7 A9 

A8 

Pulse-echo acoustic image through 
back of 68PLCC that developed popcorn 

cracks during solder reflow 

Acoustic B-scan 

SEM of cross section 

B-Scan 
line 

Source: T.M.Moore, R.G. McKenna and S.J. Kelsall, 
in “Characterization of Integrated Circuit Packaging  
Materials”, Butterworth-Heinemann, 79-96, 1993. 

Popcorn Damage 
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Acoustic time-of-flight 
image indicating 

package crack 

Real-time x-ray image showing 
deformation in wires where 

they intersect the crack 

Source: T.M.Moore, R.G. McKenna and S.J. Kelsall, 
in “Characterization of Integrated Circuit Packaging  
Materials”, Butterwoth-Heinemann, 79-96, 1993. 

132 lead PQFP which was damaged 
during solder reflow. 

Pulse-echo acoustic 
image through top 

(delamination in black) 

Popcorn Damage 

December 3, 2015 Plastic Package Reliability 24 



© C. Glenn Shirley 

Factors Affecting Popcorning 

• Molding compound moisture content 

– Temperature/humidity/time exposure before solder. 

• Package geometry 

– Dimensions of die paddle. 

– Thickness of molding compound under paddle. 

• Peak temperature reached during soldering. 

• Adhesion of molding compound to die and/or lead 
frame. 
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Not on this list: Pre-existing voids in the plastic package. 
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H2O Diffusion/Absorption in MC 
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Diffusion Coefficient: 

Henry’s Law: 

Saturation Coefficient: 
Source: Kitano, et al  
IRPS 1988 
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Clausius-Clapeyron (approximate): 

http://web.cecs.pdx.edu/~cgshirl/Documents/Supplementary Papers/1998 Kitano et al IRPS.pdf
http://web.cecs.pdx.edu/~cgshirl/Documents/Supplementary Papers/1998 Kitano et al IRPS.pdf
http://web.cecs.pdx.edu/~cgshirl/Documents/Supplementary Papers/1998 Kitano et al IRPS.pdf
http://web.cecs.pdx.edu/~cgshirl/Documents/Supplementary Papers/1998 Kitano et al IRPS.pdf
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H2O Diffusion/Absorption in MC 
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A

L

Zero flux or "die" surface

ACTUAL

MODEL

2L

Surface exposed to ambient.

Surface exposed to ambient.

Plastic Molding Compound (MC) 
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H2O Diffusion/Absorption in MC 
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0.8481
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Time to 90% Saturation After Humidity Step 
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T (deg C) 
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Popcorn Model 

• A crack propagates to the surface when maximum 
bending stress max exceeds a fracture stress 
characteristic of the molding compound 
 
 

• crit depends on MC formulation, and on 
temperature (see next slide). 
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Source: I. Fukuzawa, et. al.  “Moisture Resistance Degradation of Plastic LSIs by 
Reflow Solder Process,”  IRPS, 1988 

)( reflowcritmax T 

http://web.cecs.pdx.edu/~cgshirl/Documents/Supplementary Papers/1985 Fukuzawa Moisture Resistance of Plastic LSIs by Reflow Soldering IRPS 04208624.pdf
http://web.cecs.pdx.edu/~cgshirl/Documents/Supplementary Papers/1985 Fukuzawa Moisture Resistance of Plastic LSIs by Reflow Soldering IRPS 04208624.pdf
http://web.cecs.pdx.edu/~cgshirl/Documents/Supplementary Papers/1985 Fukuzawa Moisture Resistance of Plastic LSIs by Reflow Soldering IRPS 04208624.pdf
http://web.cecs.pdx.edu/~cgshirl/Documents/Supplementary Papers/1985 Fukuzawa Moisture Resistance of Plastic LSIs by Reflow Soldering IRPS 04208624.pdf
http://web.cecs.pdx.edu/~cgshirl/Documents/Supplementary Papers/1985 Fukuzawa Moisture Resistance of Plastic LSIs by Reflow Soldering IRPS 04208624.pdf
http://web.cecs.pdx.edu/~cgshirl/Documents/Supplementary Papers/1985 Fukuzawa Moisture Resistance of Plastic LSIs by Reflow Soldering IRPS 04208624.pdf
http://web.cecs.pdx.edu/~cgshirl/Documents/Supplementary Papers/1985 Fukuzawa Moisture Resistance of Plastic LSIs by Reflow Soldering IRPS 04208624.pdf
http://web.cecs.pdx.edu/~cgshirl/Documents/Supplementary Papers/1985 Fukuzawa Moisture Resistance of Plastic LSIs by Reflow Soldering IRPS 04208624.pdf
http://web.cecs.pdx.edu/~cgshirl/Documents/Supplementary Papers/1985 Fukuzawa Moisture Resistance of Plastic LSIs by Reflow Soldering IRPS 04208624.pdf
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Popcorn Model, crit 
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0

20

40
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100

Temperature (deg C)

Molding Compound
Strength (MPa)

crit  is proportional to molding compound strength.  

Source: Kitano, et al.  
IRPS, 1988 

http://web.cecs.pdx.edu/~cgshirl/Documents/Supplementary Papers/1998 Kitano et al IRPS.pdf
http://web.cecs.pdx.edu/~cgshirl/Documents/Supplementary Papers/1998 Kitano et al IRPS.pdf
http://web.cecs.pdx.edu/~cgshirl/Documents/Supplementary Papers/1998 Kitano et al IRPS.pdf
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Popcorn Model, max 

• Maximum bending stress occurs at center of long 
edge of die and is given by: 
 
 
 
– a is the length of the die edge. 

– t is the thickness of the molding compound over the die. 

– K is a geometrical factor (K = 0.05 for square pad). 

– P is the internal pressure.  Depends on 

• Moisture content of molding compound.  

– Depends in turn on RH and T of previous soak ambient. 

• Peak temperature during reflow. 
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Popcorn Model, Internal Pressure 
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H2O Conc.
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seconds

x/w

Popcorn Model, Internal Pressure 
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Moisture conc. in MC 
>> 

Moisture conc. in cavity. 

T_0 25 C

H_0 85 % RH

T_1 215 C

W_ 0.2 cm

L_ 0.01 cm

Inputs

 (~ 30x) 

C. G. Shirley, "Popcorn Cavity 
Pressure," IEEE Transactions on 
Device and Materials Reliability, 
Vol. 14, No. 1, pp. 426-431, March 
2014 

http://web.cecs.pdx.edu/~cgshirl/Glenns Publications/2013 Shirley Popcorn Cavity Pressure 06601676.pdf
http://web.cecs.pdx.edu/~cgshirl/Glenns Publications/2013 Shirley Popcorn Cavity Pressure 06601676.pdf
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Example: 

• Unit preconditioned in 85/85 for a long time, 
then subjected to 215 C solder shock. 

• Saturation coefficient has activation energy of 
0.4 eV.  (eg. Kitano et. al.) 

• Steam table pressure at 85 C is 0.57 atm. 
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Popcorn Model, Internal Pressure 
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Wow!! 

Delamination pressure exists even with no physical void. 
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Example Stress Flow 
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ELFR 

HTOL THB or HAST HTSL (Bake) TC 

PC 

1000 hrs 
JESD22-A103 

1000 hrs (85/85) 
JESD22-A101 
96 hrs (130/85) 
JESD22-A110 

700 cycles 
3 cycles/hr 
233 hrs 
JESD22-A104 

Condition B or G 
(C is too severe) 

Early life failure rate. 
168 hrs 
JESD22-A108 

High temperature 
operating life. 
168 -1000 hrs 
JESD22-A108 

Preconditioning. 
JESD22-A113 
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HAST System 

• Large vessel (24” dia) requires forced convection. 
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C. G. Shirley, “A New Generation HAST System”, Non-proprietary Report to Intel, Despatch Industries, and Micro-
Instrument Corp. describing learnings during development of NG HAST.  December, 1994. 

http://web.cecs.pdx.edu/~cgshirl/Glenns Publications/36 1994 New Generation HAST System Final Report.pdf
http://web.cecs.pdx.edu/~cgshirl/Glenns Publications/36 1994 New Generation HAST System Final Report.pdf
http://web.cecs.pdx.edu/~cgshirl/Glenns Publications/36 1994 New Generation HAST System Final Report.pdf
http://web.cecs.pdx.edu/~cgshirl/Glenns Publications/36 1994 New Generation HAST System Final Report.pdf
http://web.cecs.pdx.edu/~cgshirl/Glenns Publications/36 1994 New Generation HAST System Final Report.pdf
http://web.cecs.pdx.edu/~cgshirl/Glenns Publications/36 1994 New Generation HAST System Final Report.pdf
http://web.cecs.pdx.edu/~cgshirl/Glenns Publications/36 1994 New Generation HAST System Final Report.pdf
http://web.cecs.pdx.edu/~cgshirl/Glenns Publications/36 1994 New Generation HAST System Final Report.pdf
http://web.cecs.pdx.edu/~cgshirl/Glenns Publications/36 1994 New Generation HAST System Final Report.pdf
http://web.cecs.pdx.edu/~cgshirl/Glenns Publications/36 1994 New Generation HAST System Final Report.pdf


© C. Glenn Shirley 

HAST System 
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HAST System 
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HAST Ramp Up Requirements 

• Ramp Up: Avoid condensation on load. 
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HAST Ramp-Down Requirements 

• Mechanical pressure relief must be slow (3 h). 

• Vent when pressure reaches 1 atm. 

• Hold RH at test value. 

– Units must retain moisture acquired during test. 
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~ 3.5 atm 

1 atm 
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Peck’s Acceleration Model 

• Fundamental environmental parameters are T, H and 
V, at the site of the failure mechanism. 

– If the die is the site, this is denoted by “j”. 

• A frequently used acceleration model is due to Peck 
 
 

• Find a, b, m, Q from experiments with steady-state 
stress and negligible power dissipation. 

• Typically a is small or zero: Bias is required. 

• Requires H > 0 for acceleration: Moisture is required. 
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( ) exp( / )m

j jAF a b V H Q kT     
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Leadframe 

Power Plane Ground Plane 

Moisture: MM Tape Leakage 
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0 10 20 30 40

50

200

400
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1000
MM Leakage vs 156/85 Biased HAST Time

Biased HAST Stress Time (HR)

Leakage
mA

1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

1/MTTF

Bias (Volts)

156/85 HAST of MM Tape Candidates

(hrs)

"A"

"B"

Acceleration factor is proportional to bias. Tape m Q eV 

“A” >12 0.74 

“B” 5 0.77 

Source: C. Hong, Intel, 1991 

Experimental Tape Data: 

AF

V H Q kTm



  Constant exp( / )

Moisture: MM Tape Leakage 
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- 

+ 

- 

Copper dendrites after 40 hours of biased 156/85 HAST 

Moisture: Internal Metal Migration 

• TAB Inter-lead Leakage/Shorts 

– Accelerated by voltage, temperature and humidity 

– Seen as early as 20 hrs 156/85 HAST 

– Highly dependent on materials & process 
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Lead-Stabilizing Tape Leakage 

• A vendor process excursion. 

• Leakage observed after 336 hours of steam. 

• Re-activated by 48 hours at 70C/100% RH 

• No leakage seen between leads not crossed by tape 

• Rapid decay for leads crossing end of tape 

– Tape dries from exterior inwards 
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Die Lead Stabilizing Tape

Tape provides mechanical stability 
to long leads during wirebond. 
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Lead-Stabilizing Tape Leakage 
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Source: S. Maston, Intel 
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Moisture
Moisture

Fe++

Ni++
Lead Corrosion

Microgap
Cl-

Shortest path has highest 

failure rate. 

Source m Q (eV) 

Peck (a) 2.66 0.79 

Hallberg&Peck (b) 3.0 0.9 

 

(a) IRPS, 1986;   (b) IRPS, 1991. 

 

Source:  P.R. Engel, T. Corbett, and W. Baerg,  “A 

New Failure Mechanism of Bond Pad Corrosion in 

Plastic-Encapsulated IC’s Under Temperature, 

Humidity and Bias Stress”  Proc. 33rd Electronic 

Components Conference, 1983. 

AF

V H Q kTm



  Constant exp( / )

1

Pins

Aluminum Bond Pad Corrosion 
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http://web.cecs.pdx.edu/~cgshirl/Documents/Supplementary Papers/1986 Peck Comprehensive Model for Humidity Testing Correlation IRPS 04208640.pdf
http://web.cecs.pdx.edu/~cgshirl/Documents/Supplementary Papers/1991 Hallberg Peck Recent Humidity Accelerations Quality and Reliability Intl Ref7QRE91.pdf
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Passivation in Plastic Packages 

• Passivation is the final layer on the die. 

• Passivation has two main functions: 

– Moisture Barrier 
• Molding compound is not a moisture barrier. 

• Silicon oxides are not good moisture barriers. 

• PECVD silicon nitride or silicon oxynitride film is a good barrier. 

• Film must be thick enough to avoid pinholes, coverage defects. 

– Mechanical Protection 
• Silicon nitride films are brittle. 

• Polyimide compliant film protects silicon nitride. 

• Polyimide can react with moisture (depending on formulation). 
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Polyimide/Au Bond Failure 

• Bonds overlapping passivation don’t necessarily 
violate design rules. 

• But can activate polyimide-related “purple plague” 
failure mechanisms in combination with moisture. 

• Acceleration modeling showed no field jeopardy. 
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PECVD Oxynitride/Nitride Metal Bond Pad

Other films

Silicon

Polyimide
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Effect of  80 hours of 156/85 HAST vs 156/0 Bake 

and Centered vs Off-Centered Bonds  on Wire Pull Test Data 

Source: G. Shirley and M. Shell, IRPS, 1993 

Moisture-Related Gold Bond Degrad’n 
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(all with polyimide) 
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Moisture-Related Gold Bond Degrad’n 
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Moisture-Related Purple Plague 
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Cross-section of gold ball bond on aluminum pad 
after 80 hours at 156C/85%RH 
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10 

Circuit Failure Due to Passiv’n Defects 
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Site of failing bit.  SRAM after HAST stress. 
Courtesy M. Shew, Intel 
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Etch-decorated cross-section of passivation.  Note growth seams. 

2  

2  

Circuit Failure Due to Passiv’n Defects 
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Vthreshold

Row

Column

Vthreshold

Column

Row

Source: C. Hong, Intel 

SRAM VOLTAGE THRESHOLD MAP FOR CELL PULLUP TRANSISTOR 

(Baseline threshold is 0.89 V.  Passivation is 0.6  nitride, no polyimide.) 

After 120 h 156/85.  4 

failed bits with Vt > 2.5 V 

2 bits recover after further 2 hr 

bake at 150 C 

Circuit Failure Due to Passiv’n Defects 
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SRAM HAST and 85/85 Bit Failures (No Polyimide) 

Acceleration Model Fit of HAST Data 

December 3, 2015 Plastic Package Reliability 59 

Notes: 
• “Standby” = 5.5V bias, low power 
• “Active” = 5.5V bias, high power 
• 156/85: non-standard, limit of 

pressure vessel. 
• Source: C. G. Shirley, C. Hong.  Intel 
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Peck Model Parameters 
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2. S. J. Huber, J. T. McCullen, C. G. Shirley.  ECTC Package Rel. Course, May 1993.  Package tape leakage 
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Mechanism Q(eV) m Q/m

Q/m <

0.42eV?

Hours of 

130/85  

1kh 85/85 Reference

MM Tape A 0.74 12 0.06 Yes 69 2

MM Tape B 0.77 5 0.15 Yes 62 2

Single Bit SRAM 0.79 4.6 0.17 Yes 57 3

Corrosion, THB (early Peck) 0.79 2.66 0.30 Yes 57 4

Corrosion, THB (later Peck) 0.90 3 0.30 Yes 39 5

Bond Shear 1.15 0.98 1.17 No 16 6

Yes/No: Increasing power dissipation at die, slows/accelerates the moisture mechanism. 

http://web.cecs.pdx.edu/~cgshirl/Documents/Supplementary Papers/1998 Kitano et al IRPS.pdf
http://web.cecs.pdx.edu/~cgshirl/Documents/Supplementary Papers/1998 Kitano et al IRPS.pdf
http://web.cecs.pdx.edu/~cgshirl/Documents/Supplementary Papers/1998 Kitano et al IRPS.pdf
http://web.cecs.pdx.edu/~cgshirl/Documents/Supplementary Papers/1998 Kitano et al IRPS.pdf
http://web.cecs.pdx.edu/~cgshirl/Glenns Publications/21 1991 Optimal Acceleration of Cyclic THB Shirley Hong IRPS p12 (1991).pdf
http://web.cecs.pdx.edu/~cgshirl/Glenns Publications/21 1991 Optimal Acceleration of Cyclic THB Shirley Hong IRPS p12 (1991).pdf
http://web.cecs.pdx.edu/~cgshirl/Glenns Publications/21 1991 Optimal Acceleration of Cyclic THB Shirley Hong IRPS p12 (1991).pdf
http://web.cecs.pdx.edu/~cgshirl/Glenns Publications/21 1991 Optimal Acceleration of Cyclic THB Shirley Hong IRPS p12 (1991).pdf
http://web.cecs.pdx.edu/~cgshirl/Glenns Publications/21 1991 Optimal Acceleration of Cyclic THB Shirley Hong IRPS p12 (1991).pdf
http://web.cecs.pdx.edu/~cgshirl/Glenns Publications/21 1991 Optimal Acceleration of Cyclic THB Shirley Hong IRPS p12 (1991).pdf
http://web.cecs.pdx.edu/~cgshirl/Glenns Publications/21 1991 Optimal Acceleration of Cyclic THB Shirley Hong IRPS p12 (1991).pdf
http://web.cecs.pdx.edu/~cgshirl/Glenns Publications/21 1991 Optimal Acceleration of Cyclic THB Shirley Hong IRPS p12 (1991).pdf
http://web.cecs.pdx.edu/~cgshirl/Glenns Publications/21 1991 Optimal Acceleration of Cyclic THB Shirley Hong IRPS p12 (1991).pdf
http://web.cecs.pdx.edu/~cgshirl/Documents/Supplementary Papers/1986 Peck Comprehensive Model for Humidity Testing Correlation IRPS 04208640.pdf
http://web.cecs.pdx.edu/~cgshirl/Documents/Supplementary Papers/1986 Peck Comprehensive Model for Humidity Testing Correlation IRPS 04208640.pdf
http://web.cecs.pdx.edu/~cgshirl/Documents/Supplementary Papers/1986 Peck Comprehensive Model for Humidity Testing Correlation IRPS 04208640.pdf
http://web.cecs.pdx.edu/~cgshirl/Documents/Supplementary Papers/1986 Peck Comprehensive Model for Humidity Testing Correlation IRPS 04208640.pdf
http://web.cecs.pdx.edu/~cgshirl/Documents/Supplementary Papers/1991 Hallberg Peck Recent Humidity Accelerations Quality and Reliability Intl Ref7QRE91.pdf
http://web.cecs.pdx.edu/~cgshirl/Documents/Supplementary Papers/1991 Hallberg Peck Recent Humidity Accelerations Quality and Reliability Intl Ref7QRE91.pdf
http://web.cecs.pdx.edu/~cgshirl/Documents/Supplementary Papers/1991 Hallberg Peck Recent Humidity Accelerations Quality and Reliability Intl Ref7QRE91.pdf
http://web.cecs.pdx.edu/~cgshirl/Documents/Supplementary Papers/1991 Hallberg Peck Recent Humidity Accelerations Quality and Reliability Intl Ref7QRE91.pdf
http://web.cecs.pdx.edu/~cgshirl/Documents/Supplementary Papers/1991 Hallberg Peck Recent Humidity Accelerations Quality and Reliability Intl Ref7QRE91.pdf
http://web.cecs.pdx.edu/~cgshirl/Documents/Supplementary Papers/1991 Hallberg Peck Recent Humidity Accelerations Quality and Reliability Intl Ref7QRE91.pdf
http://web.cecs.pdx.edu/~cgshirl/Glenns Publications/22 1993 IRPS93 Polyimide Moisture Rel.pdf
http://web.cecs.pdx.edu/~cgshirl/Glenns Publications/22 1993 IRPS93 Polyimide Moisture Rel.pdf
http://web.cecs.pdx.edu/~cgshirl/Glenns Publications/22 1993 IRPS93 Polyimide Moisture Rel.pdf
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HAST versus 85/85, ct’d 

• For all mechanisms surveyed, 1000 hours of 85/85 is 
equivalent to < 96 hr of 85/85. 

• For packages < 10 mils covering die, moisture 
saturation occurs within 10 h at 130/85. 

• For Tj-Ta > 10C, most mechanisms (with Q/m < 0.42 
eV) can be more accelerated with cyclical bias. 

• 85/85 
– JESD22-A101 

 

• HAST 
– JESD22-A110 
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Outline 

• Plastic Package Technology 

• Stress and Test Flows 

• Mechanisms 
– Moisture-mechanical 

– Moisture 

– Thermal 

– Thermo-mechanical 
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Focus Topic: Acceleration 

• Acceleration between two stresses is the ratio of 
times (or cycles) to achieve the same effect. 

• The “same effect” could be the same fraction failing. 

– eg. The ratio of median (not mean!) times to failure in 
different stresses is the Acceleration Factor (AF). 

• AF is proportional to 1/MTTF 
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Thermal Mechanisms 
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ELFR 

HTOL THB or HAST HTSL (Bake) TC 

PC 

1000 hrs 
JESD22-A103 

1000 hrs (85/85) 
JESD22-A101 
96 hrs (130/85) 
JESD22-A110 

700 cycles 
3 cycles/hr 
233 hrs 
JESD22-A104 

Condition B or G 
(C is too severe) 

Early life failure rate. 
168 hrs 
JESD22-A108 

High temperature 
operating life. 
168 -1000 hrs 
JESD22-A108 

Preconditioning. 
JESD22-A113 
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Gold-Aluminum Bond Failure 

• Gold and Aluminum interdiffuse. 

– Intermetallic phases such as AuAl2 (“Purple Plague”) form. 

– Imbalance in atomic flux causes Kirkendall voiding. 

– Bromine flame retardant is a catalyst. 

• Kirkendall voids lead to 

– Bond weakening - detected by wire pull test. 

– Resistance changes in bond - detected by Kelvin 
measurement of bond resistance. 
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Thermal (Ordinary) Purple Plague 

Cross-section of gold ball bond on aluminum pad 
after 200 hours at 160C 
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Wire Bond Pull Test 
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Gold-Aluminum Bond Failure 
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Thermal Degradation of Lead Finish 

• Only an issue for copper lead frames (not Alloy 42). 

• Cu3Sn or Cu6Sn5 inter-metallic phases grow at the 
interface between solder or tin plating. 

• Activation energy (Q) for inter-metallic phase growth 
is 0.74 eV. 

• If inter-metallic phase grows to surface of solder or 
tin plate, solder wetting will not occur. 

• Main effect is to limit the number of dry-out bakes of 
surface mount plastic components. 
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Thermal Degradation of Lead Finish 

Solder Solder 

Cu6Sn5 intermetallic 

Copper Copper 

Lead 

Post-plating solder plate Post burn-in solder plate showing 
copper-tin intermetallic 
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Thermal Degradation of Lead Finish 

X-section of solder-plated lead X-section of solder-coated lead 
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Outline 

• Plastic Package Technology 

• Stress and Test Flows 

• Mechanisms 
– Moisture-mechanical 

– Moisture 

– Thermal 

– Thermo-mechanical 
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Thermomechanical Mechanisms 
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ELFR 

HTOL THB or HAST HTSL (Bake) TC 

PC 

1000 hrs 
JESD22-A103 

1000 hrs (85/85) 
JESD22-A101 
96 hrs (130/85) 
JESD22-A110 

700 cycles 
3 cycles/hr 
233 hrs 
JESD22-A104 

Condition B or G 
(C is too severe) 

Early life failure rate. 
168 hrs 
JESD22-A108 

High temperature 
operating life. 
168 -1000 hrs 
JESD22-A108 

Preconditioning. 
JESD22-A113 
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Cracking Due to Temperature Cycle 
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Crack Propagation in Package 

• The rate of crack propagation is also given by 
 
 
 

• But in plastic packages under temperature cycling, 
the stress concentration factor is 
 
 

• α is the TCE of MC. 
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Important 

DT in temperature cycling-driven models is the temperature difference 
between the neutral (usually cure) temperature, and the minimum 

temperature of the cycle.  Tmax is less important. 
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Package Cracking and Delamination.. 
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Bond Damage: Wires and Ball Bonds 

• Cracks can intersect wires, TAB leads. 

• Bonds can be sheared at the bond/pad interface 

• Shear and tensile normal stress can break wires at 
their necks. 

• Substrate cracks induced during bonding can 
propagate and cause “cratering” or “chip-out”. 
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Wires sheared by wire crack 

Wire Damage 
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(Open) 
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Ball bonds in plastic package after temperature cycle. 

Bond Damage 
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Sheared Bond Unfailed Bond 

Die Corner 

20  
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Necking Damage 

Bond Damage 
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Necking fracture 

Bond Damage 
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Delamination induced down bond fail after temperature cycle 

Bond Damage 
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A7 A9 

A8 

Pulse-echo acoustic image of mold compound/ die 
interface in four devices.  Delamination is shown in 
black.  White boxes added to show locations of low 
bond wire pull strength results. 

44 PLCC devices that failed after solder 
reflow and 1000 cycles (-40 to 125C) 

Intermetallic fracture at bond due to 
shear displacement. 

Source: T.M.Moore, R.G. McKenna 
and S.J. Kelsall, IRPS 1991, 160-166. 

Bond Damage and Delamination 
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Thin-Film Cracking (TFC) 
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Die Surface 

Replica in Plastic 

TFC - Plastic Conforms to Die Surface 
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Die Corner

Channel

Aluminum

Polysilicon

SiO2
PSG

Passivation
Crack Crack BA

Shear stress applied to passivation 

Aluminum

Polysilicon

Die center

TFC – Effect on Thin Films 
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1 micron 

Passivation delamination crack propagates into substrate. 

Source: K. Hayes, Intel 

Thin-Film Cracking (TFC) 
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Test Chip - Thin Film Cracking 

• Thin film cracking (TFC) can be detected electrically 
by test structures in the corner of the die. 

– Sensitive to opens and to shorts. 

• Buss width is varied to determine design rule. 
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No Contacts 

17  contacts 

3  contacts 

21  7  105  

Buss Widths 

Source: Shirley & Blish, “Thin Film Cracking and Wire Ball Shear...,”  IRPS 1987. 

TFC – Effect of Buss Width 

December 3, 2015 Plastic Package Reliability 89 

Factors Affecting TFC:  Buss Width Effect 

Polysilicon 
meanders under 
buss edge are 
vulnerable to 
crack-induced 
opens. 

http://web.cecs.pdx.edu/~cgshirl/Glenns Publications/17 1987 IRPS97  Thin-Film Cracking and Wire Ball Shear in Plastic DIPs due to Temperature Cycle and Thermal Shock (Shirley and Blish).pdf
http://web.cecs.pdx.edu/~cgshirl/Glenns Publications/17 1987 IRPS97  Thin-Film Cracking and Wire Ball Shear in Plastic DIPs due to Temperature Cycle and Thermal Shock (Shirley and Blish).pdf
http://web.cecs.pdx.edu/~cgshirl/Glenns Publications/17 1987 IRPS97  Thin-Film Cracking and Wire Ball Shear in Plastic DIPs due to Temperature Cycle and Thermal Shock (Shirley and Blish).pdf
http://web.cecs.pdx.edu/~cgshirl/Glenns Publications/17 1987 IRPS97  Thin-Film Cracking and Wire Ball Shear in Plastic DIPs due to Temperature Cycle and Thermal Shock (Shirley and Blish).pdf
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1

.1

% Fail

10 100 1000

Cycles

105 micron bus, no slots or contacts

Busses with slots and/or contacts

Narrow buss, or contacts, stabilizes buss, reduces incidence of TFC. 

Leads to buss width design rules, and buss slotting in die corners. 

TFC – Effect of Buss Width, ct’d 
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TFC – Effect of Temperature Cycle 

• Drivers: T/C conditions, and number of cycles. 

• Mimimum T/C temperature, not amplitude, is key 
aspect of stress. 

– Stress depends on difference between cure temperature 
(neutral stress) and minimum stress temperature. 
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95

80

60

40

20

10

5

2

1

Cum %

Fail

10 100 1000
Cycles

-65 C to 150C

-40 C to 85 C

0 C to 125 C

125 C Amplitude
Source: C. F. Dunn and J. W. McPherson, “Temperature-

Cycling Acceleration Factors for Aluminum Metallization 

Failure in VLSI Applications,”  IRPS, 1990. 

Same amplitude! 



© C. Glenn Shirley 

100

80

60

40

20

0
0.5 0.6 0.7 0.8 1.00.9 1.1
Total Passivation Thickness in microns

%

Failing

• Fraction of PDIP-

packaged SRAM failing. 

• Post 1K cycle of T/C C. 

• No Polyimide die coat. 

• Thicker passivation is 

more robust. 

Source: A. Cassens, Intel 

TFC – Effect of Passivation Thickness 
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TFC – Effect of Compliant Overcoat 

• SRAM in PDIP 

• Temperature Cycle Condition C 

• Polyimide Overcoat 
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 200 cycles 500 cycles 1000 cycles 

No Polyimide   0/450   13/450   101/437 

Polyimide   0/450    0/450      0/450 
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Theory of TFC 

• Shear stress applied to die surface by MC 

– Is maximum at die corners 

– Zero at die center. 
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(At die Surface) 

Die 
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• Buss width effect: Okikawa et. al. 

• Passivation thickness effect: Edwards et al.  

• TFC occurs when and where 
 
 

• K = dimensionless constant 

• E = Young’s modulus of passivation 

• t = Passivation thickness 

• L = Buss width 

Sources:  Okikawa, et al. ISTFA, Oct. 1983.  Edwards, et al. IEEE-CHMT-12, p 618, 1987 

 ( )Passivation Surface   








K E

t

L

2

Theory of TFC, ct’d 
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Thicker passivation, and/or narrower busses implies less TFC. 

Local strength of passivation. 

http://web.cecs.pdx.edu/~cgshirl/Documents/Supplementary Papers/1987 Edwards Shear Stress Evaluation of Plastic Packages IEEE CHMT 12 01134785.pdf
http://web.cecs.pdx.edu/~cgshirl/Documents/Supplementary Papers/1987 Edwards Shear Stress Evaluation of Plastic Packages IEEE CHMT 12 01134785.pdf
http://web.cecs.pdx.edu/~cgshirl/Documents/Supplementary Papers/1987 Edwards Shear Stress Evaluation of Plastic Packages IEEE CHMT 12 01134785.pdf
http://web.cecs.pdx.edu/~cgshirl/Documents/Supplementary Papers/1987 Edwards Shear Stress Evaluation of Plastic Packages IEEE CHMT 12 01134785.pdf
http://web.cecs.pdx.edu/~cgshirl/Documents/Supplementary Papers/1987 Edwards Shear Stress Evaluation of Plastic Packages IEEE CHMT 12 01134785.pdf
http://web.cecs.pdx.edu/~cgshirl/Documents/Supplementary Papers/1987 Edwards Shear Stress Evaluation of Plastic Packages IEEE CHMT 12 01134785.pdf
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Thin Film Moisture Delamination 

• Saw cut exposes thin film edges to moisture.. 
 
 
 
 
 
 

• And shear stress tends to peel films. 
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PECVD Oxynitride/Nitride Metal Bond Pad

Other films

Silicon

Polyimide

Substrate (Si) 

Shear stress 

Moisture 
Thin films 

Thin film delamination. 
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Test Chip – Thin Film Delamination 

• “Edge rings” are lateral moisture barrier. 

• Effectiveness of edge rings can be tested electrically 
by a thin-film delamination (TFD) sensor. 
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ATC

TFD

BOND PADS

TFC (20 um bus)

TFC (10 um bus) TFC (100 um bus)

TFC (40 um bus)

Die edge (saw cut). Edge ring 

 thin film#7

substrate

thin film#1
thin film#2
thin film#3
thin film#4
thin film#5
thin film#6

interconnect via

Cross section of TFD sensor 



© C. Glenn Shirley 

 Delamination at die edge after 168 hours of steam. 

Thin-Film Delamination 

December 3, 2015 Plastic Package Reliability 98 

Source: C. Hong 
Intel 

Edge ring 

TFD Sensor 
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10  

 Delamination at die edge after 168 hours of steam. 

Thin-Film Delamination 
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Source: C. Hong 
Intel 

Edge Ring 

Crack breaks 
continuity of 

TFD sensor 
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Backup 
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Reliability Goals from ITRS 2009 

December 3, 2015 Plastic Package Reliability 101 

Preconditioning

Environmental Stress

Electrical Test, Failure 
Analysis

Infant Mortality 

Wear-out 

Constant fail rate 

http://www.itrs.net/reports.html 

http://www.itrs.net/reports.html
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Sampling 

• JESD47 sample requirements are minimal. 

– Single “snapshot” is a crude validation of the reliability of 
the product. 

– Small SS does not generate failures to give clues to process 
weaknesses. 

• Risks. 

– Qualification hinges on single failures. 
• Moral hazard to “invalidate” a failure is high. 

– Lot-to-lot variation, excursions. 
• Incoming materials, fab lots, assembly lots, test lots. 
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Sampling, ct’d 

• Number of lots covers risks of machine-to machine, 
day-to-day, etc. variation. 

• Often minimum SS to validate a goal is chosen. 

– Pro: Saves $, and there are no failures to explain. 

– Con: Pass/fail of the qual is at the mercy of a single failure. 
• Verrry tempting to invalidate a failure. 

– Con: No mechanism learning. 

• eg. To validate 500 DPM at ELFR using minimum SS at 
60% confidence, 1833 units are required. 

– 500 DPM is a typical goal (see ITRS) 
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6

ln(1 )

ln(1 0.6)
1833

500 10

cl
SS

D



 


 



Useful “mental furniture” 

(Accept/Reject  0/1) 

Preconditioning

Environmental Stress

Electrical Test, Failure 
Analysis
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Sampling, ct’d 

• For environmental stress, 77 is a typical SS, why? 
 
 

– So, 0/1 accept/reject validates, to 90% confidence, a 
failure rate less than 3% at the accelerated condition. 

• If the stress corresponds to the lifetime (eg. 7 years) 
then the average wearout failure rate is 
 
 
 

– This falls into the range of ITRS goals. 

December 3, 2015 Plastic Package Reliability 104 

2

ln(1 ) ln(1 0.9) ln(.1) 100 230.26
; 76.7

3 10 3 3

cl
SS

D 

     
   



2
93 10

10 489
7 365 24

FR   Fits


  
 

Preconditioning

Environmental Stress

Electrical Test, Failure 
Analysis
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Example Data 

• Additional attributes 
enhance value of 
data. 

– Device type 

– Date code 

– Package type 

– Readouts 

– Failure analysis 
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Maxim product reliability report RR-1H 

http://www.maxim-ic.com/qa/reliability/general/
http://www.maxim-ic.com/qa/reliability/general/
http://www.maxim-ic.com/qa/reliability/general/
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Vapor Pressure and Relative Humidity 
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or 

What is Psat? 

Where 

 

l  =  2262.6 joule/gm  (latent heat of vaporization) 

 

M = 18.015 gm/mole,  R = 8.32 joules/(mole K),   k = 8.617x10-5 eV/K 

H
T

T


Actual water vapor pressure at temperature 

Saturated water vapor pressure at temperature 

P H P TH O sat2
  ( )

P T P
M

RT
P

Q

kT
Q

k M

R

P

Psat    eV( ) exp exp . 








  









  0 0 0 42

l l

This is a fair approximation.  The main benefit is physical insight. 

Important. 
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An accurate formula for Psat (in Pascals) is 

which is accurate to better than 0.15% in the range 5 C< T < 240 C. 

 

P T a x x
T

a a

a a

sat n

n

n

( ) exp ,
(

. .

. .

  








 

 

   

    



1000
1

273

16 033225 35151386 10

2 9085058 10 50972361 10

0

3

0 1

3

2

5

3

6

  
C)

,   ,

,   

Vapor Pressure and Relative Humidity 
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1 atm = 101325 pascals 

This is an accurate formula. 
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Vapor Pressure and Relative Humidity 

• Relative humidity at “hot” die in steady state. 

– Partial pressure of water vapor is the same everywhere: 
 
 

– So RH at die is given by: 
 
 

– Where the ratio, h is defined as: 
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P PH O H O2 2
die ambient( ) ( )

H P T T H P T( ) ( ) ( ) ( )die ambientsat ambient ja sat ambient   D

H h H( ) )die (ambient 

h
P T

P T T




sat ambient

sat ambient ja

( )

( )D
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Curves labelled with Tja

0.784

Example: At 20/85 and Tja = 4 C, the die is at 24/(0.784x85) = 24/67. 

Vapor Pressure and Relative Humidity 
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Test and Failure Analysis 

• Moisture-related tests 
(85/85, HAST, Steam) 
have specific test/FA 
reqt’s. 
– Test must be done while 

unit contains moisture. 
• Within 48 hr. 

– Units must not be “wet”. 
• Wet = liquid water. 

• Diagnostic Bake. 

• Risk decision before 
destructive analysis. 
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Pass

Pass

Fail (unvalidated failure)

Fail

Pass

Diagnostic Functional Test

Including raster scan, electrical analysis

for electrical location of defect

Functional Test

Validate Using Functional Test

Return to Stress

Invalid Failure

(Censor sample or

return to stress)

Fail by Invalid Mechanism

(eg. package defect

in die-related certif ication)

All Other Failures

 VALID FAILURE

Bake + Diagnostic Functional Test

Pass

Reversible

(eg. leakage path thu moisture f ilms)

Fail

Irreversible Damage

(eg. corrosion)

Non-Destructive F/A

(visual, X-Ray, CSAM)

Risk Decision

(based on likely mechanism)

Chemical Decapsulation

(to observe mechanical defects

such as cracks)

Mechanical Decapsulation

(to observe chemical defects

such as residues)

48 HOUR TEST WINDOW

Preconditioning

Environmental Stress

Electrical Test, Failure 
Analysis
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HAST versus 85/85 

• Moisture MUST be non-condensing.  (RH < 100%). 

• Both require about < 1% fail.  Typical SS ~ 100. 

• 130/85 HAST duration is 10x less than 85/85 
duration.  We’ll see how this was justified. 

• 85/85 (JESD22-A101) 
 
 

• HAST (JESD22-A110) 
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1 atm = 14.2 psi 33.3 14.2
1.34 atmospheres   Pressure vessel required.

14.2


 

10x less time 

6 week bottleneck in 
information turns. 
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Example:  Comparison of HAST Stds 
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From Sony Quality and Reliability Handbook http://www.sony.net/Products/SC-HP/tec/catalog/qr.html 

Intermittent Bias 

Test and Failure Analysis Window 
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0

500 20 40 60

380  

460  

540  0

500 20 40 60

280  

360  

440  

520  

T(ambient) = 100 C 
t(sat) = 28 hours 

T(ambient) = 60 C 
t(sat) = 153 hours 

Cj 

Moles/m3 Moles/m3 

Hours Hours 

mils mils 

Cyclical Stress 
One-Dimensional Diffusion Equation Solutions  

8 hours on, 16 hours off cycling for PDIP 

Moisture concentration at the die is constant if Period << t(sat) 
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Time-Varying Power Dissipation 

• Most moisture-related mechanisms.. 

– Have slow or zero rates at zero bias (V=0). 

– Have Q/m < 0.42 eV so, in steady-state, depressed die 
humidity due to power dissipation slows the rate. 

• There is an optimum duty cycle which maximizes the 
effective acceleration. 
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exp( / )m

j jAF V H Q kT   



© C. Glenn Shirley 

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

20 40 60 80 100 120 140

2.7
1.45

0.8

0.5

Bake Time, hours

Log{ Resistance Change (milliohms)}

Weight % Bromine

Gold-Aluminum Bond Failure 

• Kelvin resistance 
measurements. 

• Resistance increase of 
Au bonds to Al pads vs 
bake time. 

• Bake at 200 C. 

• Various levels of Br 
flame-retardant in 
molding compound. 

• Br catalyzes Au-Al 
intermetallic growth. 

• Br flame retardants 
are being phased out 
today. 

Source:  S. Ahmad, et al.  “Effect of Bromine in 
Molding Compounds on Gold-Aluminum Bonds,”  
IEEE CHMT-9  p379 (1986) 
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• Superimpose log(H) vs 1/T contour plots of 

– Peck model for THB acceleration factor. 

– Partial pressure of water vapor, Psat. 

• Contours are straight lines: 

– Peck model: Iso-acceleration contours with slope 
proportional to Q/m. 

– Psat:  Isobars with slope proportional to Qp = 0.42 eV. 

• Assumption:  In steady state, the partial pressure of 
H2O is the same in the ambient and at the die. 

Reference:  C. G. Shirley, “THB Reliability Models and Life Prediction for Intermittently-

Powered Non-Hermetic Components”, IRPS 1994 

Steady Power Dissipation 
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http://web.cecs.pdx.edu/~cgshirl/Glenns Publications/23 1994 THB Reliability Models.. 32nd IRPS p72 (1994).pdf
http://web.cecs.pdx.edu/~cgshirl/Glenns Publications/23 1994 THB Reliability Models.. 32nd IRPS p72 (1994).pdf
http://web.cecs.pdx.edu/~cgshirl/Glenns Publications/23 1994 THB Reliability Models.. 32nd IRPS p72 (1994).pdf
http://web.cecs.pdx.edu/~cgshirl/Glenns Publications/23 1994 THB Reliability Models.. 32nd IRPS p72 (1994).pdf
http://web.cecs.pdx.edu/~cgshirl/Glenns Publications/23 1994 THB Reliability Models.. 32nd IRPS p72 (1994).pdf
http://web.cecs.pdx.edu/~cgshirl/Glenns Publications/23 1994 THB Reliability Models.. 32nd IRPS p72 (1994).pdf
http://web.cecs.pdx.edu/~cgshirl/Glenns Publications/23 1994 THB Reliability Models.. 32nd IRPS p72 (1994).pdf
http://web.cecs.pdx.edu/~cgshirl/Glenns Publications/23 1994 THB Reliability Models.. 32nd IRPS p72 (1994).pdf
http://web.cecs.pdx.edu/~cgshirl/Glenns Publications/23 1994 THB Reliability Models.. 32nd IRPS p72 (1994).pdf
http://web.cecs.pdx.edu/~cgshirl/Glenns Publications/23 1994 THB Reliability Models.. 32nd IRPS p72 (1994).pdf
http://web.cecs.pdx.edu/~cgshirl/Glenns Publications/23 1994 THB Reliability Models.. 32nd IRPS p72 (1994).pdf
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Iso-acceleration contours for example mechanism 

(m = 4.6, Q = 0.8 eV) superimposed on water vapor pressure isobars.  

Increasing steady-state 

dissipation (X to Y). 

Follows isobar. 

Typical Climate 
RH (%) 

at Die 

Hj 

Tj  at Die (deg C) 

Steady Power Dissipation 
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Relative slope 

Q/m < 0.42 eV: Deceleration 

Q/m > 0.42 eV: Acceleration. 

(Arrhenius (1/TK) Scale, marked with TC) 

(log scale) 
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Example:  Comparison of HAST Stds 
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From Sony Quality and Reliability Handbook http://www.sony.net/Products/SC-HP/tec/catalog/qr.html 

Non-steady-state requirements 

http://www.sony.net/Products/SC-HP/tec/catalog/qr.html
http://www.sony.net/Products/SC-HP/tec/catalog/qr.html
http://www.sony.net/Products/SC-HP/tec/catalog/qr.html
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JEDEC 85/85 and HAST Req’ts 

• Tj-Ta 10C: 100% duty cycle. 

• Tj-Ta > 10C, 50% duty cycle. 
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Tj – Ta = 20C 

Effective 
Acceleration 

Factor 

Effective 
Acceleration 

Factor 

Assumptions: 
• 85/85 
• Peck Model m = 4.64, Q = 0.79 eV 
• AF = 0 for V = 0. 
• MC thickness 50 mils 
• Kitano et. al MC properties. 

G. Shirley and C. Hong, "Optimal Acceleration of Cyclic THB Tests for Plastic-Packaged 
Devices,"  in Proc. 29th Ann. Int'l Reliability Physics Symposium, pp12-21 (1991) 

http://web.cecs.pdx.edu/~cgshirl/Glenns Publications/21 1991 Optimal Acceleration of Cyclic THB Shirley Hong IRPS p12 (1991).pdf
http://web.cecs.pdx.edu/~cgshirl/Glenns Publications/21 1991 Optimal Acceleration of Cyclic THB Shirley Hong IRPS p12 (1991).pdf
http://web.cecs.pdx.edu/~cgshirl/Glenns Publications/21 1991 Optimal Acceleration of Cyclic THB Shirley Hong IRPS p12 (1991).pdf
http://web.cecs.pdx.edu/~cgshirl/Glenns Publications/21 1991 Optimal Acceleration of Cyclic THB Shirley Hong IRPS p12 (1991).pdf
http://web.cecs.pdx.edu/~cgshirl/Glenns Publications/21 1991 Optimal Acceleration of Cyclic THB Shirley Hong IRPS p12 (1991).pdf
http://web.cecs.pdx.edu/~cgshirl/Glenns Publications/21 1991 Optimal Acceleration of Cyclic THB Shirley Hong IRPS p12 (1991).pdf
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HAST Development Team 
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Linear in 1/T (K), 
with ticks placed at 
T (C). 

Log scale 
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Package Anatomy 

• This is an example of a packaged part as it might be used 
in a product 

Made 
by 

Intel Substrate 

Land Grid Array connectors 

Integrated Heat Spreader (IHS) 

OEM’s heat sink OEM’s TIM 

Intel’s TIM 

Silicon chip 

Underfill 

C4 bumps 

OEM’s socket 

A “land” 

Socket pin 

Slide: Scott C. Johnson 
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Package Anatomy 

• This is a close-up of the package substrate showing the many layers of conductors and insulators 

Silicon chip C4 bumps 

Conductive traces 
and vias (yellow) 

Polymer insulating 
layers (green) 

A “land” 

OEM socket 
pin 

Substrate core 

Slide: Scott C. Johnson 
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Location: Silicon (vs. Package) 

Transistor 

Gate 

Le 
Drain Source 

Gate 
Oxide 

Channel 
Metal 

interconnect 

“Back end” = interconnects 

“Front end” = transistors 

Interlayer 
dielectric 

(ILD) 

Via 

Slide: Scott C. Johnson 
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Cratering damage on bond pads 

Bond Damage 

December 3, 2015 Plastic Package Reliability 125 



© C. Glenn Shirley 

Bond shear at die corners after temperature cycle 

Bond Damage 
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Die 
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Cu Lead

Silicon

Substrate Crack 

Ti barrier
Au bump

Al pad

Au bump

Etch

Barrier crack and Au/Al intermetallic

Crater

Cu Lead

TAB cratering and diffusion barrier damage revealed by wet etch. 

Bond Damage (TAB) 
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TAB bonds Au/Al intermetallic formed at cracks in Ti barrier 

Bond Damage (TAB) 
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Crater under TAB bonds 

Bond Damage (TAB) 
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Plastic Thickness, t (mils)

Pad Size, a

(mils)

a/t = 4.5

Package Cracking

No Package Cracking

Cracking sensitivity of PLCC packages after saturation in 85/85 
followed by vapor-phase reflow soldering at 215 oC 

“Popcorn” Design Rules 

December 3, 2015 Plastic Package Reliability 130 



© C. Glenn Shirley 

Crack Propagation in Test Conditions 

• Tensile Test of Notched Samples 

– Measure crack growth rate for sinusoidal load: 
 
 
 
 
 

– Sample geometry and load determine stress intensity 
factor, K. 

– Plot crack growth rate da/dN versus K on log-log plot to 
determine Coffin-Manson exponent, m: 
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Notch

Crack
LoadLoad a
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Crack Propagation in Test Conditions 
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Stress Intensity Factor Amplitude

da/dN

Crack Growth Rate

mm/cycle
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Encapsulant A

150C

25C

-55C

Slope of lines on log-log plot 

  (MPa m)K

Source: A. Nishimura, et. al. “Life Estimation for IC 
Packages Under Temperature Cycling Based on 
Fracture Mechanics,”  IEEE Trans. CHMT, Vol. 10, 
p637 (1987). 

m  20

 m
KConst

dN

da
D

http://web.cecs.pdx.edu/~cgshirl/Documents/Supplementary Papers/1987 Nishimura et al Life Estimation for IC Plastic Packages IEEE Trans on CHMT 1987 01134777.pdf
http://web.cecs.pdx.edu/~cgshirl/Documents/Supplementary Papers/1987 Nishimura et al Life Estimation for IC Plastic Packages IEEE Trans on CHMT 1987 01134777.pdf
http://web.cecs.pdx.edu/~cgshirl/Documents/Supplementary Papers/1987 Nishimura et al Life Estimation for IC Plastic Packages IEEE Trans on CHMT 1987 01134777.pdf
http://web.cecs.pdx.edu/~cgshirl/Documents/Supplementary Papers/1987 Nishimura et al Life Estimation for IC Plastic Packages IEEE Trans on CHMT 1987 01134777.pdf

