Plastic Package Reliability

C. Glenn Shirley

Integrated Circuits Design and Test Laboratory Electrical and Computer Engineering Portland State University Portland, Oregon

http://web.cecs.pdx.edu/~cgshirl/

Outline

- Plastic Package Technology
- Stress and Test Flows
- Mechanisms
 - Moisture-mechanical
 - Moisture
 - Thermal
 - Thermo-mechanical

Plastic-Encapsulated Microcircuits

• Molding compound (MC) in PEMs comes in direct contact with the die and chip connections.

Plastic-Encapsulated Microcircuits

- Die is mounted on a lead frame (A42 or Cu).
- Bonds are made by.

- <u>Alloy 42</u> Fe 58% Ni 42% alloy with CTE matching Si.
- Wirebond: Au, moving to Cu in early 2000's.
- TAB: Tape-Automated Bonding.
- C4: Controlled Collapse Chip Connect.
- Assembly is encapsulated in molding compound.
 - Molding compound is in direct contact with die, wire bonds, etc.
- External leads are trimmed and solder plated.

Molding Compounds

- MC is thermoset (curing) epoxy, typically novolac.
 - Cures at ~ 170-180°C.
 - Silica "filler" controls CTE and increases thermal conductivity.
 - MCs are (now) free of ionic contaminants.
- Glass Transition ~ 140°C.
- Moisture properties of MC:
 - Permeable to moisture.
 - Absorbs moisture. "Hygroscopic."

Note distinction between thermo*set* and thermo*plastic*.

Molding Compound Properties

• At the glass transition (> 140 $^{\circ}$ C)..

FIGURE 4-16 Shear modulus versus temperature data for an epoxy molding compound. Data show the effect of postcure on the thermomechanical properties. Frequency is 1 rad/sec.

CTE increases

FIGURE 4-1 A plot of expansion versus temperature for an epoxy molding compound. The dashed line is the temperature derivative of expansion, which is defined as the coefficient of thermal expansion. Note the higher CTE above the glass transition temperature.

L. T. Manzione "Plastic Packaging of Microelectronic Devices," Van Nostrand Reinhold 1990.

Plastic Package Reliability

Molding Compound Properties, ct'd

- Molding compound strongly absorbs water.
 - Saturation uptake is proportional to RH, and independent of temperature.
 - Rate of uptake depends strongly on temperature.

L. T. Manzione "Plastic Packaging of Microelectronic Devices," Van Nostrand Reinhold 1990.

FIGURE 4-24 Plot of water uptake of epoxy molding compound preforms as a function of relative humidity of the conditioning atmosphere after three weeks of exposure at room temperature. K. Fisher is a hydrolysis technique for measuring water content. (Data of D. J. Boyle, J. T. Ryan and H. E. Bair, AT&T Bell Laboratories.)

December 3, 2015

Plastic Package Reliability

Key Material Properties

• Material properties which drive temperature cyclinginduced failure mechanisms.

Material	Thermal Coeffic't of Expansion (ppm/°C) " TCE"	Young's Modulus (GPa)	Thermal Conductivity (W/m °C)	
Copper	17	119	398	
Alloy 42	5 Match!	145	15 ^{Low!}	
Silicon	3	131	157	
Molding Compound	21	18	0.6	
Alumina	6.5	25	25	
PC Board	15-17	11	25	

Outline

- Plastic Package Technology
- Stress and Test Flows
- Mechanisms
 - Moisture-mechanical
 - Moisture
 - Thermal
 - Thermo-mechanical

Life of an Integrated Circuit

 ΔT **Shipping Shock** User Drop Bend Reflow Handling Temp, RH **Power Cycle** Temperature & Vibe Cycle **Mobile PC** Bent Pins, Singulation 1 2 3 ΔT 7[[8][9] * 0 # BAM Temp, RH Reflow Shipping Shock Bend Handling Keypad Temperature User Drop press Cycle Handheld & Vibe

Slide by Scott C. Johnson.

Stress/Test Flow

Figure 1 — Levels of Assembly - Interaction of packaging technical concerns

Simulate shipping, storing, and OEM board mounting process.

Simulate in-service end use conditions.

Determine pass/fail. Diagnose failures.

Industry Reliability Standards

- International
 - ISO International Standard Organization
 - IEC International Electrotechnical Commission
- Europe
 - CEN, CENELEC Comite Européen de Normalisation Électrotechnique
- Japan
 - JIS Japanese Industrial Standard, EIAJ
- US
 - MIL (US Department of Defense), EIA/JEDEC

For US commercial products JEDEC standards have mostly superseded MIL standards.

Preconditioning

- Preconditioning simulates board assembly.
- Specified by
 - JESD22-A113F Preconditioning of Nonhermetic Surface Mount Devices Prior to Reliability Testing.
 - IPC/JEDEC J-STD-020D.01 Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices

http://www.jedec.org/

Free downloads, registration required.

Preconditioning Flow

JESD22-A113F

Annex A Typical Preconditioning Sequence Flow

Step	Item	Details	Section
1	Initial Electrical Test	 Replace any failing devices Optional for testing by Supplier 	4.1
2	Visual Inspection	Replace any failing devices Optional for testing by Supplier	4.2
3	Temperature Cycling	 5 cycles -40 °C to 60 °C Optional shipping simulation based on product requirements 	4.3
4	Bake	- 24 fr at 125 °C - Ontional for testing by Supplier	4.4
5	Moisture Soak	 Soak time and conditions per IPC/JEDEC J-STD-020 based on device MSL level 	4.5
6	Reflow	020, document rev of J-STD-020 used - SnPb or Pb-free profile based on device end use process	4.6
7	Flux Application	 10 s full immersion dip in activated water soluble flux Optional for testing by User or second level configuration Not required for BGA, CGA and LGA packages 	4.7
8	Cleaning	 DI water rinse Remove all flux residual Optional for testing by User or second level configuration Not required for BGA, CGA and LGA packages 	4.8
9	Drying	 Room ambient drying Optional for testing by User or second level configuration Not required for BGA, CGA and LGA packages 	4.9
10	Final Electrical Test	 If all devices pass then ready for Reliability Testing If valid failures are found then devices may have been tested to the wrong MSL level or something is substandard with the devices Optional for testing by Supplier 	4.10

IPC/JEDEC J-STD-020D.01

			SOAK REQUIREMENTS					
					ACCELERATED EQUIVALENT ¹			
	FLOOP	R LIFE	STANDARD		eV 0.40-0.48	eV 0.30-0.39		
LEVEL	TIME	CONDITION	TIME (hours)	CONDITION	TIME (hours)	TIME (hours) TIME (hours)		
1	Unlimited	≤30 °C/85% RH	168 +5/-0	85 °C/85% RH	NA	NA	NA	
2	1 year	≤30 °C/60% RH	168 +5/-0	85 °C/60% RH	NA	NA	NA	
2a	4 weeks	≤30 °C/60% RH	696 ² +5/-0	30 °C/60% RH	120 +1/-0	168 +1/-0	60 °C/60% RH	
3	168 hours	≤30 °C/60% RH	192 ² +5/-0	30 °C/60% RH	40 +1/-0	52 +1/-0	60 °C/60% RH	
4	72 hours	≤30 °C/60% RH	96 ² +2/-0	30 °C/60% RH	20 +0.5/-0	24 +0.5/-0	60 °C/60% RH	
5	48 hours	≤30 °C/60% RH	72 ² +2/-0	30 °C/60% RH	15 +0.5/-0	20 +0.5/-0	60 °C/60% RH	
5a	24 hours	≤30 °C/60% RH	48 ² +2/-0	30 °C/60% RH	10 +0.5/-0	13 +0.5/-0	60 °C/60% RH	
6	Time on Label (TOL)	≤30 °C/60% RH	TOL	30 °C/60% RH	NA	NA	NA	

Profile Feature	Sn-Pb Eutectic Assembly	Pb-Free Assembly 150 °C 200 °C 60-120 seconds		
Preheat/Soak Temperature Min (T _{smin}) Temperature Max (T _{smax}) Time (t _s) from (T _{smin} to T _{smax})	100 °C 150 °C 60-120 seconds			
Ramp-up rate (T _L to T _p)	3 °C/second max.	3 "C/second max.		
Liquidous temperature (T_L) Time (t_L) maintained above T_L	183 °C 60-150 seconds	217 °C 60-150 seconds		
Peak package body temperature (T_p)	For users T _p must not exceed the Classification temp in Table 4-1. For suppliers T _p must equal or exceed the Classification temp in Table 4-1.	For users T _p must not exceed the Classification temp in Table 4-2. For suppliers T _p must equal or exceed the Classification temp in Table 4-2		
Time $(t_p)^*$ within 5 °C of the specified classification temperature (T_o) , see Figure 5-1.	20* seconds	30° seconds		
Ramp-down rate (Tp to TL)	6 °C/second max.	6 °C/second max.		
Time 25 °C to peak temperature	6 minutes max.	8 minutes max.		

<u>Slide 50</u>

Environmental Test

- Stress-based testing (traditional).
- To keep things simple, we'll follow this approach.
- Standards: JESD47, MIL-STD-883.
- Pro:
 - Well-established standards. Lots of historical data. Good for comparisons.
 - Little information about mechanism or use is required.
- Con:
 - Overstress: May foreclose a technology.
 - Understress: Misses a mechanism.
 - May not accurately reflect a use environment.
- Knowledge-based testing.
 - Risk assessment of Use and Mechanism guides test.

JESD47 Example

5.5 Device qualification requirements

	Table	e 1 — Dev	vice qualificatio	i tests		
Stores	Def	Abbr	Conditions	Requirements		
Stress	Kel.	Abov.	Conditions	# Lots / SS per lot	Duration / Accept	
High Temperature Operating Life	JESD22- A108, JESD85	HTOL	Tj ≥ 125 °C Vcc ≥ Vccmax	3 Lots / 77 units	1000 hrs / 0 Fail	
Early Life Failure Rate	JESD22- A108, JESD74	ELFR	Tj ≥ 125 °C Vcc ≥ Vccmax	See ELFR Table	$48 \leq t \leq 168 \ hrs$	
Low Temperature Operating Life	JESD22- A108	LTOL	Tj ≤ 50 °C Vcc ≥ Vccmax	1 Lot / 32 units	1000 hrs / 0 Fail	
High Temperature Storage Life	JESD22- A103	HTSL	Ta ≥ 150 °C	3 Lots / 25 units	1000 hrs / 0 Fail	
Non-Volatile Memory Cycling Endurance	JESD22- A117	NVCE	25 °C and 85°C ≥Tj ≥ 55 °C	3 Lots / 77 units	Up to Spec. Max Cycles per note (e) / 0 Fails	
Data Retention for Non- Volatile Memory: High Temperature	JESD22- A117	HTDR	Option 1: Tj = 100 °C	3 Lots /	Cycles per NVCE (≥55 °C) / 96 and 1000 hrs / 0 Fail / note (f)	
			Option 2: Tj ≥ 125 °C	39 units	Cycles per NVCE (≥55 °C) / 10 and 100 hrs / 0 Fail / note (f)	
Non-Volatile Memory Low-Temperature Retention and Read Disturb	JESD22- A117	LTDR	Ta = 25 °C	3 Lots / 38 units	Cycles per NVCE (25 °C) / 500 hrs / 0 Fail / note (g)	
Latch-Up	JESD78	LU	Class I or Class II	1 Lot / 3 units	0 Fail	
Electrical Parameter Assessment	JESD86	ED	Datasheet	3 Lots / 10 units	Ta per datasheet	
Human Body Model ESD	JS-001	ESD- HBM	Ta = 25 °C	3 units	Classification	
Charged Device Model ESD	JESD22- C101	ESD- CDM	Ta = 25 °C	3 units	Classification	
Accelerated Soft Error Testing	JESD89-2, JESD89-3	ASER	Ta = 25 °C	3 units	Classification	
"OR" System Soft Error Testing	JESD89-1	SSER	Ta = 25 °C	Minimum of 1E+06 Device Hrs or 10 fails.	Classification	

Note: TS (JESD22-A106) and AC (Steam) (JESD22-A102) are not recommended. *Very* different from use.

5.6 Nonhermetic package qualification test requirements

Table 2 — Qualification tests for components i					nc nhermetic packages			
				Requirements				
Stress	Ref.	Abbv	Conditions		# Lots / SS per lot	Duration /Accept		
MSL Preconditioning Must be performed prior to: THB, HAST,TC, AC, & UHAST	JESD22 -A113	PC	Per appropriate MSL level J-STD-020	er		Electrical Test (optional)		
High Temperature Storage ¹	JESD22 -A103 & A113	HTSL	150 °C + Preconditioning Required	f	3 Lots / 25 units	1000 hrs / 0 Fail		
Temperature ² Humidity bias (standard 85/85)	JESD22 -A101	THB	85 °C, 85 % RH, Vccma		3 Lots / 25 units	1000 hrs / 0 Fail		
Temperature ^{2,3} Humidity Bias (Highly Accelerated Temperature and Humidity Stress)	JESD22 -A110	HAST	130 °C / 110 °C, 85 % RE Vcemax	201	3 Lots / 25 units	96/264 hours or equivalent per package construction / 0 Fail		
Temperature Cycling	JESD22 -A104	TC	<u>B</u> ⁴ -55 °C to +125 °C		3 Lots / 25 units	700 cycles / 0 Fail		
			$\frac{\underline{G}^{4} - 40 \ ^{\circ}\text{C to} + 125 \ ^{\circ}\text{C}}{\underline{C}^{4} - 65 \ ^{\circ}\text{C to} + 150 \ ^{\circ}\text{C}}$ $\frac{\underline{K}^{4} 0 \ ^{\circ}\text{C to} + 125 \ ^{\circ}\text{C}}{\underline{K}^{4} 0 \ ^{\circ}\text{C to} + 125 \ ^{\circ}\text{C}}$			850 cycles / 0 Fail 500 cycles / 0 Fail 1500 cycles / 0 Fail 2300 cycles / 0 Fail		
Unbiased Temperature/Humidity (Unbiased HAST ³)	JESD22 -A118	UHAST	130 °C / 85% RH 110 °C / 85% RH		3 Lots / 25 units	96 hrs / 0 Fail 264 hrs / 0 Fail		
Unbiased Temperature/Humidity (Autoclave ⁵)	JESD22 -A102	AC	121 °C / 100% RH		3 Lots / 25 units	96 hrs / 0 Fail Not Recommended		
Solder Ball Shear	JESD22 -B117	SBS	Characterization		30 balls / 5 units			
Bond Pull Strength	M2011	BPS	Characterization, Pre Encapsulation		30 bonds / 5 units	Ppk≥1.66 or Cpk≥1.33 (note 6)		
Bond Shear	JESD22 -B116	BS	Characterization, Pre Encapsulation		30 bonds / 5 units	Ppk≥1.66 or Cpk≥1.33 (note 6)		
Solderability	M2003 JESD22 -B102	SD	Characterization		3 lots / 22 leads	0 Fail		
Tin Whisker Acceptance	JESD22 -A121 through rqmts of JESD 201	WSR	Characterization per JESD.	01	See JESD 201	See JESD201, Based on Appropriate Classification		

December 3, 2015

Knowledge-Based Test

- Knowledge-Based Testing
 - Stress depends on knowledge of use conditions and mechanisms.
 - Risk assessment, using methods
 - JEDEC: **JESD94**, **JEP143**, **JEP148**

- Sematech: "Understanding and Developing Knowledge-based Qualifications of Silicon Devices" <u>#04024492A-TR</u>
- Pro:
 - Stresses fit the product and its use. May make a product feasible.
- Con:
 - Easy to miss mechanisms in new technologies and overlook use conditions in new applications.
 - Tempting to misapply to "uprate" devices, relax requirements.

Example Stress Flow

Outline

- Plastic Package Technology
- Stress and Test Flows
- Mechanisms
 - Moisture-mechanical
 - Moisture
 - Thermal
 - Thermo-mechanical

Popcorn Mechanism

Popcorn Mechanism

Plastic package cracking due to "popcorn" effect during solder reflow

December 3, 2015

Plastic Package Reliability

Popcorn Damage

Plastic package cracking due to "popcorn" effect during solder reflow

Plastic Package Reliability

Popcorn Damage

cracks during solder reflow

Source: T.M.Moore, R.G. McKenna and S.J. Kelsall, in "Characterization of Integrated Circuit Packaging Materials", Butterworth-Heinemann, 79-96, 1993.

-50.0

-100

Crack

mm

19.56

December 3, 2015

Plastic Package Reliability

Die Pad

9.779

Acoustic B-scan

15.39

0.000

Popcorn Damage

Pulse-echo acoustic image through top (delamination in black) Acoustic time-of-flight image indicating package crack Real-time x-ray image showing deformation in wires where they intersect the crack

132 lead PQFP which was damaged during solder reflow.

Source: T.M.Moore, R.G. McKenna and S.J. Kelsall, in "Characterization of Integrated Circuit Packaging Materials", Butterwoth-Heinemann, 79-96, 1993.

Factors Affecting Popcorning

- Molding compound moisture content
 - Temperature/humidity/time exposure before solder.
- Package geometry
 - Dimensions of die paddle.
 - Thickness of molding compound under paddle.
- Peak temperature reached during soldering.
- Adhesion of molding compound to die and/or lead frame.

<u>Not</u> on this list: Pre-existing voids in the plastic package.

H₂O Diffusion/Absorption in MC

Diffusion Coefficient:

$$D = D_0 \exp\left(-\frac{Q_d}{kT}\right)$$

$$D_0 = 4.7 \times 10^{-5} \text{ m}^2 / \text{sec} \quad Q_d = 0.50 \text{ eV}$$

Saturation Coefficient:

$$S = S_0 \exp\left(\frac{Q_s}{kT}\right)$$

Source: Kitano, et al **IRPS 1988**

 $S_0 = 2.76 \times 10^4 \text{ mole/m}^3 \text{Pa} \ Q_s = 0.40 \text{ eV}$

Henry's Law: $M_{\rm sat} = PS = HP_{\rm sat}S$ H₂O vapor pressure.

Clausius-Clapeyron (approximate):

Key Observation: Saturated moisture content of molding compound is nearly independent of temperature, and is proportional to RH.

$$M_{sat} = HP_{\infty}S_0 \exp\left[\frac{(Q_s - Q_p)}{kT}\right]$$

 $Q_s - Q_p = -0.02 \text{ eV}$ Nearly zero! Portland State

26

December 3, 2015

Plastic Package Reliability

H₂O Diffusion/Absorption in MC

H₂O Diffusion/Absorption in MC

Time to 90% Saturation After Humidity Step

Typical Use Saturation Times

December 3, 2015

Popcorn Model

• A crack propagates to the surface when maximum bending stress σ_{max} exceeds a fracture stress characteristic of the molding compound

$$\sigma_{max} > \sigma_{crit}(T_{reflow})$$

• σ_{crit} depends on MC formulation, and on temperature (see next slide).

Source: <u>I. Fukuzawa, et. al.</u> "Moisture Resistance Degradation of Plastic LSIs by Reflow Solder Process," IRPS, 1988

Popcorn Model, σ_{crit}

 σ_{crit} is proportional to molding compound strength.

Popcorn Model, σ_{max}

 Maximum bending stress occurs at center of long edge of die and is given by:

$$\sigma_{max} = 6 \times K \times \left(\frac{a}{t}\right)^2 P$$

- *a* is the length of the die edge.
- t is the thickness of the molding compound over the die.
- K is a geometrical factor (K = 0.05 for square pad).
- *P* is the internal pressure. Depends on
 - Moisture content of molding compound.
 - Depends in turn on RH and T of previous soak ambient.
 - Peak temperature during reflow.

Popcorn Model, Internal Pressure

Plastic Package Reliability

Portland State

December 3, 2015

Popcorn Model, Internal Pressure

$$P_{\text{cav}} \xrightarrow{(1 \to 0; w \to \infty \text{ (or } t \to 0))} \to H_0 \times P_{\text{sat}}(T_0) \times \frac{S(T_0)}{S(T_1)}$$

Delamination pressure exists even with no physical void.

Example:

- Unit preconditioned in 85/85 for a long time, then subjected to 215 C solder shock.
- Saturation coefficient has activation energy of 0.4 eV. (eg. Kitano et. al.)

• Steam table pressure at 85 C is 0.57 atm.

$$P_{\text{cav}} = 0.85 \times 0.57 \times \exp\left\{\frac{0.40 \text{ eV}}{8.62 \times 10^{-5} \text{ eV/}^{\circ} \text{K}} \left(\frac{1}{273 + 85} - \frac{1}{273 + 215}\right)\right\}$$

= 15.3 Atmospheres Wow!!

Outline

- Plastic Package Technology
- Stress and Test Flows
- Mechanisms
 - Moisture-mechanical
 - Moisture
 - Thermal
 - Thermo-mechanical

Example Stress Flow

HAST System

• Large vessel (24" dia) requires forced convection.

Fig. 3 The NG HAST chamber operates on the principle of forced convection. This ensures efficient mixing, minimizing temperature gradients across the test volume. Reliability of the fan drive is ensured by a proven design of magnetic coupling feed through.

<u>C. G. Shirley, "A New Generation HAST System", Non-proprietary Report to Intel, Despatch Industries, and Micro-Instrument Corp. describing learnings during development of NG HAST. December, 1994.</u>

HAST System

Plastic Package Reliability

HAST System

December 3, 2015

HAST Ramp Up Requirements

• Ramp Up: Avoid condensation on load.

Fig. 4 Full-load ramp-up profile to 156/85 before (top) and after (bottom) optimization of fan. After optimization, the wet-bulb temperature is always below temperature at any point in the load.

HAST Ramp-Down Requirements

- Mechanical pressure relief must be slow (3 h).
- Vent when pressure reaches 1 atm.
- Hold RH at test value.

- Units must retain moisture acquired during test.

Peck's Acceleration Model

• Fundamental environmental parameters are *T*, *H* and *V*, *at the site* of the failure mechanism.

- If the die is the site, this is denoted by "j".

• A frequently used acceleration model is due to Peck

 $AF = (a + b \times V) \times H_{i}^{m} \times \exp(-Q/kT_{i})$

- Find *a*, *b*, *m*, *Q* from experiments with steady-state stress and negligible power dissipation.
- Typically *a* is small or zero: Bias is required.
- Requires *H* > 0 for acceleration: Moisture is required.

Moisture: MM Tape Leakage

Moisture: MM Tape Leakage

Moisture: Internal Metal Migration

- TAB Inter-lead Leakage/Shorts
 - Accelerated by voltage, temperature and humidity
 - Seen as early as 20 hrs 156/85 HAST
 - Highly dependent on materials & process

Copper dendrites after 40 hours of biased 156/85 HAST

December 3, 2015

Plastic Package Reliability

Lead-Stabilizing Tape Leakage

- A vendor process excursion.
- Leakage observed after 336 hours of steam.
- Re-activated by 48 hours at 70C/100% RH
- No leakage seen between leads not crossed by tape
- Rapid decay for leads crossing end of tape
 - Tape dries from exterior inwards

Tape provides mechanical stability to long leads during wirebond.

December 3, 2015

Plastic Package Reliability

Lead-Stabilizing Tape Leakage

Portland State 48

Aluminum Bond Pad Corrosion

Passivation in Plastic Packages

- Passivation is the final layer on the die.
- Passivation has two main functions:
 - Moisture Barrier
 - Molding compound is not a moisture barrier.
 - Silicon oxides are not good moisture barriers.
 - PECVD silicon nitride or silicon oxynitride film is a good barrier.
 - Film must be thick enough to avoid pinholes, coverage defects.
 - Mechanical Protection
 - Silicon nitride films are brittle.
 - Polyimide compliant film protects silicon nitride.
 - Polyimide can react with moisture (depending on formulation).

Polyimide/Au Bond Failure

- Bonds overlapping passivation don't necessarily violate design rules.
- But can activate polyimide-related "purple plague" failure mechanisms in combination with moisture.
- Acceleration modeling showed no field jeopardy.

Moisture-Related Gold Bond Degrad'n

Effect of 80 hours of 156/85 HAST vs 156/0 Bake and Centered vs Off-Centered Bonds on Wire Pull Test Data

Moisture-Related Gold Bond Degrad'n

Wire Pull Strength of Polyimide vs No Polyimide and Centered vs Off-Centered Bonds after 40 hours of 156/85 HAST

Moisture-Related Purple Plague

Cross-section of gold ball bond on aluminum pad after 80 hours at 156C/85%RH

Plastic Package Reliability

Moisture-Related Gold Bond Degrad'n

Source: G. Shirley and M. Shell-DeGuzman, IRPS, 1993

Circuit Failure Due to Passiv'n Defects

Site of failing bit. SRAM after HAST stress. Courtesy M. Shew, Intel

Plastic Package Reliability

Circuit Failure Due to Passiv'n Defects

Etch-decorated cross-section of passivation. Note growth seams.

December 3, 2015

Plastic Package Reliability

Circuit Failure Due to Passiv'n Defects

SRAM VOLTAGE THRESHOLD MAP FOR CELL PULLUP TRANSISTOR (Baseline threshold is 0.89 V. Passivation is 0.6 μ nitride, no polyimide.)

After 120 h 156/85. 4 failed bits with Vt > 2.5 V

2 bits recover after further 2 hr bake at 150 C

Source: C. Hong, Intel

Plastic Package Reliability

December 3, 2015

Acceleration Model Fit of HAST Data

SRAM HAST and 85/85 Bit Failures (No Polyimide)

Peck Model Parameters

					Hours of	
				Q/m <	130/85≡	
Mechanism	Q(eV)	m	Q/m	0.42eV?	1kh 85/85	Reference
MM Tape A	0.74	12	0.06	Yes	69	2
ММ Таре В	0.77	5	0.15	Yes	62	2
Single Bit SRAM	0.79	4.6	0.17	Yes	57	3
Corrosion, THB (early Peck)	0.79	2.66	0.30	Yes	57	4
Corrosion, THB (later Peck)	0.90	3	0.30	Yes	39	5
Bond Shear	1.15	0.98	1.17	No	16	6

Yes/No: Increasing power dissipation at die, slows/accelerates the moisture mechanism.

- 1. <u>Kitano, A. Nishimura, S. Kawai, K. Nishi, "Analysis of Package Cracking During Reflow Soldering Process," Proc.</u> 26th Ann. Int'l Reliability Physics Symposium, pp90-95 (1988)
- 2. S. J. Huber, J. T. McCullen, C. G. Shirley. ECTC Package Rel. Course, May 1993. Package tape leakage acceleration data courtesy C. Hong.
- 3. <u>G. Shirley and C. Hong, "Optimal Acceleration of Cyclic THB Tests for Plastic-Packaged Devices," in Proc. 29th</u> Ann. Int'l Reliability Physics Symposium, pp12-21 (1991)
- 4. <u>S. Peck, "Comprehensive Model for Humidity Testing Correlation," in Proc. 24th Ann. Int'l Reliability Physics</u> Symposium, pp44-50 (1986).
- 5. <u>Hallberg and D. S. Peck, "Recent Humidity Accelerations, A Base for Testing Standards," Quality and Reliability</u> Engineering International, Vol. 7 pp169-180 (1991)
- 6. <u>G. Shirley and M. Shell-DeGuzman, "Moisture-Induced Gold Ball Bond Degradation of Polyimide-Passivated</u> Devices in Plastic Packages," in 31st Ann. Int'l Reliability Physics Symposium, pp217-226 (1993).

HAST versus 85/85, ct'd

- For all mechanisms surveyed, 1000 hours of 85/85 is equivalent to < 96 hr of 85/85.
- For packages < 10 mils covering die, moisture saturation occurs within 10 h at 130/85.
- For $T_j T_a > 10^{\circ}$ C, most mechanisms (with Q/m < 0.42 eV) can be more accelerated with cyclical bias.
- 85/85

HAST

- JESD22-A101

– JESD22-A110

3.1 Temperature, Relative Humidity and Duration

Temperature ¹	Relative	Temperature ²	Vapor Pressure ²	Duration ³
(dry bulb °C)	Humidity ¹ (%)	(wet bulb, °C)	(psia/kPa)	(hours)
85 ± 2	85±5	81.0	7.12/49.1	1000(-24,+168)

3.1 Temperature, relative humidity and duration

Temperature ¹ (dry bulb °C)	Relative Humiđity ¹ (%)	Temperature ² (wet bulb, °C)	Vapor Pressure ² (psia/kPa)	Duration ³ (hours)
130 ± 2	85 ± 5	124.7	33.3/230	96 (-0, +2)
110 ± 2	85 ± 5	105.2	17.7/122	264 (-0, +2)

December 3, 2015

Outline

- Plastic Package Technology
- Stress and Test Flows
- Mechanisms
 - Moisture-mechanical
 - Moisture
 - Thermal
 - Thermo-mechanical

Focus Topic: Acceleration

- Acceleration between two stresses is the <u>ratio of</u> <u>times</u> (or cycles) to achieve the <u>same effect</u>.
- The "same effect" could be the same fraction failing.
 - eg. The ratio of median (not mean!) times to failure in different stresses is the Acceleration Factor (AF).
 - AF is proportional to 1/MTTF

$$AF(2 | 1) = \frac{MTTF_1}{MTTF_2} = \exp\left\{\frac{Q}{k_B}\left(\frac{1}{T_1} - \frac{1}{T_2}\right)\right\}$$
 Thermal ("Arrhenius")

$$AF(2 | 1) = \frac{MTTF_1}{MTTF_2} = \exp\left\{\frac{Q}{k_B}\left(\frac{1}{T_1} - \frac{1}{T_2}\right)\right\} \exp\left\{C\left(V_2 - V_1\right)\right\}$$
 Thermal and Voltage

$$AF(2 | 1) = \frac{MTTF_1}{MTTF_2} = \left\{\frac{a + bV_2}{a + bV_1}\right\} \left\{\frac{RH_2}{RH_1}\right\}^m \exp\left\{\frac{Q}{k_B}\left(\frac{1}{T_1} - \frac{1}{T_2}\right)\right\}$$
 Moisture ("Peck")

$$AF(2 | 1) = \frac{MCTF_1}{MCTF_2} = \left\{\frac{\Delta T_2}{\Delta T_1}\right\}^m$$
 Thermal Cycle ("Coffin-Manson")
December 3, 2015 "cycles" Plastic Package Reliability 63

© C. Glenn Shirley

Portland State

Thermal Mechanisms

Gold-Aluminum Bond Failure

- Gold and Aluminum interdiffuse.
 - Intermetallic phases such as AuAl₂ ("Purple Plague") form.
 - Imbalance in atomic flux causes Kirkendall voiding.
 - Bromine flame retardant is a catalyst.
- Kirkendall voids lead to
 - Bond weakening detected by wire pull test.
 - Resistance changes in bond detected by Kelvin measurement of bond resistance.

Thermal (Ordinary) Purple Plague

Cross-section of gold ball bond on aluminum pad after 200 hours at 160°C

December 3, 2015

Plastic Package Reliability

Wire Bond Pull Test

Gold-Aluminum Bond Failure

Thermal Degradation of Lead Finish

- Only an issue for copper lead frames (not Alloy 42).
- Cu₃Sn or Cu₆Sn₅ inter-metallic phases grow at the interface between solder or tin plating.
- Activation energy (Q) for inter-metallic phase growth is 0.74 eV.
- If inter-metallic phase grows to surface of solder or tin plate, solder wetting will not occur.
- Main effect is to limit the number of dry-out bakes of surface mount plastic components.

Thermal Degradation of Lead Finish

Post-plating solder plate

Post burn-in solder plate showing copper-tin intermetallic

Plastic Package Reliability

Thermal Degradation of Lead Finish

X-section of solder-*plated* lead

X-section of solder-*coated* lead

December 3, 2015

Plastic Package Reliability

Outline

- Plastic Package Technology
- Stress and Test Flows
- Mechanisms
 - Moisture-mechanical
 - Moisture
 - Thermal
 - Thermo-mechanical

Thermomechanical Mechanisms

Cracking Due to Temperature Cycle

December 3, 2015

Crack Propagation in Package

• The rate of crack propagation is also given by

$$\frac{da}{dN} = Const \times (\Delta K)^m$$

 But in plastic packages under temperature cycling, the stress concentration factor is

$$\Delta K = Const \times (\alpha_{molding compound} - \alpha_{silicon}) \times (T_{min} - T_{neutral})$$

• α is the TCE of MC.

 ΔT in temperature cycling-driven models is the temperature difference between the neutral (usually cure) temperature, and the minimum temperature of the cycle. T_{max} is less important.

Package Cracking and Delamination.. ...damages Wires, Bonds, and Passivation Films. Wire Shear Normal (tensile) Crack Shear Au Substrate Damage Silicon **Thin-Film Cracking**

Bond Damage: Wires and Ball Bonds

- Cracks can intersect wires, TAB leads.
- Bonds can be sheared at the bond/pad interface
- Shear and tensile normal stress can break wires at their necks.
- Substrate cracks induced during bonding can propagate and cause "cratering" or "chip-out".

Wire Damage

Wires sheared by wire crack

Plastic Package Reliability

Ball bonds in plastic package after temperature cycle.

Plastic Package Reliability

Necking Damage

Plastic Package Reliability

Necking fracture

Plastic Package Reliability

December 3, 2015

Delamination induced down bond fail after temperature cycle

Plastic Package Reliability

Bond Damage and Delamination

Pulse-echo acoustic image of mold compound/ die interface in four devices. Delamination is shown in black. White boxes added to show locations of low bond wire pull strength results.

Intermetallic fracture at bond due to shear displacement.

44 PLCC devices that failed after solder reflow and 1000 cycles (-40 to 125C)

Source: T.M.Moore, R.G. McKenna and S.J. Kelsall, IRPS 1991, 160-166.

TFC - Plastic Conforms to Die Surface

5 microns

Replica in Plastic

Plastic Package Reliability

December 3, 2015

TFC – Effect on Thin Films

Thin-Film Cracking (TFC)

Source: K. Hayes, Intel

Passivation delamination crack propagates into substrate.

December 3, 2015

Plastic Package Reliability

Test Chip - Thin Film Cracking

- Thin film cracking (TFC) can be detected electrically by test structures in the corner of the die.
 - Sensitive to opens and to shorts.
- Buss width is varied to determine design rule.

TFC – Effect of Buss Width Factors Affecting TFC: Buss Width Effect

Polysilicon meanders under buss edge are vulnerable to crack-induced opens.

Source: Shirley & Blish, "Thin Film Cracking and Wire Ball Shear...," IRPS 1987.

TFC – Effect of Buss Width, ct'd

Narrow buss, or contacts, stabilizes buss, reduces incidence of TFC. Leads to buss width design rules, and buss slotting in die corners.

TFC – Effect of Temperature Cycle

- Drivers: T/C conditions, and number of cycles.
- <u>Mimimum</u> T/C temperature, not amplitude, is key aspect of stress.
 - Stress depends on difference between cure temperature (<u>neutral stress</u>) and minimum stress temperature.

Same amplitude!

Source: C. F. Dunn and J. W. McPherson, "Temperature-Cycling Acceleration Factors for Aluminum Metallization Failure in VLSI Applications," IRPS, 1990.

TFC – Effect of Passivation Thickness

- Fraction of PDIPpackaged SRAM failing.
- Post 1K cycle of T/C C.
- No Polyimide die coat.
- Thicker passivation is more robust.

TFC – Effect of Compliant Overcoat

- SRAM in PDIP
- Temperature Cycle Condition C
- Polyimide Overcoat

	200 cycles	500 cycles	1000 cycles
No Polyimide	0/450	13/450	101/437
Polyimide	0/450	0/450	0/450

Theory of TFC

- Shear stress applied to die surface by MC
 - Is maximum at die corners
 - Zero at die center.

Theory of TFC, ct'd

- Buss width effect: Okikawa et. al.
- Passivation thickness effect: Edwards et al.
- TFC occurs when and where

 σ (Passivation Surface) > $K \times E \times \left(\frac{t}{L}\right)^2$

- *K* = dimensionless constant
- *E* = Young's modulus of passivation

Local strength of passivation.

- *t* = Passivation thickness
- *L* = Buss width

Thicker passivation, and/or narrower busses implies less TFC.

Sources: Okikawa, et al. ISTFA, Oct. 1983. Edwards, et al. IEEE-CHMT-12, p 618, 1987

Plastic Package Reliability

Thin Film Moisture Delamination

• Saw cut exposes thin film edges to moisture..

Test Chip – Thin Film Delamination

- "Edge rings" are lateral moisture barrier.
- Effectiveness of edge rings can be tested electrically by a thin-film delamination (TFD) sensor.

Thin-Film Delamination

0000 **Edge ring TFD Sensor** 0

Source: C. Hong Intel

Delamination at die edge after 168 hours of steam.

December 3, 2015

Plastic Package Reliability

Thin-Film Delamination

Delamination at die edge after 168 hours of steam.

December 3, 2015

Plastic Package Reliability

Backup

Plastic Package Reliability

Reliability Goals from ITRS 2009

http://www.itrs.net/reports.html

Table PIDS6 Reliability Technology Requirements

Year of Production	2009	2010	2011	2012	
DRAM 1/2 Pitch (nm) (contacted)	52	45	40	36	_
MPU/ASIC Metal 1 (M1) 1/2 Pitch (nm)	54	45	38	32	_
AT O Physical Gate Length (100)	27	24	22	20	_
Early failures (ppm) (First 4000 operating hours) [1]	2–2000	2–2000	2–2000	2-2000	Infant Mortality
Long term reliability (FITS = failures in 1E9 hours) [2]	1-1000	1-1000	1-1000	1-1000	Wear-out
SRAM Soft error rate (FITs/MBit) [3]	11,000	11,000	11,000	11,000	Constant fail rate
Relative failure rate per transistor (normalized to 2009 value) [4]	1.000	0.71	0.50	0.35	
Relative failure rate per meter of interconnect (normalized to 2009 value) [5]	1.00	0.50	0.50	0.25	

Sampling

- JESD47 sample requirements are minimal.
 - Single "snapshot" is a crude validation of the reliability of the product.
 - Small SS does not generate failures to give clues to process weaknesses.
- Risks.
 - Qualification hinges on single failures.
 - Moral hazard to "invalidate" a failure is high.
 - Lot-to-lot variation, excursions.
 - Incoming materials, fab lots, assembly lots, test lots.

Sampling, ct'd

- Number of lots covers risks of machine-to machine, day-to-day, etc. variation.
- Often minimum SS to validate a goal is chosen.
 - Pro: Saves \$, and there are no failures to explain.
 - Con: Pass/fail of the qual is at the mercy of a single failure.
 - Verrry tempting to invalidate a failure.
 - Con: No mechanism learning. (Accept/Reject \Rightarrow 0/1)
- eg. To validate 500 DPM at ELFR using minimum SS at 60% confidence, 1833 units are required.

Sampling, ct'd

• For environmental stress, 77 is a typical SS, why?

$$SS = \frac{-\ln(1-cl)}{D}; \quad \frac{-\ln(1-0.9)}{3 \times 10^{-2}} = \frac{-\ln(.1) \times 100}{3} = \frac{230.26}{3} = 76.7$$

- So, 0/1 accept/reject validates, to 90% confidence, a failure rate less than 3% at the accelerated condition.
- If the stress corresponds to the lifetime (eg. 7 years) then the average wearout failure rate is

$$FR = \frac{3 \times 10^{-2}}{7 \times 365 \times 24} \times 10^9 = 489 \ Fits$$

This falls into the range of ITRS goals.

Preconditioning

Electrical Test, Failure Analysis

mental Stress

Example Data

- Additional attributes enhance value of data.
 - Device type
 - Date code
 - Package type
 - Readouts
 - Failure analysis

Maxim product reliability report RR-1H

TABLE 11.	TEMPERATURE AND HUMIDITY (85/85	i)
	TEST RESULTS	

TABLE 11 (continued)

DEVICE	DATE	PKG. S	SIZE	FAII 192	500	S (H	NOTE
MAX232 MAX690 ICL7109	9032 9032 9033	16 POIP 8 POIP 40 PDIP	45 69 75	000	000	000	
MAX690 MAX232 MAX691 DP290	9033 9033 9033 9034	8 PDIP 16 PDIP 16 PDIP 8 PDIP	60 70 24	0000	0000	0100	OXIDE DEFECT
AX172 AX232 AX232 AX690 AX690 AX690 AX238 CM7212 AX154 AX154 AX232 AX232	9035 9036 9036 9041 9043 9043 9043 9044 9045 9046	24 POP 16 POP 16 WSO 8 POP 8 POP 24 POP 24 POP 24 POP 16 POP 16 POP	35 45 39 77 72 77 69 44 44	000000000000000000000000000000000000000	000000000000000000000000000000000000000	010000000000000000000000000000000000000	OXIDE DEFECT
EF02 (AX400 (AX400 (L7664) (X7541) (G212 (G211) (AX7231) (X7245) (X7824)	9049 9049 9049 9049 9050 9052 9052 9105 9106 9106	8 PDP 8 PDP 8 PDP 18 PDP 16 PDP 16 NSO 40 PDP 24 PDP 24 PDP 24 PDP	76 76 76 72 76 45 80 45 80 58	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0000-00000	MARG. LEAKAGE
G211 IX7845 IAX8211 IAX8211	9108 9108 9108 9108	24 PDP 8 SO 8 SO	45 68 77 77	0000	0002	0001	2 DIE SCRATCH,
G211 (AX231 (AX275 (AX732) (AX232) (G509 (AX902) (M7212) (X7845) (A245)	9109 9109 9110 9110 9110 9112 9112 9115 9117	16 NSO 14 PDIP 20 PDIP 8 PDIP 16 PDIP 16 PDIP 14 PDIP 40 PDIP 24 PDIP	45 80 41 77 80 80 48 45 58	0000000000	0000000000	000000000000000000000000000000000000000	1 SHORT
AX1000	9119	24 WSO	11	1	ő	00	MARG. LEAKAGE
G508 (X7582 (X7582 (X7582 (X7582) (X7582) (X7582)	9122 9122 9123 9123 9125	16 POIP 28 POIP 16 POIP 16 POIP 44 PLCC	77 45 77 30	00000	00000	010000	MARG. LEAKAGE
AAX232 AAX232 DP07 AX7245 AAX690	9125 9130 9133 9138	16 WSO 8 POIP 24 PDIP 8 PDIP	56 77 72 77	00000	00000	00100	MASKING DEFECT
MX7245 DG211 MAX232	9138 9138 9140	24 PDIP 16 PDIP 16 WSD	76 77 75	000	000	010	MARG, LEAKAGE
MAX730	9140	8 PDIP	77	0	1	0	PARAMETRIC
DG411 DG413 MAX690 DG455 DP07 MAX232	9144 9145 9147 9149 9152 9201	16 PDIP 16 PDIP 8 PDIP 16 PDIP 8 PDIP 16 WSO	17 77 100 72 77 77	0000000	100000	1000000	2 MARG. LEAKAGE

DEVICE	DATE	PKG. S	PKG. SAMPLE			S (H	RS.) NOTE
MAX232 MX7245 REF01 MAX590 ICL7109 ICL7109 ICL7109 ICL7109 ICL7109 ICL7109 ICL7109 ICL7109 ICL7109 ICL7109 ICL7109 ICL7109 ICL7109 ICL7109 ICL7109 ICL7109 ICL7109 ICL7109 ICL7108 ICL7109 ICL7109 ICL7108 ICL7109 ICL7109 ICL7108 ICL7109 ICL7108 ICL7108 ICL7109 ICL7108 ICL	9203 9204 9204 9206 9206 9206 9206 9208 9208 9208 9208 9208 9210 9210 9211 9212 9211 9215 9214 9215 9221 9221 9221 9222 9222 9222 9222	16 PDIP 8 PDIP 8 PDIP 8 PDIP 8 PDIP 8 PDIP 40 PDIP 40 PDIP 40 PDIP 40 PDIP 40 PDIP 40 PDIP 16	1672777777567728285677753077765645777307376567676457777	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	MARG. LEAKAGE MARG. LEAKAGE
DG411 MAX626 DG211 MAX232	9234 9235 9236 9237	16 PDIP 8 PDIP 16 PDIP 16 PDIP	76 77 77 77	0000	0010	0000	MARG, LEAKAGE
MAX480 MAX663 MAX661 MAX1074 DG411 MX7524 MAX623 OP07	9237 9238 9238 9240 9240 9242 9246 9246	8 PDIP 8 NSO 8 PDIP 10220 16 PDIP 16 PDIP 16 PDIP 16 PDIP 8 PDIP	77 45 77 77 36 77	00000000	01000000	00000000	FUNCTIONAL
MAX730 LT1074 MAX232 DG211 MAX662 MAX8212 MAX903	9248 9249 9249 9249 9249 9249 9251 9252 9252	8 PDIP TOZZO 16 PDIP 16 PDIP 8 PDIP 8 NSO 8 NSO 8 NSO	77 25 77 75 77 45 77 77	000000000	0-000000	00+00000	PARAMETRIC OXIDE DEFECT
MAX9212 DG405 MAX412 MAX410 MAX708	9301 9302 9302 9302 9302 9303 9303	8 NSO 16 PDNP 8 PDNP 8 PDNP 8 PDNP	30 77 36 36 77	000000	0000000	000000000000000000000000000000000000000	PARAMETRIC
REF02	9308	8 PD(P	77	ŏ	1	000	PARAMETRIC
DG508	9309	16 PDVP	#3	ő	2	0	1 CORROSION:
MAX232 MAX232 MAX8212 MAX232 MAX232 MAX8212	9311 9314 9314 9315 9315	16 PDIP 16 WSO 8 NSO 16 WSO 8 NSO	77 45 77 45 77	00000	00000	00000	I MPPUL LEARAGE

Vapor Pressure and Relative Humidity

 $H = \frac{\text{Actual water vapor pressure at temperature } T}{\text{Saturated water vapor pressure at temperature } T}$

or
$$P_{\rm H_2O} = H \times P_{\rm sat}(T)$$

What is $P_{\rm sat}$?
 $P_{\rm sat}(T) = P_0 \exp\left(-\frac{\lambda M}{RT}\right) = P_0 \exp\left(-\frac{Q_P}{kT}\right) Q_P = \frac{k\lambda M}{R} = 0.42 \text{ eV}$
Where

 λ = 2262.6 joule/gm (latent heat of vaporization)

M = 18.015 gm/mole, R = 8.32 joules/(mole K), k = $8.617 \times 10^{-5} \text{ eV/K}$

This is a fair approximation. The main benefit is physical insight.

December 3, 2015

Vapor Pressure and Relative Humidity

An accurate formula for P_{sat} (in Pascals) is

$$P_{sat}(T) = 1000 \times \exp\left(\sum_{n=0}^{3} a_n \times x^n\right), \quad x = \frac{1}{273 + T(^{\circ}C)}$$

$$a_0 = 16.033225, \quad a_1 = -3.5151386 \times 10^3,$$

$$a_2 = -2.9085058 \times 10^5, \quad a_3 = 5.0972361 \times 10^6$$

which is accurate to better than 0.15% in the range 5 C< T < 240 C. 1 atm = 101325 pascals

This is an accurate formula.

Vapor Pressure and Relative Humidity

- Relative humidity at "hot" die in steady state.
 - Partial pressure of water vapor is the same everywhere:

$$P_{\rm H_2O}(\rm die) = P_{\rm H_2O}(\rm ambient)$$

- So RH at die is given by:

 $H(\text{die}) \times P_{\text{sat}}(T_{\text{ambient}} + \Delta T_{\text{ja}}) = H(\text{ambient}) \times P_{\text{sat}}(T_{\text{ambient}})$

– Where the ratio, *h* is defined as:

$$H(die) = h \times H(ambient)$$

$$h = \frac{P_{\text{sat}}(T_{\text{ambient}})}{P_{\text{sat}}(T_{\text{ambient}} + \Delta T_{\text{ja}})}$$

December 3, 2015

Vapor Pressure and Relative Humidity

[©] C. Glenn Shirley

Preconditioning			
Environmental Stress			
Electrical Test, Failure Analysis			

Test and Failure Analysis

- Moisture-related tests (85/85, HAST, Steam) have specific test/FA reqt's.
 - Test must be done while unit contains moisture.
 - Within 48 hr.
 - Units must not be "wet".
 - Wet = liquid water.
- Diagnostic Bake.
- Risk decision before destructive analysis.

110

Plastic Package Reliability © C. Glenn Shirley

HAST versus 85/85

- Moisture MUST be non-condensing. (RH < 100%).
- Both require about < 1% fail. Typical SS ~ 100.
- 130/85 HAST duration is 10x less than 85/85 duration. We'll see how this was justified.
- 85/85 (**JESD22-A101**)

3.1 Temperature, Relative Humidity and Duration

Temperature ¹	Relative	Temperature ²	Vapor Pressure ²	Duration ³
(dry bulb °C)	Humidity ¹ (%)	(wet bulb, °C)	(psia/kPa)	(hours)
85 ± 2	85 ± 5	81.0	7.12/49.1	1000(-24,+168)

• HAST (JESD22-A110)

3.1 Temperature, relative humidity and duration

Temperature ¹ (dry bulb °C)	Relative Humiđity ¹ (%)	Temperature ² (wet bulb, °C)	Vapor Pressure ² (psia/kPa)	Duration ³ (hours)
130 ± 2	85 ± 5	124.7	33.3/230	96 (-0, +2)
110 ± 2	85 ± 5	105.2	17.7/122	264 (-0, +2)

 $\frac{33.3-14.2}{14.2} = 1.34 \text{ atmospheres} \Rightarrow \text{ Pressure vessel required.}$

December 3, 2015

Plastic Package Reliability

6 week bottleneck in information turns.

1 atm = 14.2 psi

10x less time

Example: Comparison of HAST Stds

Table 4-	le 4-9 Reliability Test Standards Comparison Table 4/5						
	Sony	EIAJ	IEC	JEDEC			
		EIAJ ED-4701-3 (1997) Test method B-123A • Condition selection	IEC 60749 (1996-10) CHAPTER 3 4C • Condition selection	JESD22-A110-B (1999) Highly-Accelerated Temperature and Humidity Stress Test (HAST) • Condition selection			
e Cooker Test	130±2°C 85±5%RH 2.3×10 ⁵ Pa • Continue and perform the soldering heat resistance test. • Voltage application (prescribed individually)	A 110±2°C 85±55%RH 1.2×10 ⁵ Pa B 120±2°C 85±55%RH 1.7×10 ⁵ Pa	A 110±2°C 85±5%RH 1.2×10 ⁵ Pa B 120±2°C 85±5%RH 1.7×10 ⁵ Pa 192h, 96h, 48h	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
Unsaturated Pressu	• Test time: 200 h	C 130±2°C 85±5%RH 2.3×10 ⁵ Pa • Voltage application if prescribed • Test time prescribed individually	C 130±2℃ 85±5%RH 2.3×10 ⁵ Pa • Voltage application if prescribed	 Power-on guidelines Minimum power consumption Apply to alternating pins as much as possible. Apply a potential difference to the entire metal wiring. Apply the maximum allowable voltage. Continuous power-on when the thermal loss is 200 mW or less or when the die pad temperature rise is 10°C or less. 			
		Inter	 Intermittent cycles at 50% duty (Power-on:Power-off = 1:1) 1 cycle period t ≥ 2 mm: 2 h or less t < 2 mm: 30 minutes or less (t: package thickness) 				
	Test and	d Failure Analy	sis Window -	 The temperature and humidity until arrival at the test conditions are prescribed. Measure within 48 h after placing in and removing from the chamber, and reapply stress within 96 h. The time provision is relaxed to 3 times for storage using bags to prevent the escape of humidity. 			

From Sony Quality and Reliability Handbook

http://www.sony.net/Products/SC-HP/tec/catalog/qr.html

Cyclical Stress

Moisture concentration at the die is constant if Period << t(sat)

Time-Varying Power Dissipation

- Most moisture-related mechanisms..
 - Have slow or zero rates at zero bias (V=0). $AF = V \times H_j^m \times \exp(-Q/kT_j)$
 - Have Q/m < 0.42 eV so, in steady-state, depressed die humidity due to power dissipation slows the rate.
- There is an optimum duty cycle which maximizes the effective acceleration.

December 3, 2015

Gold-Aluminum Bond Failure

- Kelvin resistance
 measurements.
- Resistance increase of Au bonds to Al pads vs bake time.
- Bake at 200 °C.
- Various levels of Br flame-retardant in molding compound.
- Br catalyzes Au-Al intermetallic growth.
- Br flame retardants are being phased out today.

Steady Power Dissipation

- Superimpose log(H) vs 1/T contour plots of
 - Peck model for THB acceleration factor.
 - Partial pressure of water vapor, Psat.
- Contours are straight lines:
 - Peck model: Iso-acceleration contours with slope proportional to Q/m.
 - Psat: Isobars with slope proportional to $Q_p = 0.42$ eV.
- Assumption: In steady state, the partial pressure of H_2O is the same in the ambient and at the die.

Reference: <u>C. G. Shirley, "THB Reliability Models and Life Prediction for Intermittently-</u> <u>Powered Non-Hermetic Components", IRPS 1994</u>

Steady Power Dissipation

Iso-acceleration contours for example mechanism (m = 4.6, Q = 0.8 eV) superimposed on water vapor pressure isobars.

Example: Comparison of HAST Stds

	Sony	EIAJ	IEC	JEDEC
		EIAJ ED-4701-3 (1997) Test method B-123A • Condition selection	IEC 60749 (1996-10) CHAPTER 3 4C • Condition selection	JESD22-A110-B (1999) Highly-Accelerated Temperature and Humidity Stress Test (HAST) • Condition selection
ssure Cooker Test	130±2℃ 85±5%RH 2.3×10⁵ Pa • Continue and perform the soldering heat resistance test. • Voltage application (prescribed individually) • Test time: 200 h	A 110±2°C 85±5%RH 1.2×10 ⁵ Pa B 120±2°C 85±5%RH 1.7×10 ⁵ Pa	A 110±2°C 85±5%RH 1.2×10 ⁵ Pa B 120±2°C 85±5%RH 1.7×10 ⁵ Pa 192h, 96h, 48h 1.7×10 ⁵ Pa	$ \begin{array}{c} 110\pm2^{\circ}\\ 85\pm5^{\circ}RH\\ 1.2\times10^{5} Pa\\ \end{array} 264^{+}_{\delta}h\\ 130\pm2^{\circ}C\\ 85\pm5^{\circ}RH\\ 2.3\times10^{5} Pa\\ 96^{+}_{\delta}h \end{array} $
	-steady-sta	• Voltage application if prescribed • Test time prescribed individually	• Voltage application if prescribed	Power-on guidelines Minimum power consumption Apply to alternating pins as much as possible. Apply a potential difference to the entire metal wiring. Apply the maximum allowable voltage. Continuous power-on when the thermal loss is 200 mW or less or when the die pad temperature rise is 10°C or less. Intermittent cycles at 50% duty (Power-on:Power-off = 1:1)
				 1 cycle period t ≥ 2 mm: 2 h or less t < 2 mm: 30 minutes or less (t: package thickness The temperature and humidity until arrival at the test conditions are prescribed. Measure within 48 h after placing in and removing from the chamber, and reapply stress within 96 h. The time provision is relaxed to 3 times for storage using bags to prevent the escape of humidity.

From Sony Quality and Reliability Handbook

http://www.sony.net/Products/SC-HP/tec/catalog/qr.html

Ν

Plastic Package Reliability

JEDEC 85/85 and HAST Req'ts

- $T_j T_a \leq 10^{\circ}$ C: 100% duty cycle.
- $T_j T_a > 10^{\circ}C$, 50% duty cycle.

Optimum

Assumptions:

- 85/85
- Peck Model *m* = 4.64, *Q* = 0.79 eV
- AF = 0 for V = 0.
- MC thickness 50 mils
- Kitano et. al MC properties.

<u>G. Shirley and C. Hong, "Optimal Acceleration of Cyclic THB Tests for Plastic-Packaged</u> Devices," in Proc. 29th Ann. Int'l Reliability Physics Symposium, pp12-21 (1991)

HAST Development Team

December 3, 2015

Plastic Package Reliability

Vapor Pressure and Relative Humidity

Package Anatomy

• This is an example of a packaged part as it might be used in a product

December 3, 2015

Plastic Package Reliability

Package Anatomy

This is a close-up of the package substrate snowing the many layers or conductors and insulators

Location: Silicon (vs. Package)

Bond Damage

Cratering damage on bond pads

Plastic Package Reliability

Bond Damage

Bond shear at die corners after temperature cycle

Plastic Package Reliability

Bond Damage (TAB)

TAB cratering and diffusion barrier damage revealed by wet etch.

Bond Damage (TAB)

TAB bonds Au/Al intermetallic formed at cracks in Ti barrier

December 3, 2015

Plastic Package Reliability

Bond Damage (TAB)

Crater under TAB bonds

Portland State

Plastic Package Reliability © C. Glenn Shirley

"Popcorn" Design Rules

Cracking sensitivity of PLCC packages after saturation in 85/85 followed by vapor-phase reflow soldering at 215 °C

Plastic Package Reliability

Crack Propagation in Test Conditions

- Tensile Test of Notched Samples
 - Measure crack growth rate for sinusoidal load:

- Sample geometry and load determine stress intensity factor, K.
- Plot crack growth rate da/dN versus K on log-log plot to determine Coffin-Manson exponent, m:

Crack Propagation in Test Conditions

Slope of lines on log-log plot

$$\frac{da}{dN} = Const \times (\Delta K)^m$$
$$m \approx 20$$

Source: <u>A. Nishimura, et. al. "Life Estimation for IC</u> <u>Packages Under Temperature Cycling Based on</u> <u>Fracture Mechanics," IEEE Trans. CHMT, Vol. 10,</u> <u>p637 (1987).</u>

